Automatic ultrasound curve angle measurement via affinity clustering for adolescent idiopathic scoliosis evaluation

The current clinical gold standard for evaluating adolescent idiopathic scoliosis (AIS) is X-ray radiography, specifically through Cobb angle measurement. However, frequent monitoring of AIS progression using X-rays presents a significant challenge due to the risks associated with cumulative radiati...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 269; p. 126410
Main Authors Zhou, Yihao, Lee, Timothy Tin-Yan, Lai, Kelly Ka-Lee, Wu, Chonglin, Lau, Hin Ting, Yang, De, Song, Zhen, Chan, Chui-Yi, Chu, Winnie Chiu-Wing, Cheng, Jack Chun-Yiu, Lam, Tsz-Ping, Zheng, Yong-Ping
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The current clinical gold standard for evaluating adolescent idiopathic scoliosis (AIS) is X-ray radiography, specifically through Cobb angle measurement. However, frequent monitoring of AIS progression using X-rays presents a significant challenge due to the risks associated with cumulative radiation exposure. Although 3D ultrasound offers a validated radiation-free alternative, it relies on manual spinal curvature assessment, leading to inter and intra-rater angle variation. In this study, we propose an automated ultrasound curve angle (UCA) measurement system that utilizes a dual-branch network to simultaneously perform landmark detection and vertebra segmentation on ultrasound coronal images. The system incorporates an affinity clustering algorithm within vertebral segments to establish landmark relationships, enabling efficient line delineation for UCA measurement. Our method, specifically optimized for UCA calculation, demonstrates superior performance in landmark and line detection compared to existing approaches. The high correlation between the automatic UCA and Cobb angle (R2=0.858) suggests that our proposed method can potentially replace manual UCA measurement in ultrasound scoliosis assessment. This advancement could significantly enhance the accuracy and reliability of scoliosis monitoring while reducing the need for manual measurement. •We have achieved the fully automatic ultrasound curve angle measurement using a deep learning-based estimation model.•We use a clustering-based strategy to study the relationship between landmarks for line delineation.•The model eliminates inter-observer variability of measurement and supports the vertebral-level analysis, providing a comprehensive understanding of spinal morphology.
AbstractList The current clinical gold standard for evaluating adolescent idiopathic scoliosis (AIS) is X-ray radiography, specifically through Cobb angle measurement. However, frequent monitoring of AIS progression using X-rays presents a significant challenge due to the risks associated with cumulative radiation exposure. Although 3D ultrasound offers a validated radiation-free alternative, it relies on manual spinal curvature assessment, leading to inter and intra-rater angle variation. In this study, we propose an automated ultrasound curve angle (UCA) measurement system that utilizes a dual-branch network to simultaneously perform landmark detection and vertebra segmentation on ultrasound coronal images. The system incorporates an affinity clustering algorithm within vertebral segments to establish landmark relationships, enabling efficient line delineation for UCA measurement. Our method, specifically optimized for UCA calculation, demonstrates superior performance in landmark and line detection compared to existing approaches. The high correlation between the automatic UCA and Cobb angle (R2=0.858) suggests that our proposed method can potentially replace manual UCA measurement in ultrasound scoliosis assessment. This advancement could significantly enhance the accuracy and reliability of scoliosis monitoring while reducing the need for manual measurement. •We have achieved the fully automatic ultrasound curve angle measurement using a deep learning-based estimation model.•We use a clustering-based strategy to study the relationship between landmarks for line delineation.•The model eliminates inter-observer variability of measurement and supports the vertebral-level analysis, providing a comprehensive understanding of spinal morphology.
