Observation of two-neutrino double electron capture in 124Xe with XENON1T
Two-neutrino double electron capture (2 ν ECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by many orders of magnitude 1 . Until now, indications of 2 ν ECEC decays have only been seen for two isotopes 2 – 5 , 78 Kr and 130 Ba, and in...
Saved in:
Published in | Nature (London) Vol. 568; no. 7753; pp. 532 - 535 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.04.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/s41586-019-1124-4 |
Cover
Abstract | Two-neutrino double electron capture (2
ν
ECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by many orders of magnitude
1
. Until now, indications of 2
ν
ECEC decays have only been seen for two isotopes
2
–
5
,
78
Kr and
130
Ba, and instruments with very low background levels are needed to detect them directly with high statistical significance
6
,
7
. The 2
ν
ECEC half-life is an important observable for nuclear structure models
8
–
14
and its measurement represents a meaningful step in the search for neutrinoless double electron capture—the detection of which would establish the Majorana nature of the neutrino and would give access to the absolute neutrino mass
15
–
17
. Here we report the direct observation of 2
ν
ECEC in
124
Xe with the XENON1T dark-matter detector. The significance of the signal is 4.4 standard deviations and the corresponding half-life of 1.8 × 10
22
years (statistical uncertainty, 0.5 × 10
22
years; systematic uncertainty, 0.1 × 10
22
years) is the longest measured directly so far. This study demonstrates that the low background and large target mass of xenon-based dark-matter detectors make them well suited for measuring rare processes and highlights the broad physics reach of larger next-generation experiments
18
–
20
.
Two-neutrino double electron capture is observed experimentally in
124
Xe with the XENON1T detector, yielding a half-life of 1.8 × 10
22
years. |
---|---|
AbstractList | Two-neutrino double electron capture (2νECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by many orders of magnitude1. Until now, indications of 2νECEC decays have only been seen for two isotopes2-5, 78Kr and 130Ba, and instruments with very low background levels are needed to detect them directly with high statistical significance6,7. The 2νECEC half-life is an important observable for nuclear structure models8-14 and its measurement represents a meaningful step in the search for neutrinoless double electron capture-the detection of which would establish the Majorana nature of the neutrino and would give access to the absolute neutrino mass15-17. Here we report the direct observation of 2νECEC in 124Xe with the XENON1T dark-matter detector. The significance of the signal is 4.4 standard deviations and the corresponding half-life of 1.8 × 1022 years (statistical uncertainty, 0.5 × 1022 years; systematic uncertainty, 0.1 × 1022 years) is the longest measured directly so far. This study demonstrates that the low background and large target mass of xenon-based dark-matter detectors make them well suited for measuring rare processes and highlights the broad physics reach of larger next-generation experiments18-20.Two-neutrino double electron capture (2νECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by many orders of magnitude1. Until now, indications of 2νECEC decays have only been seen for two isotopes2-5, 78Kr and 130Ba, and instruments with very low background levels are needed to detect them directly with high statistical significance6,7. The 2νECEC half-life is an important observable for nuclear structure models8-14 and its measurement represents a meaningful step in the search for neutrinoless double electron capture-the detection of which would establish the Majorana nature of the neutrino and would give access to the absolute neutrino mass15-17. Here we report the direct observation of 2νECEC in 124Xe with the XENON1T dark-matter detector. The significance of the signal is 4.4 standard deviations and the corresponding half-life of 1.8 × 1022 years (statistical uncertainty, 0.5 × 1022 years; systematic uncertainty, 0.1 × 1022 years) is the longest measured directly so far. This study demonstrates that the low background and large target mass of xenon-based dark-matter detectors make them well suited for measuring rare processes and highlights the broad physics reach of larger next-generation experiments18-20. Two-neutrino double electron capture (2νECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by many orders of magnitude. Until now, indications of 2νECEC decays have only been seen for two isotopes, 78Kr and 130Ba, and instruments with very low background levels are needed to detect them directly with high statistical significance. The 2νECEC half-life is an important observable for nuclear structure models and its measurement represents a meaningful step in the search for neutrinoless double electron capture-the detection of which would establish the Majorana nature of the neutrino and would