ArticleNumber 126410
Author Zheng, Yong-Ping
Lai, Kelly Ka-Lee
Wu, Chonglin
Song, Zhen
Chan, Chui-Yi
Lam, Tsz-Ping
Lee, Timothy Tin-Yan
Zhou, Yihao
Chu, Winnie Chiu-Wing
Cheng, Jack Chun-Yiu
Yang, De
Lau, Hin Ting
Author_xml – sequence: 1
  givenname: Yihao
  orcidid: 0000-0002-6842-9458
  surname: Zhou
  fullname: Zhou, Yihao
  email: yihao.zhou@connect.polyu.hk
  organization: Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 2
  givenname: Timothy Tin-Yan
  orcidid: 0000-0002-4194-4345
  surname: Lee
  fullname: Lee, Timothy Tin-Yan
  email: timothy.ty.lee@polyu.edu.hk
  organization: Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 3
  givenname: Kelly Ka-Lee
  surname: Lai
  fullname: Lai, Kelly Ka-Lee
  email: kelly.lai@polyu.edu.hk
  organization: Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 4
  givenname: Chonglin
  surname: Wu
  fullname: Wu, Chonglin
  email: chonglin.wu@polyu.edu.hk
  organization: Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 5
  givenname: Hin Ting
  surname: Lau
  fullname: Lau, Hin Ting
  email: ting-er.lau@polyu.edu.hk
  organization: Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 6
  givenname: De
  surname: Yang
  fullname: Yang, De
  email: de-derek.yang@polyu.edu.hk
  organization: Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 7
  givenname: Zhen
  surname: Song
  fullname: Song, Zhen
  email: zhen0212.song@connect.polyu.hk
  organization: Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 8
  givenname: Chui-Yi
  surname: Chan
  fullname: Chan, Chui-Yi
  email: stella-chui-yi.chan@polyu.edu.hk
  organization: Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 9
  givenname: Winnie Chiu-Wing
  orcidid: 0000-0003-4962-4132
  surname: Chu
  fullname: Chu, Winnie Chiu-Wing
  email: winniechu@cuhk.edu.hk
  organization: Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
– sequence: 10
  givenname: Jack Chun-Yiu
  surname: Cheng
  fullname: Cheng, Jack Chun-Yiu
  email: jackcheng@cuhk.edu.hk
  organization: Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
– sequence: 11
  givenname: Tsz-Ping
  orcidid: 0000-0002-2427-2719
  surname: Lam
  fullname: Lam, Tsz-Ping
  email: tplam@cuhk.edu.hk
  organization: Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
– sequence: 12
  givenname: Yong-Ping
  orcidid: 0000-0002-3407-9226
  surname: Zheng
  fullname: Zheng, Yong-Ping
  email: yongping.zheng@polyu.edu.hk
  organization: Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
BookMark eNp9kL1uwyAUhRlSqUnaF-jEC9gFbIwtdYmi_kmRurQzwviSEtkQAXaVt6-tdO50l_Odc_Vt0Mp5Bwg9UJJTQqvHUw7xR-WMMJ5TVpWUrNCaNFxkJRXlLdrEeCKECkLEGsXdmPygktV47FNQ0Y-uw3oME2Dljj3gAVQcAwzgEp6swsoY62y6YN2PMUGw7oiND1h1voeol5jtrD-r9D2XRu1766ONGCbVj_OQd3foxqg-wv3f3aKvl-fP_Vt2-Hh93-8OmWaiSZnSFXSCcc6ruiw6oZpC6JJwo5uG6Jp0tTGG8aKibVHXmoJuK0GqshUNa1peFFvErr06-BgDGHkOdlDhIimRiyp5kosquaiSV1Uz9HSFYP5sshBk1Bachs4G0El23v6H_wKmx3mL
Cites_doi 10.1002/nav.3800020109
10.1109/TPAMI.2020.2983686
10.1016/j.jot.2015.06.001
10.1109/TMI.2015.2390233
10.1109/TUFFC.2024.3351223
10.1007/s11063-022-10794-w
10.1016/j.media.2020.101769
10.1109/ICCV.2019.00667
10.3390/s21082858
10.1109/ICCV48922.2021.00311
10.1109/TMI.2022.3143953
10.1111/j.1469-7580.2011.01397.x
10.1016/j.eclinm.2023.102050
10.1007/s10439-022-02925-0
10.1016/j.media.2019.03.007
10.1016/j.compbiomed.2020.103838
10.1016/j.engappai.2021.104260
10.26599/TST.2018.9010100
10.1109/ICCV48922.2021.01112
10.1016/j.spinee.2017.07.001
10.1109/TMRB.2021.3075750
10.1109/ICCV48922.2021.01159
10.1016/j.compmedimag.2023.102262
10.1186/s13013-016-0074-y
10.1016/j.ultrasmedbio.2019.11.012
10.1016/j.spinee.2014.12.149
10.1016/j.jot.2021.04.007
10.1007/s00586-016-4747-2
10.1007/s43390-021-00421-4
10.1109/TBME.2020.2980540
10.1016/j.bbe.2022.02.011
10.1016/j.ultrasmedbio.2023.12.015
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.eswa.2025.126410
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_126410
S0957417425000326
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c279t-ac6ed725556843d7a937c405fc990c80d8fff25361b388c1ecb67064b7929b533
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Jul 01 05:27:03 EDT 2025
Sat Mar 08 15:49:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Vertebrae
Ultrasound volume projection imaging
Landmark detection
Intelligent scoliosis diagnosis
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c279t-ac6ed725556843d7a937c405fc990c80d8fff25361b388c1ecb67064b7929b533
ORCID 0000-0002-4194-4345
0000-0002-2427-2719
0000-0002-3407-9226
0000-0003-4962-4132
0000-0002-6842-9458
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0957417425000326
ParticipantIDs crossref_primary_10_1016_j_eswa_2025_126410
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_126410
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-15
PublicationDateYYYYMMDD 2025-04-15
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huang, Zhao, Leung, Banerjee, Lee, Yang, Lun, Lam, Zheng, Ling (b17) 2022; 41
McArthur, Conlan, Crawford (b29) 2015; 15
(pp. 6569–6578).