give access to the absolute neutrino mass. Here we report the direct observation of 2νECEC in 124Xe with the XENON1T dark-matter detector. The significance of the signal is 4.4 standard deviations and the corresponding half-life of 1.8 × 1022 years (statistical uncertainty, 0.5 × 1022 years; systematic uncertainty, 0.1 × 1022 years) is the longest measured directly so far. This study demonstrates that the low background and large target mass of xenon-based dark-matter detectors make them well suited for measuring rare processes and highlights the broad physics reach of larger next-generation experiments. Two-neutrino double electron capture (2 ν ECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by many orders of magnitude 1 . Until now, indications of 2 ν ECEC decays have only been seen for two isotopes 2 – 5 , 78 Kr and 130 Ba, and instruments with very low background levels are needed to detect them directly with high statistical significance 6 , 7 . The 2 ν ECEC half-life is an important observable for nuclear structure models 8 – 14 and its measurement represents a meaningful step in the search for neutrinoless double electron capture—the detection of which would establish the Majorana nature of the neutrino and would give access to the absolute neutrino mass 15 – 17 . Here we report the direct observation of 2 ν ECEC in 124 Xe with the XENON1T dark-matter detector. The significance of the signal is 4.4 standard deviations and the corresponding half-life of 1.8 × 10 22 years (statistical uncertainty, 0.5 × 10 22 years; systematic uncertainty, 0.1 × 10 22 years) is the longest measured directly so far. This study demonstrates that the low background and large target mass of xenon-based dark-matter detectors make them well suited for measuring rare processes and highlights the broad physics reach of larger next-generation experiments 18 – 20 . Two-neutrino double electron capture is observed experimentally in 124 Xe with the XENON1T detector, yielding a half-life of 1.8 × 10 22 years. |
Author | Garbini, M. Aprile, E. Sartorelli, G. Agostini, F. Bruenner, S. Odgers, K. Molinario, A. Budnik, R. Elykov, A. Plante, G. Lang, R. F. Cichon, D. Mastroianni, S. Pizzella, V. Lindemann, S. Undagoitia, T. Marrodán Itay, R. Oberlack, U. Coderre, D. Arneodo, F. Kish, A. Piastra, F. Podviianiuk, R. Di Gangi, P. Fei, J. Kaminsky, B. Eurin, G. Diglio, S. Aalbers, J. Howlett, J. Murra, M. de Perio, P. Reichard, S. Berger, T. Manfredini, A. Naganoma, J. Pienaar, J. Brown, A. Koltman, G. Šarčević, N. Landsman, H. Capelli, C. Althueser, L. Masson, D. Fieguth, A. Masbou, J. Rupp, N. Cussonneau, J. P. Ferella, A. D. García, D. Ramírez Messina, M. Antochi, V. C. Fulgione, W. Amaro, F. D. Lopes, J. A. M. Qiu, H. Lindner, M. Alfonsi, M. Hasterok, C. Macolino, C. Marignetti, F. Rizzo, A. Scheibelhut, M. Anthony, M. Fune, E. López Greene, Z. Galloway, M. Lombardi, F. Bauermeister, B. Decowski, M. P. Gao, F. Mahlstedt, J. Riedel, B. Kopec, A. Conrad, J. Rosso, A. Gallo dos Santos, J. M. F. Cardoso, J. M. R. Bruno, G. Kazama, S. Di Giovanni, A. Grandi, L. Lin, Q. Levinson, L. Miller, K. B |
Author_xml | – sequence: 1 givenname: E. surname: Aprile fullname: Aprile, E. – sequence: 2 givenname: J. surname: Aalbers fullname: Aalbers, J. – sequence: 3 givenname: F. surname: Agostini fullname: Agostini, F. – sequence: 4 givenname: M. surname: Alfonsi fullname: Alfonsi, M. – sequence: 5 givenname: L. surname: Althueser fullname: Althueser, L. – sequence: 6 givenname: F. D. surname: Amaro fullname: Amaro, F. D. – sequence: 7 givenname: M. surname: Anthony fullname: Anthony, M. – sequence: 8 givenname: V. C. surname: Antochi fullname: Antochi, V. C. – sequence: 9 givenname: F. surname: Arneodo fullname: Arneodo, F. – sequence: 10 givenname: L. surname: Baudis fullname: Baudis, L. – sequence: 11 givenname: B. surname: Bauermeister fullname: Bauermeister, B. – sequence: 12 givenname: M. L. surname: Benabderrahmane fullname: Benabderrahmane, M. L. – sequence: 13 givenname: T. surname: Berger fullname: Berger, T. – sequence: 14 givenname: P. A. surname: Breur fullname: Breur, P. A. – sequence: 15 givenname: A. surname: Brown fullname: Brown, A. – sequence: 16 givenname: E. surname: Brown fullname: Brown, E. – sequence: 17 givenname: S. surname: Bruenner fullname: Bruenner, S. – sequence: 18 givenname: G. surname: Bruno fullname: Bruno, G. – sequence: 19 givenname: R. surname: Budnik fullname: Budnik, R. – sequence: 20 givenname: C. surname: Capelli fullname: Capelli, C. – sequence: 21 givenname: J. M. R. surname: Cardoso fullname: Cardoso, J. M. R. – sequence: 22 givenname: D. surname: Cichon fullname: Cichon, D. – sequence: 23 givenname: D. surname: Coderre fullname: Coderre, D. – sequence: 24 givenname: A. P. surname: Colijn fullname: Colijn, A. P. – sequence: 25 givenname: J. surname: Conrad fullname: Conrad, J. – sequence: 26 givenname: J. P. surname: Cussonneau fullname: Cussonneau, J. P. – sequence: 27 givenname: M. P. surname: Decowski fullname: Decowski, M. P. – sequence: 28 givenname: P. surname: de Perio fullname: de Perio, P. – sequence: 29 givenname: P. surname: Di Gangi fullname: Di Gangi, P. – sequence: 30 givenname: A. surname: Di Giovanni fullname: Di Giovanni, A. – sequence: 31 givenname: S. surname: Diglio fullname: Diglio, S. – sequence: 32 givenname: A. surname: Elykov fullname: Elykov, A. – sequence: 33 givenname: G. surname: Eurin fullname: Eurin, G. – sequence: 34 givenname: J. surname: Fei fullname: Fei, J. – sequence: 35 givenname: A. D. surname: Ferella fullname: Ferella, A. D. – sequence: 36 givenname: A. surname: Fieguth fullname: Fieguth, A. – sequence: 37 givenname: W. surname: Fulgione fullname: Fulgione, W. – sequence: 38 givenname: A. Gallo surname: Rosso fullname: Rosso, A. Gallo – sequence: 39 givenname: M. surname: Galloway fullname: Galloway, M. – sequence: 40 givenname: F. surname: Gao fullname: Gao, F. – sequence: 41 givenname: M. surname: Garbini fullname: Garbini, M. – sequence: 42 givenname: L. surname: Grandi fullname: Grandi, L. – sequence: 43 givenname: Z. surname: Greene fullname: Greene, Z. – sequence: 44 givenname: C. surname: Hasterok fullname: Hasterok, C. – sequence: 45 givenname: E. surname: Hogenbirk fullname: Hogenbirk, E. – sequence: 46 givenname: J. surname: Howlett fullname: Howlett, J. – sequence: 47 givenname: M. surname: Iacovacci fullname: Iacovacci, M. – sequence: 48 givenname: R. surname: Itay fullname: Itay, R. – sequence: 49 givenname: F. surname: Joerg fullname: Joerg, F. – sequence: 50 givenname: B. surname: Kaminsky fullname: Kaminsky, B. – sequence: 51 givenname: S. surname: Kazama fullname: Kazama, S. – sequence: 52 givenname: A. surname: Kish fullname: Kish, A. – sequence: 53 givenname: G. surname: Koltman fullname: Koltman, G. – sequence: 54 givenname: A. surname: Kopec fullname: Kopec, A. – sequence: 55 givenname: H. surname: Landsman fullname: Landsman, H. – sequence: 56 givenname: R. F. surname: Lang fullname: Lang, R. F. – sequence: 57 givenname: L. surname: Levinson fullname: Levinson, L. – sequence: 58 givenname: Q. surname: Lin fullname: Lin, Q. – sequence: 59 givenname: S. surname: Lindemann fullname: Lindemann, S. – sequence: 60 givenname: M. surname: Lindner fullname: Lindner, M. – sequence: 61 givenname: F. surname: Lombardi fullname: Lombardi, F. – sequence: 62 givenname: J. A. M. surname: Lopes fullname: Lopes, J. A. M. – sequence: 63 givenname: E. López surname: Fune fullname: Fune, E. López – sequence: 64 givenname: C. surname: Macolino fullname: Macolino, C. – sequence: 65 givenname: J. surname: Mahlstedt fullname: Mahlstedt, J. – sequence: 66 givenname: A. surname: Manfredini fullname: Manfredini, A. – sequence: 67 givenname: F. surname: Marignetti fullname: Marignetti, F. – sequence: 68 givenname: T. Marrodán surname: Undagoitia fullname: Undagoitia, T. Marrodán – sequence: 69 givenname: J. surname: Masbou fullname: Masbou, J. – sequence: 70 givenname: D. surname: Masson fullname: Masson, D. – sequence: 71 givenname: S. surname: Mastroianni fullname: Mastroianni, S. – sequence: 72 givenname: M. surname: Messina fullname: Messina, M. – sequence: 73 givenname: K. surname: Micheneau fullname: Micheneau, K. – sequence: 74 givenname: K. surname: Miller fullname: Miller, K. – sequence: 75 givenname: A. surname: Molinario fullname: Molinario, A. – sequence: 76 givenname: K. surname: Morå fullname: Morå, K. – sequence: 77 givenname: M. surname: Murra fullname: Murra, M. – sequence: 78 givenname: J. surname: Naganoma fullname: Naganoma, J. – sequence: 79 givenname: K. surname: Ni fullname: Ni, K. – sequence: 80 givenname: U. surname: Oberlack fullname: Oberlack, U. – sequence: 81 givenname: K. surname: Odgers fullname: Odgers, K. – sequence: 82 givenname: B. surname: Pelssers fullname: Pelssers, B. – sequence: 83 givenname: R. surname: Peres fullname: Peres, R. – sequence: 84 givenname: F. surname: Piastra fullname: Piastra, F. – sequence: 85 givenname: J. surname: Pienaar fullname: Pienaar, J. – sequence: 86 givenname: V. surname: Pizzella fullname: Pizzella, V. – sequence: 87 givenname: G. surname: Plante fullname: Plante, G. – sequence: 88 givenname: R. surname: Podviianiuk fullname: Podviianiuk, R. – sequence: 89 givenname: N. surname: Priel fullname: Priel, N. – sequence: 90 givenname: H. surname: Qiu fullname: Qiu, H. – sequence: 91 givenname: D. Ramírez surname: García fullname: García, D. Ramírez – sequence: 92 givenname: S. surname: Reichard fullname: Reichard, S. – sequence: 93 givenname: B. surname: Riedel fullname: Riedel, B. – sequence: 94 givenname: A. surname: Rizzo fullname: Rizzo, A. – sequence: 95 givenname: A. surname: Rocchetti fullname: Rocchetti, A. – sequence: 96 givenname: N. surname: Rupp fullname: Rupp, N. – sequence: 97 givenname: J. M. F. surname: dos Santos fullname: dos Santos, J. M. F. – sequence: 98 givenname: G. surname: Sartorelli fullname: Sartorelli, G. – sequence: 99 givenname: N. surname: Šarčević fullname: Šarčević, N. – sequence: 100 givenname: M. surname: Scheibelhut fullname: Scheibelhut, M. |
BookMark | eNp9kMtKAzEUQIMoWB8f4G7AjZtokslrllLqA8RuKnQX0vSOjkyTmmQU_97UCkJBV1ncc24u5wjt--ABoTNKLimp9VXiVGiJCW0wpYxjvodGlCuJudRqH40IYRoTXctDdJTSKyFEUMVH6H66SBDfbe6Cr0Jb5Y-APQw5dj5UyzAseqigB5djmTu7zkOEqvNV-WMO1UeXX6r55HH6SGcn6KC1fYLTn_cYPd1MZuM7_DC9vR9fP2DHVJOxWzaWqaUVmnFFhAXuwHLZ6ho4EYIKyhatbMSS1TUnTdtK3VotoZFO1GVUH6OL7d51DG8DpGxWXXLQ99ZDGJJhjArCFBeioOc76GsYoi_XFUpwrgTldaHUlnIxpBShNa7L30FytF1vKDGbxGab2JTEZpPY8GLSHXMdu5WNn_86bOukwvpniL83_S19AYZXjbY |
CitedBy_id | crossref_primary_10_1103_PhysRevLett_127_023201 crossref_primary_10_1016_j_astropartphys_2020_102480 crossref_primary_10_1103_PhysRevD_101_093004 crossref_primary_10_1016_j_jocs_2020_101200 crossref_primary_10_1103_PhysRevC_106_024328 crossref_primary_10_1103_PhysRevD_103_012002 crossref_primary_10_1016_j_physletb_2021_136782 crossref_primary_10_1088_1402_4896_ad9424 crossref_primary_10_1088_1742_6596_1690_1_012037 crossref_primary_10_1088_1361_6471_adb50b crossref_primary_10_1088_1674_1137_ad582a crossref_primary_10_1103_PhysRevD_108_012010 crossref_primary_10_1093_ptep_ptaa119 crossref_primary_10_1088_1748_0221_14_07_P07016 crossref_primary_10_1016_j_physletb_2020_135681 crossref_primary_10_1103_PhysRevD_103_063028 crossref_primary_10_1103_PhysRevLett_125_131806 crossref_primary_10_1088_1748_0221_19_05_P05021 crossref_primary_10_1103_PhysRevC_101_064318 crossref_primary_10_1088_1748_0221_17_02_C02017 crossref_primary_10_1088_1402_4896_acadb6 crossref_primary_10_1088_1361_6471_ac841a crossref_primary_10_1140_epjc_s10052_021_09834_x crossref_primary_10_1140_epjc_s10052_020_08726_w crossref_primary_10_1103_PhysRevC_106_034309 crossref_primary_10_1088_1742_6596_2156_1_012134 crossref_primary_10_3390_universe10020098 crossref_primary_10_1088_1402_4896_ac6e0f crossref_primary_10_1007_s10967_019_06707_2 crossref_primary_10_1103_PhysRevD_104_092009 crossref_primary_10_1103_PhysRevC_105_045801 crossref_primary_10_1103_PhysRevD_103_023024 crossref_primary_10_3390_physics3010009 crossref_primary_10_1103_PhysRevLett_125_131301 crossref_primary_10_1088_1361_6471_ad9039 crossref_primary_10_1038_s42005_024_01774_8 crossref_primary_10_1088_1748_0221_16_12_P12003 crossref_primary_10_33271_nvngu_2022_3_057 crossref_primary_10_1103_PhysRevD_110_012011 crossref_primary_10_1140_epjc_s10052_022_10052_2 crossref_primary_10_2298_NTRP2401001W crossref_primary_10_1038_d41586_019_01212_8 crossref_primary_10_1007_s41605_024_00500_w crossref_primary_10_1140_epjc_s10052_023_11516_9 crossref_primary_10_3390_universe7080313 crossref_primary_10_1103_PhysRevC_105_065504 crossref_primary_10_1140_epjc_s10052_023_12280_6 crossref_primary_10_3390_universe6100159 crossref_primary_10_1088_1361_6633_ac5754 crossref_primary_10_1088_1475_7516_2021_01_039 crossref_primary_10_1134_S1063778820030126 crossref_primary_10_1103_PhysRevLett_131_041002 crossref_primary_10_1088_1475_7516_2020_11_031 crossref_primary_10_3390_universe10120442 crossref_primary_10_1007_s10909_019_02278_4 crossref_primary_10_1140_epjc_s10052_025_13847_1 crossref_primary_10_1103_PhysRevC_111_014601 crossref_primary_10_1103_RevModPhys_92_045007 crossref_primary_10_1103_PhysRevC_104_064307 crossref_primary_10_1088_1748_0221_18_06_P06026 crossref_primary_10_1103_PhysRevLett_133_101805 crossref_primary_10_1063_PT_3_4242 crossref_primary_10_3390_particles4020023 crossref_primary_10_1142_S0217751X22501718 crossref_primary_10_1088_1367_2630_abde33 crossref_primary_10_1103_RevModPhys_95_025002 crossref_primary_10_1016_j_physletb_2023_137689 crossref_primary_10_1360_SSPMA_2024_0485 crossref_primary_10_1016_j_adt_2024_101694 crossref_primary_10_1088_1361_6471_ad8767 crossref_primary_10_1103_PhysRevD_102_115022 crossref_primary_10_3389_frai_2022_832909 crossref_primary_10_1016_j_nuclphysa_2020_121697 crossref_primary_10_1088_1674_1137_43_11_113001 crossref_primary_10_1103_PhysRevLett_133_221801 crossref_primary_10_1140_epjc_s10052_022_09989_1 crossref_primary_10_3390_universe9060290 crossref_primary_10_34133_research_0569 crossref_primary_10_1088_1748_0221_17_07_P07018 crossref_primary_10_1088_1361_6471_ab9c2d crossref_primary_10_1103_PhysRevD_102_072004 crossref_primary_10_1016_j_physletb_2019_134885 crossref_primary_10_1016_j_ppnp_2020_103807 crossref_primary_10_1088_1748_0221_15_12_P12007 crossref_primary_10_1007_s40766_023_00049_2 crossref_primary_10_1140_epjc_s10052_022_10345_6 crossref_primary_10_3390_universe6100182 crossref_primary_10_1140_epjc_s10052_023_12218_y crossref_primary_10_1016_j_physletb_2021_136408 crossref_primary_10_3389_fdest_2024_1480975 crossref_primary_10_1103_PhysRevX_12_021005 crossref_primary_10_1140_epjc_s10052_023_12298_w crossref_primary_10_1088_1674_1137_abba13 crossref_primary_10_1103_PhysRevD_102_123006 crossref_primary_10_1140_epja_s10050_019_00003_z crossref_primary_10_1098_rsta_2023_0083 crossref_primary_10_1007_JHEP02_2021_203 crossref_primary_10_1140_epjc_s10052_024_12982_5 crossref_primary_10_3390_sym12081316 crossref_primary_10_1140_epjc_s10052_021_09926_8 crossref_primary_10_3390_e24070976 crossref_primary_10_1140_epjc_s10052_020_08602_7 crossref_primary_10_1002_piuz_201970406 |