Dang, Yin, Wang, Zheng (b10) 2019; 24
Ungi, Greer, Sunderland, Wu, Baum, Schlenger, Oetgen, Cleary, Aylward, Fichtinger (b36) 2020; 67
Zhou, Li, Zhou, Jiang, Zheng (b50) 2020; 46
shun Wong, lee Lai, ping Zheng, ning Wong, wah Ng, hang Hung, kei Yip, wing Chu, hung Ng, Qiu, yiu Cheng, ping Lam (b34) 2019; 45
Xu, Zhang, Zhang, Tao (b43) 2022; 35
Newell, Huang, Deng (b31) 2017
Wang, Zhang, Ge (b40) 2021; 102
Xie, Huang, Leung, Law, Ju, Zheng, Ling (b42) 2024
Khirodkar, R., Chari, V., Agrawal, A., & Tyagi, A. (2021). Multi-instance pose networks: Rethinking top-down pose estimation. In
Brignol, Gueziri, Cheriet, Collins, Laporte (b3) 2020; 122
Yang, S., Quan, Z., Nie, M., & Yang, W. (2021). Transpose: Keypoint localization via transformer. In
Gueziri, Santaguida, Collins (b14) 2020; 65
Li, Zhang, Wang, Yang, Yang, Xia, Zhou (b28) 2021
Jaszcz, Połap, Damaševičius (b18) 2022; 2022
Cheng, Xiao, Wang, Shi, Huang, Zhang (b7) 2020
(pp. 11313–11322).
Zheng, Lee, Lai, Yip, Zhou, Jiang, Cheung, Wong, Ng, Cheng, Lam (b49) 2016; 11
Kreiss, Bertoni, Alahi (b22) 2019
Jeon, Kwack, Park, Lee, Chung (b19) 2018; 18
Newell, Yang, Deng (b32) 2016; vol. 9912
Wong, Reformat, Parent, Lou (b41) 2022; 50
Cao, Hidalgo, Simon, Wei, Sheikh (b4) 2018
Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. In
Simony, Hansen, Christensen, Carreon, Andersen (b35) 2016; 25
Geng, Sun, Xiao, Zhang, Wang (b13) 2021
Huang, Jiao, Yu, Zheng, Wang (b16) 2023; 108
Li, Y., Zhang, S., Wang, Z., Yang, S., Yang, W., Xia, S.-T., & Zhou, E. (2021a). Tokenpose: Learning keypoint tokens for human pose estimation. In
Wang, Geng, Wang (b37) 2022; 54
Kunkel, Herkommer, Reinehr, Böckers, Wilke (b24) 2011; 219
Himmetoglu, Guven, Bilsel, Dincer (b15) 2015; 67
Konieczny, Senyurt, Krauspe (b21) 2013
Payer, Štern, Bischof, Urschler (b33) 2019; 54
Yuan, Fu, Huang, Lin, Zhang, Chen, Wang (b47) 2021
Zhang, Wang, Liu, Yang, Jin (b48) 2021; 3
Cheung, Zhou, Law, Mak, Lai, Zheng (b9) 2015; 34
(pp. 11802–11812).
Chen, Lou, Zhang, Le, Hill (b5) 2013; 7
Xu, Zhang, Zhang, Tao (b44) 2023
Lai, Lee, Lee, Hui, Zheng (b25) 2021; 21
Wang, Zhang (b39) 2022
Banerjee, Huang, Lyu, Leung, Lee, Yang, Zheng, McAviney, Ling (b1) 2024; 50
Cheung, Zhou, Law, Lai, Jiang, Zheng (b8) 2015; 3
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (b11) 2021
(pp. 3122–3131).
Banerjee, Lyu, Huang, Leung, Lee, Yang, Su, Zheng, Ling (b2) 2022; 42
Meng, Wong, Zhao, Cheung, Zhang (b30) 2023; 61
Wang, Sun, Cheng, Jiang, Deng, Zhao, Liu, Mu, Tan, Wang, Liu, Xiao (b38) 2021; 43
Lee, Lai, Cheng, Castelein, Lam, Zheng (b26) 2021; 29
Chen, Qian, Gao, Zhao, Tang, Li, Le, Lou, Zheng (b6) 2024
Yang, Lee, Lai, Lam, Chu, Castelein, Cheng, Zheng (b45) 2022; 10
Kuhn (b23) 1955; 2
Zhou (10.1016/j.eswa.2025.126410_b50) 2020; 46
shun Wong (10.1016/j.eswa.2025.126410_b34) 2019; 45
Gueziri (10.1016/j.eswa.2025.126410_b14) 2020; 65
Brignol (10.1016/j.eswa.2025.126410_b3) 2020; 122
Ungi (10.1016/j.eswa.2025.126410_b36) 2020; 67
Xu (10.1016/j.eswa.2025.126410_b44) 2023
Wang (10.1016/j.eswa.2025.126410_b38) 2021; 43
Banerjee (10.1016/j.eswa.2025.126410_b2) 2022; 42
Zheng (10.1016/j.eswa.2025.126410_b49) 2016; 11
Geng (10.1016/j.eswa.2025.126410_b13) 2021
Chen (10.1016/j.eswa.2025.126410_b5) 2013; 7
Huang (10.1016/j.eswa.2025.126410_b16) 2023; 108
Kreiss (10.1016/j.eswa.2025.126410_b22) 2019
Wong (10.1016/j.eswa.2025.126410_b41) 2022; 50
Cheung (10.1016/j.eswa.2025.126410_b9) 2015; 34
Himmetoglu (10.1016/j.eswa.2025.126410_b15) 2015; 67
Yuan (10.1016/j.eswa.2025.126410_b47) 2021
Jaszcz (10.1016/j.eswa.2025.126410_b18) 2022; 2022
Lee (10.1016/j.eswa.2025.126410_b26) 2021; 29
Cheng (10.1016/j.eswa.2025.126410_b7) 2020
10.1016/j.eswa.2025.126410_b20
Wang (10.1016/j.eswa.2025.126410_b39) 2022
Konieczny (10.1016/j.eswa.2025.126410_b21) 2013
10.1016/j.eswa.2025.126410_b27
McArthur (10.1016/j.eswa.2025.126410_b29) 2015; 15
Newell (10.1016/j.eswa.2025.126410_b31) 2017
Cao (10.1016/j.eswa.2025.126410_b4) 2018
Wang (10.1016/j.eswa.2025.126410_b40) 2021; 102
Kuhn (10.1016/j.eswa.2025.126410_b23) 1955; 2
10.1016/j.eswa.2025.126410_b12
Cheung (10.1016/j.eswa.2025.126410_b8) 2015; 3
Jeon (10.1016/j.eswa.2025.126410_b19) 2018; 18
Simony (10.1016/j.eswa.2025.126410_b35) 2016; 25
Zhang (10.1016/j.eswa.2025.126410_b48) 2021; 3
Li (10.1016/j.eswa.2025.126410_b28) 2021
Wang (10.1016/j.eswa.2025.126410_b37) 2022; 54
Kunkel (10.1016/j.eswa.2025.126410_b24) 2011; 219
Meng (10.1016/j.eswa.2025.126410_b30) 2023; 61
Huang (10.1016/j.eswa.2025.126410_b17) 2022; 41
Dosovitskiy (10.1016/j.eswa.2025.126410_b11) 2021
Xie (10.1016/j.eswa.2025.126410_b42) 2024
Payer (10.1016/j.eswa.2025.126410_b33) 2019; 54
10.1016/j.eswa.2025.126410_b46
Lai (10.1016/j.eswa.2025.126410_b25) 2021; 21
Banerjee (10.1016/j.eswa.2025.126410_b1) 2024; 50
Yang (10.1016/j.eswa.2025.126410_b45) 2022; 10
Xu (10.1016/j.eswa.2025.126410_b43) 2022; 35
Dang (10.1016/j.eswa.2025.126410_b10) 2019; 24
Chen (10.1016/j.eswa.2025.126410_b6) 2024
Newell (10.1016/j.eswa.2025.126410_b32) 2016; vol. 9912
References_xml – volume: 108
  year: 2023
  ident: b16
  article-title: Si-MSPDNet: A multiscale siamese network with parallel partial decoders for the 3-D measurement of spines in 3D ultrasonic images
  publication-title: Computerized Medical Imaging and Graphics
– year: 2022
  ident: b39
  article-title: Contextual instance decoupling for robust multi-person pose estimation
– volume: 29
  start-page: 51
  year: 2021
  end-page: 59
  ident: b26
  article-title: 3D ultrasound imaging provides reliable angle measurement with validity comparable to X-ray in patients with adolescent idiopathic scoliosis
  publication-title: Journal of Orthopaedic Translation
– volume: 61
  year: 2023
  ident: b30
  article-title: Radiograph-comparable image synthesis for spine alignment analysis using deep learning with prospective clinical validation
  publication-title: eClinicalMedicine
– year: 2023
  ident: b44
  article-title: Vitpose++: Vision transformer for generic body pose estimation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 45
  year: 2019
  ident: b34
  article-title: Is radiation-free ultrasound accurate for quantitative assessment of spinal deformity in idiopathic scoliosis (IS): A detailed analysis with EOS radiography on 952 patients
  publication-title: Ultrasound in Medicine & Biology
– volume: 34
  start-page: 1760
  year: 2015
  end-page: 1768
  ident: b9
  article-title: Ultrasound volume projection imaging for assessment of scoliosis
  publication-title: IEEE Transactions on Medical Imaging
– year: 2021
  ident: b11
  article-title: An image is worth 16x16 words: transformers for image recognition at scale
– year: 2021
  ident: b28
  article-title: TokenPose: Learning keypoint tokens for human pose estimation
– volume: 3
  year: 2015
  ident: b8
  article-title: Freehand three-dimensional ultrasound system for assessment of scoliosis
  publication-title: Journal of Orthopaedic Translation
– year: 2024
  ident: b6
  article-title: Development of automatic assessment framework for spine deformity using freehand 3D ultrasound imaging system
  publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
– volume: 50
  start-page: 401
  year: 2022
  end-page: 412
  ident: b41
  article-title: Convolutional neural network to segment laminae on 3d ultrasound spinal images to assist cobb angle measurement
  publication-title: Annals of Biomedical Engineering
– volume: 50
  start-page: 647
  year: 2024
  end-page: 660
  ident: b1
  article-title: Automatic assessment of ultrasound curvature angle for scoliosis detection using 3-D ultrasound volume projection imaging
  publication-title: Ultrasound in Medicine & Biology
– year: 2017
  ident: b31
  article-title: Associative embedding: End-to-end learning for joint detection and grouping