Cites_doi | 10.1063/1.3436636 10.1103/PhysRevC.70.052501 10.1088/1475-7516/2016/04/027 10.1016/j.astropartphys.2012.01.003 10.1103/PhysRevC.87.035501 10.1103/PhysRevC.91.054309 10.1140/epjc/s10052-017-4757-1 10.1016/0550-3213(83)90089-5 10.1016/S0370-2693(98)01291-X 10.1134/S106377961804024X 10.1007/BF02961314 10.1103/PhysRevC.95.024605 10.1016/0375-9474(96)00087-5 10.1088/1475-7516/2016/11/017 10.1103/PhysRevB.68.054201 10.1143/ptp/89.1.139 10.1103/PhysRevC.96.065502 10.1140/epjc/s10052-017-5329-0 10.1088/0954-3899/40/7/075102 10.1140/epja/i2007-10481-7 10.1103/PhysRevLett.121.111302 10.1103/PhysRevB.76.014115 10.1146/annurev.nucl.55.090704.151558 10.1007/s11433-018-9259-0 10.1351/pac200375060683 10.1088/1748-0221/6/10/P10002 10.1007/BF01292371 10.1103/PhysRev.100.142 10.1088/1748-0221/9/11/P11006 10.1103/PhysRevC.64.035205 10.1103/PhysRevC.86.044313 10.1140/epjc/s10052-017-5326-3 10.1103/PhysRevD.95.012008 10.1016/j.gca.2009.08.002 10.18434/T4D303 10.1016/j.physletb.2019.134885 10.2172/5360235 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 Copyright Nature Publishing Group Apr 25, 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: Copyright Nature Publishing Group Apr 25, 2019 |
CorporateAuthor | XENON Collaboration |
CorporateAuthor_xml | – name: XENON Collaboration |
DBID | AAYXX CITATION 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/s41586-019-1124-4 |
DatabaseName | CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts ProQuest Agricultural Science Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest eLibrary (NC LIVE) ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database (NC LIVE) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Proquest Medical Database ProQuest Psychology Database ProQuest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Statistics |
EISSN | 1476-4687 |
EndPage | 535 |
ExternalDocumentID | 10_1038_s41586_019_1124_4 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U RC3 SOI 7X8 AGSTI PUEGO TUS |
ID | FETCH-LOGICAL-c279t-cd9a27da5824705ae4cea46f83e40551512bf695d233409ff68fa86e96c532bf3 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Sep 04 19:22:02 EDT 2025 Fri Jul 25 09:01:20 EDT 2025 Tue Jul 01 01:21:03 EDT 2025 Thu Apr 24 23:00:41 EDT 2025 Fri Feb 21 02:38:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7753 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c279t-cd9a27da5824705ae4cea46f83e40551512bf695d233409ff68fa86e96c532bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2254475143 |
PQPubID | 40569 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2215027455 proquest_journals_2254475143 crossref_citationtrail_10_1038_s41586_019_1124_4 crossref_primary_10_1038_s41586_019_1124_4 springer_journals_10_1038_s41586_019_1124_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-25 |
PublicationDateYYYYMMDD | 2019-04-25 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Nesterenko (CR24) 2012; 86 Winter (CR1) 1955; 100 Pujol, Marty, Burnard, Philippot (CR5) 2009; 73 CR19 Aprile (CR26) 2017; 77 Zhang (CR33) 2019; 62 Aprile, Giboni, Majewski, Ni, Yamashita (CR36) 2007; 76 Hirsch, Muto, Oda, Klapdor-Kleingrothaus (CR11) 1994; 347 CR14 Singh, Chandra, Rath, Raina, Hirsch (CR10) 2007; 33 CR32 Aprile (CR39) 2012; 35 de Laeter (CR31) 2003; 75 Aprile (CR30) 2017; 77 Majorana (CR15) 1937; 14 Aalbers (CR20) 2016; 1611 Aprile (CR29) 2017; 77 Pirinen, Suhonen (CR13) 2015; 91 Meshik, Hohenberg, Pravdivtseva, Kapusta (CR4) 2001; 64 Rumyantsev, Urin (CR12) 1998; 443 Aunola, Suhonen (CR9) 1996; 602 Aprile (CR18) 2016; 1604 Ratkevich (CR3) 2017; 96 Akerib (CR38) 2017; 95 Buchmüller, Peccei, Yanagida (CR23) 2005; 55 Aprile (CR27) 2018; 121 CR22 Conti (CR35) 2003; 68 Doi, Kotani (CR21) 1993; 89 Manalaysay (CR34) 2010; 81 Szydagis (CR37) 2011; 6 Sujkowski, Wycech (CR17) 2004; 70 Bernabeu, De Rujula, Jarlskog (CR16) 1983; 223 Aprile (CR25) 2017; 95 Aprile (CR28) 2014; 9 Gavriljuk (CR6) 2018; 49 Gavrilyuk (CR2) 2013; 87 Abe (CR7) 2018; 2018 Suhonen (CR8) 2013; 40 E Aprile (1124_CR27) 2018; 121 J Bernabeu (1124_CR16) 1983; 223 SS Ratkevich (1124_CR3) 2017; 96 M Hirsch (1124_CR11) 1994; 347 M Pujol (1124_CR5) 2009; 73 YM Gavrilyuk (1124_CR2) 2013; 87 1124_CR32 S Singh (1124_CR10) 2007; 33 1124_CR14 H Zhang (1124_CR33) 2019; 62 J Aalbers (1124_CR20) 2016; 1611 E Aprile (1124_CR25) 2017; 95 1124_CR19 E Conti (1124_CR35) 2003; 68 YM Gavriljuk (1124_CR6) 2018; 49 E Aprile (1124_CR28) 2014; 9 A Manalaysay (1124_CR34) 2010; 81 Z Sujkowski (1124_CR17) 2004; 70 M Doi (1124_CR21) 1993; 89 K Abe (1124_CR7) 2018; 2018 E Aprile (1124_CR18) 2016; 1604 DA Nesterenko (1124_CR24) 2012; 86 AP Meshik (1124_CR4) 2001; 64 1124_CR22 P Pirinen (1124_CR13) 2015; 91 E Majorana (1124_CR15) 1937; 14 J Suhonen (1124_CR8) 2013; 40 W Buchmüller (1124_CR23) 2005; 55 DS Akerib (1124_CR38) 2017; 95 E Aprile (1124_CR26) 2017; 77 J de Laeter (1124_CR31) 2003; 75 M Szydagis (1124_CR37) 2011; 6 RG Winter (1124_CR1) 1955; 100 M Aunola (1124_CR9) 1996; 602 E Aprile (1124_CR30) 2017; 77 E Aprile (1124_CR39) 2012; 35 E Aprile (1124_CR36) 2007; 76 E Aprile (1124_CR29) 2017; 77 OA Rumyantsev (1124_CR12) 1998; 443 |