– volume: 42
  start-page: 341
  year: 2022
  end-page: 361
  ident: b2
  article-title: Ultrasound spine image segmentation using multi-scale feature fusion skip-inception U-net (SIU-net)
  publication-title: Biocybernetics and Biomedical Engineering
– reference: Li, Y., Zhang, S., Wang, Z., Yang, S., Yang, W., Xia, S.-T., & Zhou, E. (2021a). Tokenpose: Learning keypoint tokens for human pose estimation. In
– volume: 43
  year: 2021
  ident: b38
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 24
  year: 2019
  ident: b10
  article-title: Deep learning based 2D human pose estimation: A survey
  publication-title: Tsinghua Science and Technology
– volume: vol. 9912
  year: 2016
  ident: b32
  publication-title: Stacked hourglass networks for human pose estimation
– volume: 10
  start-page: 351
  year: 2022
  end-page: 359
  ident: b45
  article-title: Semi-automatic ultrasound curve angle measurement for adolescent idiopathic scoliosis
  publication-title: Spine Deformity
– volume: 219
  start-page: 375
  year: 2011
  end-page: 387
  ident: b24
  article-title: Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: an anatomical and radiographic study of the human thoracic spine
  publication-title: Journal of Anatomy
– reference: Yang, S., Quan, Z., Nie, M., & Yang, W. (2021). Transpose: Keypoint localization via transformer. In
– volume: 2022
  year: 2022
  ident: b18
  article-title: Lung x-ray image segmentation using heuristic red fox optimization algorithm
  publication-title: Scientific Programming
– reference: (pp. 11802–11812).
– volume: 7
  year: 2013
  ident: b5
  article-title: Reliability of assessing the coronal curvature of children with scoliosis by using ultrasound images
  publication-title: Journal of Children’s Orthopaedics
– volume: 41
  start-page: 1610
  year: 2022
  end-page: 1624
  ident: b17
  article-title: Joint spine segmentation and noise removal from ultrasound volume projection images with selective feature sharing
  publication-title: IEEE Transactions on Medical Imaging
– reference: Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. In
– reference: (pp. 11313–11322).
– volume: 46
  year: 2020
  ident: b50
  article-title: Automating spine curvature measurement in volumetric ultrasound via adaptive phase features
  publication-title: Ultrasound in Medicine & Biology
– volume: 122
  year: 2020
  ident: b3
  article-title: Automatic extraction of vertebral landmarks from ultrasound images: A pilot study
  publication-title: Computers in Biology and Medicine
– year: 2021
  ident: b13
  article-title: Bottom-up human pose estimation via disentangled keypoint regression
– reference: (pp. 3122–3131).
– volume: 25
  year: 2016
  ident: b35
  article-title: Incidence of cancer in adolescent idiopathic scoliosis patients treated 25 years previously
  publication-title: European Spine Journal
– volume: 67
  year: 2015
  ident: b15
  article-title: DNA damage in children with scoliosis following X-ray exposure
  publication-title: Minerva Pediatrica
– volume: 54
  start-page: 3941
  year: 2022
  end-page: 3964
  ident: b37
  article-title: MTPose: Human pose estimation with high-resolution multi-scale transformers
  publication-title: Neural Processing Letters
– volume: 11
  year: 2016
  ident: b49
  article-title: A reliability and validity study for scolioscan: A radiation-free scoliosis assessment system using 3D ultrasound imaging
  publication-title: Scoliosis and Spinal Disorders
– volume: 54
  start-page: 207
  year: 2019
  end-page: 219
  ident: b33
  article-title: Integrating spatial configuration into heatmap regression based CNNs for landmark localization
  publication-title: Medical Image Analysis
– volume: 15
  year: 2015
  ident: b29
  article-title: Radiation exposure during scoliosis surgery: A prospective study
  publication-title: Spine Journal
– reference: (pp. 6569–6578).
– volume: 3
  start-page: 426
  year: 2021
  end-page: 435
  ident: b48
  article-title: A flexible ultrasound scanning system for minimally invasive spinal surgery navigation
  publication-title: IEEE Transactions on Medical Robotics and Bionics
– year: 2021
  ident: b47
  article-title: Hrformer: High-resolution transformer for dense prediction
– volume: 65
  year: 2020
  ident: b14
  article-title: The state-of-the-art in ultrasound-guided spine interventions
  publication-title: Medical Image Analysis
– year: 2013
  ident: b21
  article-title: Epidemiology of adolescent idiopathic scoliosis
– year: 2018
  ident: b4
  article-title: OpenPose: Realtime multi-person 2D pose estimation using part affinity fields
– year: 2019
  ident: b22
  article-title: PifPaf: Composite fields for human pose estimation
– volume: 2
  year: 1955
  ident: b23
  article-title: The Hungarian method for the assignment problem
  publication-title: Naval Research Logistics Quarterly
– start-page: 1
  year: 2024
  end-page: 5
  ident: b42
  article-title: SATR: A structure-affinity attention-based transformer encoder for spine segmentation
  publication-title: 2024 IEEE international symposium on biomedical imaging
– volume: 102
  year: 2021
  ident: b40
  article-title: A comprehensive survey on 2D multi-person pose estimation methods
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Khirodkar, R., Chari, V., Agrawal, A., & Tyagi, A. (2021). Multi-instance pose networks: Rethinking top-down pose estimation. In
– volume: 67
  start-page: 3234
  year: 2020
  end-page: 3241
  ident: b36
  article-title: Automatic spine ultrasound segmentation for scoliosis visualization and measurement
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 35
  start-page: 38571
  year: 2022
  end-page: 38584
  ident: b43
  article-title: Vitpose: Simple vision transformer baselines for human pose estimation
  publication-title: Advances in Neural Information Processing Systems
– year: 2020
  ident: b7
  article-title: HigherhrNet: Scale-aware representation learning for bottom-up human pose estimation
– volume: 21
  year: 2021
  ident: b25
  article-title: Validation of scolioscan air-portable radiation-free three-dimensional ultrasound imaging assessment system for scoliosis
  publication-title: Sensors
– volume: 18
  start-page: 255
  year: 2018
  end-page: 260
  ident: b19
  article-title: Combination of whole-spine lateral radiograph and lateral scanogram in the assessment of global sagittal balance
  publication-title: The Spine Journal
– year: 2020
  ident: 10.1016/j.eswa.2025.126410_b7
– volume: 2
  year: 1955
  ident: 10.1016/j.eswa.2025.126410_b23
  article-title: The Hungarian method for the assignment problem
  publication-title: Naval Research Logistics Quarterly
  doi: 10.1002/nav.3800020109
– volume: 7
  year: 2013
  ident: 10.1016/j.eswa.2025.126410_b5
  article-title: Reliability of assessing the coronal curvature of children with scoliosis by using ultrasound images
  publication-title: Journal of Children’s Orthopaedics
– volume: 43
  year: 2021
  ident: 10.1016/j.eswa.2025.126410_b38
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2020.2983686
– volume: 45
  year: 2019
  ident: 10.1016/j.eswa.2025.126410_b34
  article-title: Is radiation-free ultrasound accurate for quantitative assessment of spinal deformity in idiopathic scoliosis (IS): A detailed analysis with EOS radiography on 952 patients
  publication-title: Ultrasound in Medicine & Biology
– volume: 3
  year: 2015
  ident: 10.1016/j.eswa.2025.126410_b8
  article-title: Freehand three-dimensional ultrasound system for assessment of scoliosis
  publication-title: Journal of Orthopaedic Translation
  doi: 10.1016/j.jot.2015.06.001
– volume: 34
  start-page: 1760
  year: 2015
  ident: 10.1016/j.eswa.2025.126410_b9
  article-title: Ultrasound volume projection imaging for assessment of scoliosis
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2015.2390233
– year: 2024
  ident: 10.1016/j.eswa.2025.126410_b6
  article-title: Development of automatic assessment framework for spine deformity using freehand 3D ultrasound imaging system
  publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
  doi: 10.1109/TUFFC.2024.3351223
– year: 2019
  ident: 10.1016/j.eswa.2025.126410_b22
– volume: 54
  start-page: 3941
  issue: 5
  year: 2022
  ident: 10.1016/j.eswa.2025.126410_b37
  article-title: MTPose: Human pose estimation with high-resolution multi-scale transformers
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-022-10794-w
– year: 2021
  ident: 10.1016/j.eswa.2025.126410_b28
– year: 2017
  ident: 10.1016/j.eswa.2025.126410_b31
– volume: 65
  year: 2020
  ident: 10.1016/j.eswa.2025.126410_b14
  article-title: The state-of-the-art in ultrasound-guided spine interventions
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101769
– ident: 10.1016/j.eswa.2025.126410_b12
  doi: 10.1109/ICCV.2019.00667
– volume: 21
  year: 2021
  ident: 10.1016/j.eswa.2025.126410_b25
  article-title: Validation of scolioscan air-portable radiation-free three-dimensional ultrasound imaging assessment system for scoliosis
  publication-title: Sensors
  doi: 10.3390/s21082858
– volume: 67
  year: 2015
  ident: 10.1016/j.eswa.2025.126410_b15
  article-title: DNA damage in children with scoliosis following X-ray exposure
  publication-title: Minerva Pediatrica
– volume: 35
  start-page: 38571
  year: 2022
  ident: 10.1016/j.eswa.2025.126410_b43
  article-title: Vitpose: Simple vision transformer baselines for human pose estimation
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.eswa.2025.126410_b20
  doi: 10.1109/ICCV48922.2021.00311
– volume: 41
  start-page: 1610
  year: 2022
  ident: 10.1016/j.eswa.2025.126410_b17
  article-title: Joint spine segmentation and noise removal from ultrasound volume projection images with selective feature sharing
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2022.3143953
– volume: 219
  start-page: 375
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2025.126410_b24
  article-title: Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: an anatomical and radiographic study of the human thoracic spine
  publication-title: Journal of Anatomy
  doi: 10.1111/j.1469-7580.2011.01397.x
– volume: 61
  year: 2023
  ident: 10.1016/j.eswa.2025.126410_b30
  article-title: Radiograph-comparable image synthesis for spine alignment analysis using deep learning with prospective clinical validation
  publication-title: eClinicalMedicine
  doi: 10.1016/j.eclinm.2023.102050
– volume: 50
  start-page: 401
  issue: 4
  year: 2022
  ident: 10.1016/j.eswa.2025.126410_b41
  article-title: Convolutional neural network to segment laminae on 3d ultrasound spinal images to assist cobb angle measurement
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-022-02925-0
– volume: 54
  start-page: 207
  year: 2019
  ident: 10.1016/j.eswa.2025.126410_b33
  article-title: Integrating spatial configuration into heatmap regression based CNNs for landmark localization
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2019.03.007
– year: 2013
  ident: 10.1016/j.eswa.2025.126410_b21
– volume: 122
  year: 2020
  ident: 10.1016/j.eswa.2025.126410_b3
  article-title: Automatic extraction of vertebral landmarks from ultrasound images: A pilot study
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2020.103838
– volume: 102
  year: 2021
  ident: 10.1016/j.eswa.2025.126410_b40
  article-title: A comprehensive survey on 2D multi-person pose estimation methods
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2021.104260
– volume: 24
  year: 2019
  ident: 10.1016/j.eswa.2025.126410_b10
  article-title: Deep learning based 2D human pose estimation: A survey
  publication-title: Tsinghua Science and Technology
  doi: 10.26599/TST.2018.9010100
– ident: 10.1016/j.eswa.2025.126410_b27
  doi: 10.1109/ICCV48922.2021.01112
– year: 2023
  ident: 10.1016/j.eswa.2025.126410_b44
  article-title: Vitpose++: Vision transformer for generic body pose estimation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 2022
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2025.126410_b18
  article-title: Lung x-ray image segmentation using heuristic red fox optimization algorithm
  publication-title: Scientific Programming
– start-page: 1
  year: 2024
  ident: 10.1016/j.eswa.2025.126410_b42
  article-title: SATR: A structure-affinity attention-based transformer encoder for spine segmentation
– volume: 18
  start-page: 255
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2025.126410_b19
  article-title: Combination of whole-spine lateral radiograph and lateral scanogram in the assessment of global sagittal balance
  publication-title: The Spine Journal
  doi: 10.1016/j.spinee.2017.07.001
– year: 2021
  ident: 10.1016/j.eswa.2025.126410_b47
– volume: 3
  start-page: 426
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2025.126410_b48
  article-title: A flexible ultrasound scanning system for minimally invasive spinal surgery navigation
  publication-title: IEEE Transactions on Medical Robotics and Bionics
  doi: 10.1109/TMRB.2021.3075750
– ident: 10.1016/j.eswa.2025.126410_b46
  doi: 10.1109/ICCV48922.2021.01159
– volume: 108
  year: 2023
  ident: 10.1016/j.eswa.2025.126410_b16
  article-title: Si-MSPDNet: A multiscale siamese network with parallel partial decoders for the 3-D measurement of spines in 3D ultrasonic images
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2023.102262
– volume: 11
  year: 2016
  ident: 10.1016/j.eswa.2025.126410_b49
  article-title: A reliability and validity study for scolioscan: A radiation-free scoliosis assessment system using 3D ultrasound imaging
  publication-title: Scoliosis and Spinal Disorders
  doi: 10.1186/s13013-016-0074-y
– volume: 46
  year: 2020
  ident: 10.1016/j.eswa.2025.126410_b50
  article-title: Automating spine curvature measurement in volumetric ultrasound via adaptive phase features
  publication-title: Ultrasound in Medicine & Biology
  doi: 10.1016/j.ultrasmedbio.2019.11.012
– volume: 15
  year: 2015
  ident: 10.1016/j.eswa.2025.126410_b29
  article-title: Radiation exposure during scoliosis surgery: A prospective study
  publication-title: Spine Journal
  doi: 10.1016/j.spinee.2014.12.149
– volume: 29
  start-page: 51
  year: 2021
  ident: 10.1016/j.eswa.2025.126410_b26
  article-title: 3D ultrasound imaging provides reliable angle measurement with validity comparable to X-ray in patients with adolescent idiopathic scoliosis
  publication-title: Journal of Orthopaedic Translation
  doi: 10.1016/j.jot.2021.04.007
– volume: 25
  year: 2016
  ident: 10.1016/j.eswa.2025.126410_b35
  article-title: Incidence of cancer in adolescent idiopathic scoliosis patients treated 25 years previously
  publication-title: European Spine Journal
  doi: 10.1007/s00586-016-4747-2
– volume: 10
  start-page: 351
  year: 2022
  ident: 10.1016/j.eswa.2025.126410_b45
  article-title: Semi-automatic ultrasound curve angle measurement for adolescent idiopathic scoliosis
  publication-title: Spine Deformity
  doi: 10.1007/s43390-021-00421-4
– year: 2021
  ident: 10.1016/j.eswa.2025.126410_b11
– year: 2021
  ident: 10.1016/j.eswa.2025.126410_b13
– year: 2018
  ident: 10.1016/j.eswa.2025.126410_b4
– volume: 67
  start-page: 3234
  issue: 11
  year: 2020
  ident: 10.1016/j.eswa.2025.126410_b36
  article-title: Automatic spine ultrasound segmentation for scoliosis visualization and measurement
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2020.2980540
– volume: 42
  start-page: 341
  year: 2022
  ident: 10.1016/j.eswa.2025.126410_b2
  article-title: Ultrasound spine image segmentation using multi-scale feature fusion skip-inception U-net (SIU-net)
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2022.02.011
– volume: vol. 9912
  year: 2016
  ident: 10.1016/j.eswa.2025.126410_b32
– volume: 50
  start-page: 647
  issue: 5
  year: 2024
  ident: 10.1016/j.eswa.2025.126410_b1
  article-title: Automatic assessment of ultrasound curvature angle for scoliosis detection using 3-D ultrasound volume projection imaging
  publication-title: Ultrasound in Medicine & Biology
  doi: 10.1016/j.ultrasmedbio.2023.12.015
– year: 2022
  ident: 10.1016/j.eswa.2025.126410_b39
SSID ssj0017007
Score 2.4640186
Snippet The current clinical gold standard for evaluating adolescent idiopathic scoliosis (AIS) is X-ray radiography, specifically through Cobb angle measurement....
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 126410
SubjectTerms Intelligent scoliosis diagnosis
Landmark detection
Ultrasound volume projection imaging
Vertebrae
Title Automatic ultrasound curve angle measurement via affinity clustering for adolescent idiopathic scoliosis evaluation
URI https://dx.doi.org/10.1016/j.eswa.2025.126410
Volume 269
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENuSVpHCdjVVEVEF2gUrfIcRxkVJKqSYpY-O3c5UFBQgyMjmLJ-ny--5zcfUfIpYI7iXB9ycAgNHO0iFhoa8lCYclIoVKswtrhh6k7mTl3cz5vkVFTC4NplbXvr3x66a3rJ_0azf7SmP4jkAMIh3C1Q01_YCFYwe4ItPLex1eaB8rPiUpvTzB8uy6cqXK8dPaG2kM271lADLCK9rfg9C3gjPfITs0U6bBazD5p6eSA7DZdGGh9KA9JNizytBRepcUiX8kMGyVRVazWmsrkeaHp6-Y7IF0bSWUcGzjJ71QtCtRJgOhFgbvSjboTNZFJy2bFimZgKibNTEY3yuBHZDa-eRpNWN1KgSlb-DmTytWRgOsDdz1nEAkJrAS2iccKopHyriMvjmObD1wrHHiesrQKXQFsJRRAn0KghMeknaSJPiHU84G1KV8Ds4zBy8a-Ly2upWNJX0sYdMhVg2GwrBQzgiaV7CVAxANEPKgQ7xDewBz82PcAXPof807_Oe-MbOMI_wdZ_Jy081WhL4BW5GG3tJsu2Rre3k-mn_kOzz8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ7U9qAX38b63IM3gy2UZeHYNDbUPi62SW9kWRaDqdAUqPHfO1vAamI8eOQxCZmdnfmGnfkG4E5gTsIsh2toEFIzJQs035Bc85nOA6GYYoXqHR5PLHdmPs3pvAa9qhdGlVWWvr_w6RtvXd5pldpsLaOo9YzgAMMhpnaK0x9RyA40FDsVrUOjOxi6k6_DBNYuuqbxfU0JlL0zRZmXTN8V_ZBBH3TEBqqR9rf49C3m9A9hvwSLpFt8zxHUZHwMB9UgBlLuyxNIu3mWbLhXSb7IVjxVs5KIyFdrSXj8spDkbfsrkKwjTngYRriZP4hY5IoqAQMYQfhKtgRPJAqiZDOvWJAUrSVK0iglW3LwU5j1H6c9VyunKWjCYE6mcWHJgGEGQS3b7ASMIzDBlaKhwIAk7HZgh2Fo0I6l-x3bFroUvsUQsPgMEZSPqPAM6nESy3MgtoPATTgSwWWIjjZ0HK5TyU2dO5LjRRPuKx16y4I0w6uqyV49pXFPadwrNN4EWqnZ-7H0Hnr1P-Qu_il3C7vudDzyRoPJ8BL21BN1PKTTK6hnq1xeI8rI_JvSij4BHtPR8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+ultrasound+curve+angle+measurement+via+affinity+clustering+for+adolescent+idiopathic+scoliosis+evaluation&rft.jtitle=Expert+systems+with+applications&rft.au=Zhou%2C+Yihao&rft.au=Lee%2C+Timothy+Tin-Yan&rft.au=Lai%2C+Kelly+Ka-