References_xml | – volume: 81 start-page: 073303 year: 2010 ident: CR34 article-title: Spatially uniform calibration of a liquid xenon detector at low energies using Kr publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3436636 – volume: 70 start-page: 052501 year: 2004 ident: CR17 article-title: Neutrinoless double electron capture: a tool to search for Majorana neutrinos publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.70.052501 – volume: 1604 start-page: 027 year: 2016 ident: CR18 article-title: Physics reach of the XENON1T dark matter experiment publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/04/027 – ident: CR22 – volume: 35 start-page: 573 year: 2012 end-page: 590 ident: CR39 article-title: The XENON100 dark matter experiment publication-title: Astropart. Phys. doi: 10.1016/j.astropartphys.2012.01.003 – volume: 87 start-page: 035501 year: 2013 ident: CR2 article-title: Indications of 2 2K capture in Kr publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.87.035501 – volume: 91 start-page: 054309 year: 2015 ident: CR13 article-title: Systematic approach to β and 2 ββ decays of mass = 100–136 nuclei publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.91.054309 – volume: 77 year: 2017 ident: CR30 article-title: Removing krypton from xenon by cryogenic distillation to the ppq level publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-4757-1 – ident: CR14 – volume: 223 start-page: 15 year: 1983 end-page: 28 ident: CR16 article-title: Neutrinoless double electron capture as a tool to measure the mass publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(83)90089-5 – volume: 443 start-page: 51 year: 1998 end-page: 57 ident: CR12 article-title: The strength of the analog and Gamow–Teller giant resonances and hindrance of the 2 ββ-decay rate publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)01291-X – volume: 49 start-page: 563 year: 2018 end-page: 568 ident: CR6 article-title: 2K-capture in Xe: results of data processing for an exposure of 37.7 kg day publication-title: Phys. Part. Nucl. doi: 10.1134/S106377961804024X – volume: 2018 start-page: 053D03 year: 2018 ident: CR7 article-title: Improved search for two-neutrino double electron capture on Xe and Xe using particle identification in XMASS-I publication-title: Progr. Theor. Exp. Phys – volume: 14 start-page: 171 year: 1937 end-page: 184 ident: CR15 article-title: Theory of the symmetry of electrons and positrons publication-title: Nuovo Cimento doi: 10.1007/BF02961314 – volume: 95 start-page: 024605 year: 2017 ident: CR25 article-title: Search for two-neutrino double electron capture of Xe with XENON100 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.95.024605 – volume: 602 start-page: 133 year: 1996 end-page: 166 ident: CR9 article-title: Systematic study of beta and double beta decay to excited final states publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(96)00087-5 – volume: 1611 start-page: 017 year: 2016 ident: CR20 article-title: DARWIN: towards the ultimate dark matter detector publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/11/017 – volume: 68 start-page: 054201 year: 2003 ident: CR35 article-title: Correlated fluctuations between luminescence and ionization in liquid xenon publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.054201 – volume: 89 start-page: 139 year: 1993 end-page: 159 ident: CR21 article-title: Neutrinoless modes of double beta decay publication-title: Prog. Theor. Phys. doi: 10.1143/ptp/89.1.139 – volume: 96 start-page: 065502 year: 2017 ident: CR3 article-title: Comparative study of the double-K-shell-vacancy production in single- and double-electron-capture decay publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.96.065502 – volume: 77 year: 2017 ident: CR29 article-title: Material radioassay and selection for the XENON1T dark matter experiment publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5329-0 – volume: 40 start-page: 075102 year: 2013 ident: CR8 article-title: Double beta decays of Xe investigated in the QRPA framework publication-title: J. Phys. G Nucl. Phys. doi: 10.1088/0954-3899/40/7/075102 – ident: CR19 – volume: 33 start-page: 375 year: 2007 end-page: 388 ident: CR10 article-title: Nuclear deformation and the two neutrino double-β-decay in Xe, Te, Ba and Nd isotopes publication-title: Eur. Phys. J. A doi: 10.1140/epja/i2007-10481-7 – volume: 121 start-page: 111302 year: 2018 ident: CR27 article-title: Dark matter search results from a one tonne × year exposure of XENON1T publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.111302 – volume: 76 start-page: 014115 year: 2007 ident: CR36 article-title: Observation of anti-correlation between scintillation and ionization for MeV gamma-rays in liquid xenon publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.014115 – volume: 55 start-page: 311 year: 2005 end-page: 355 ident: CR23 article-title: Leptogenesis as the origin of matter publication-title: Annu. Rev. Nucl. Part. Sci. doi: 10.1146/annurev.nucl.55.090704.151558 – volume: 62 start-page: 31011 year: 2019 ident: CR33 article-title: Dark matter direct search sensitivity of the PandaX-4T experiment publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-018-9259-0 – volume: 75 start-page: 683 year: 2003 end-page: 800 ident: CR31 article-title: Atomic weights of the elements. Review 2000 (IUPAC technical report) publication-title: Pure Appl. Chem doi: 10.1351/pac200375060683 – volume: 6 start-page: P10002 year: 2011 ident: CR37 article-title: NEST: a comprehensive model for scintillation yield in liquid xenon publication-title: J. Instrum. doi: 10.1088/1748-0221/6/10/P10002 – volume: 347 start-page: 151 year: 1994 end-page: 160 ident: CR11 article-title: Nuclear structure calculation of β β , β /EC and EC/EC decay matrix elements publication-title: Z. Phys. A doi: 10.1007/BF01292371 – ident: CR32 – volume: 100 start-page: 142 year: 1955 end-page: 144 ident: CR1 article-title: Double K capture and single K capture with positron emission publication-title: Phys. Rev. doi: 10.1103/PhysRev.100.142 – volume: 9 start-page: P11006 year: 2014 ident: CR28 article-title: Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment publication-title: J. Instrum. doi: 10.1088/1748-0221/9/11/P11006 – volume: 64 start-page: 035205 year: 2001 ident: CR4 article-title: Weak decay of Ba and Ba: geochemical measurements publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.64.035205 – volume: 86 start-page: 044313 year: 2012 ident: CR24 article-title: Double-beta transformations in isobaric triplets with mass numbers = 124, 130, and 136 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.86.044313 – volume: 77 year: 2017 ident: CR26 article-title: The XENON1T dark matter experiment publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5326-3 – volume: 95 start-page: 012008 year: 2017 ident: CR38 article-title: Signal yields, energy resolution, and recombination fluctuations in liquid xenon publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.012008 – volume: 73 start-page: 6834 year: 2009 end-page: 6846 ident: CR5 article-title: Xenon in archean barite: weak decay of Ba, mass-dependent isotopic fractionation and implication for barite formation publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.08.002 – volume: 9 start-page: P11006 year: 2014 ident: 1124_CR28 publication-title: J. Instrum. doi: 10.1088/1748-0221/9/11/P11006 – ident: 1124_CR32 doi: 10.18434/T4D303 – volume: 64 start-page: 035205 year: 2001 ident: 1124_CR4 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.64.035205 – volume: 77 year: 2017 ident: 1124_CR26 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5326-3 – volume: 347 start-page: 151 year: 1994 ident: 1124_CR11 publication-title: Z. Phys. A doi: 10.1007/BF01292371 – volume: 95 start-page: 024605 year: 2017 ident: 1124_CR25 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.95.024605 – volume: 100 start-page: 142 year: 1955 ident: 1124_CR1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.100.142 – volume: 121 start-page: 111302 year: 2018 ident: 1124_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.111302 – volume: 76 start-page: 014115 year: 2007 ident: 1124_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.014115 – volume: 89 start-page: 139 year: 1993 ident: 1124_CR21 publication-title: Prog. Theor. Phys. doi: 10.1143/ptp/89.1.139 – volume: 70 start-page: 052501 year: 2004 ident: 1124_CR17 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.70.052501 – volume: 443 start-page: 51 year: 1998 ident: 1124_CR12 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)01291-X – volume: 73 start-page: 6834 year: 2009 ident: 1124_CR5 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.08.002 – volume: 81 start-page: 073303 year: 2010 ident: 1124_CR34 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3436636 – volume: 2018 start-page: 053D03 year: 2018 ident: 1124_CR7 publication-title: Progr. Theor. Exp. Phys – volume: 1604 start-page: 027 year: 2016 ident: 1124_CR18 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/04/027 – volume: 6 start-page: P10002 year: 2011 ident: 1124_CR37 publication-title: J. Instrum. doi: 10.1088/1748-0221/6/10/P10002 – volume: 68 start-page: 054201 year: 2003 ident: 1124_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.054201 – volume: 14 start-page: 171 year: 1937 ident: 1124_CR15 publication-title: Nuovo Cimento doi: 10.1007/BF02961314 – volume: 75 start-page: 683 year: 2003 ident: 1124_CR31 publication-title: Pure Appl. Chem doi: 10.1351/pac200375060683 – ident: 1124_CR14 doi: 10.1016/j.physletb.2019.134885 – volume: 77 year: 2017 ident: 1124_CR29 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5329-0 – volume: 95 start-page: 012008 year: 2017 ident: 1124_CR38 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.012008 – volume: 87 start-page: 035501 year: 2013 ident: 1124_CR2 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.87.035501 – volume: 33 start-page: 375 year: 2007 ident: 1124_CR10 publication-title: Eur. Phys. J. A doi: 10.1140/epja/i2007-10481-7 – volume: 223 start-page: 15 year: 1983 ident: 1124_CR16 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(83)90089-5 – volume: 91 start-page: 054309 year: 2015 ident: 1124_CR13 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.91.054309 – volume: 602 start-page: 133 year: 1996 ident: 1124_CR9 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(96)00087-5 – volume: 40 start-page: 075102 year: 2013 ident: 1124_CR8 publication-title: J. Phys. G Nucl. Phys. doi: 10.1088/0954-3899/40/7/075102 – volume: 49 start-page: 563 year: 2018 ident: 1124_CR6 publication-title: Phys. Part. Nucl. doi: 10.1134/S106377961804024X – volume: 35 start-page: 573 year: 2012 ident: 1124_CR39 publication-title: Astropart. Phys. doi: 10.1016/j.astropartphys.2012.01.003 – ident: 1124_CR22 doi: 10.2172/5360235 – volume: 62 start-page: 31011 year: 2019 ident: 1124_CR33 publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-018-9259-0 – volume: 1611 start-page: 017 year: 2016 ident: 1124_CR20 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/11/017 – volume: 86 start-page: 044313 year: 2012 ident: 1124_CR24 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.86.044313 – volume: 77 year: 2017 ident: 1124_CR30 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-4757-1 – ident: 1124_CR19 – volume: 96 start-page: 065502 year: 2017 ident: 1124_CR3 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.96.065502 – volume: 55 start-page: 311 year: 2005 ident: 1124_CR23 publication-title: Annu. Rev. Nucl. Part. Sci. doi: 10.1146/annurev.nucl.55.090704.151558 |
SSID | ssj0005174 |
Score | 2.586217 |
Snippet | Two-neutrino double electron capture (2
ν
ECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by... Two-neutrino double electron capture (2νECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 532 |
SubjectTerms | 639/766/387/1126 639/766/419/1131 639/766/419/866 Background levels Beta decay Dark matter Electron capture Electrons Energy Experiments Half-life Humanities and Social Sciences Isotopes Laboratories Letter Life prediction Measuring instruments multidisciplinary Neutrinos Nuclear structure Physics Science Science (multidisciplinary) Sensors Statistics Uncertainty Universe X-rays Xenon |
Title | Observation of two-neutrino double electron capture in 124Xe with XENON1T |
URI | https://link.springer.com/article/10.1038/s41586-019-1124-4 https://www.proquest.com/docview/2254475143 https://www.proquest.com/docview/2215027455 |
Volume | 568 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6ahEIupdm2dNt0UaGHPhCx9bJ8Ktmw27RQp5QEfDOSLEMg2Nt6l_79arzyLg00F_sg-cFoRvPNjPgG4B3Phau51JR7FQIUk3FqQxhCg3GwJqkRQWMe8nuhLm_Et1KWMeHWx2OV4544bNR15zBHfsaQSytD9_559Yti1yisrsYWGgdwlAZPg3qul1_2RzzusTCPVU2uz_rguDTG0jkNiENQ8a9f2oPNe_XRwe0sn8KTiBfJ-XaBT-CRbyfweDi36foJnETb7Mn7SCD9YQLHiCC3BMzP4OuV3SVeSdeQ9Z-Oth45-NuO1N3G3nky9sIhzqywokBuWxJ-t_QE07SkXBRXRXr9HG6Wi-uLSxr7J1DHsnxNXZ0bltVGaiayRBovnDdCNZr7ANMk-nrbqFzWjPMQ5jWN0o3RyufKSR6G-As4bLvWvwTirLc1y51w1oq0MdYmrkmNCuGOMlyaKSSj9CoXycWxx8VdNRS5ua62Aq-CwCsUeCWm8HH3yGrLrPHQ5NNxSapoZH21V4kpvN0NB_PAmodpfbfBOQHxhshbyil8Gpdy_4r_fvDVwx98DccMdScRlMlTOFz_3vg3AZ2s7QwOsjILV32RzgZ1nMHR-XI-L8J9vih-_PwL0pDhrA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9qReyL2FPpadUICn4QupevzT6ISG25s-315Qr3tibZBISye7p3FP8p_0Yz-3GnBfvW580my2Qm85uZ7G8AXvNMuIJLTblXMUAxKac2hiE0GgcLSYEIGvOQZ1M1vhBf53K-Bb_7f2HwWmV_JjYHdVE5zJEfMOTSStG9f1r8oNg1CqurfQuNVi1O_K-rGLLVHydf4v6-Yez4aHY4pl1XAepYmi2pKzLD0sJIzUSaSOOF80aooLmP4EWiB7RBZbJgnMfgJwSlg9HKZ8pJHh_xOO8duCs4V2hF-vCvKyXXWJ_7KirXB3V0lBpj94xGhCOo-NcPbsDttXps4-aOH8KDDp-Sz61C7cKWLwdwr7kn6uoB7HZnQU3edoTV7wawg4i1JXx-BJNzu070kiqQ5VVFS4-c_2VFimplLz3pe-8QZxZYwSDfSxI_d-4JpoXJ_Gh6Ph3NHsPFrUj2CWyXVen3gDjrbcEyJ5y1YhSMtYkLI6NieKUMl2YISS-93HVk5thT4zJviupc563A8yjwHAWeiyG8X7-yaJk8bhq8329J3hl1nW9UcAiv1o-jOWKNxZS-WuGYiLBjpC_lED70W7mZ4r8LPr15wZdwfzw7O81PJ9OTZ7DDUI8SQZnch-3lz5V_HpHR0r5o1JHAt9vW_z8tLhk7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlAviAYQgQJGAomHrGz82McBIdQ2aiikHFopt63ttSWkajewiSr-Gr-OmX0kUIneerbXXo1nPN88PAPwSmbKFVKnXPoYDRSTSG7RDOEoHCJEBSFo8kN-ncVHZ-rzXM-34Hf_FobSKvs7sbmoi8qRj3wkqJZWQup9FLq0iG8Hk4-LH5w6SFGktW-n0bLIsf91ieZb_WF6gGf9WojJ4en-Ee86DHAnkmzJXZEZkRRGp0IlkTZeOW9UHFLpEcho0oY2xJkuhJRoCIUQp8Gksc9ipyUOSVz3FtxOZJKQdKX7f6WXXKkA3UdUZTqqUWmmZMdnHNGO4upfnbgBuldis43Km9yHex1WZZ9a5tqFLV8O4E6TM-rqAex290LN3nTFq98OYIfQa1v8-QFMT-za6cuqwJaXFS891f8vK1ZUK3vhWd-HhzmzoGgG-14y_N25Z-QiZvPD2clsfPoQzm6Eso9gu6xK_xiYs94WInPKWavGwVgbuTA2MZpasZHaDCHqqZe7rrA59de4yJsAu0zzluA5EjwngudqCO_Wnyzaqh7XTd7rjyTvBLzON-w4hJfrYRRNireY0lcrmoNoG61-rYfwvj_KzRL_3fDJ9Ru-gLvI-fmX6ez4KewIYqNIcaH3YHv5c-WfIUha2ucNNzI4v2n2_wNthh1x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+two-neutrino+double+electron+capture+in+124Xe+with+XENON1T&rft.jtitle=Nature+%28London%29&rft.date=2019-04-25&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=568&rft.issue=7753&rft.spage=532&rft_id=info:doi/10.1038%2Fs41586-019-1124-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |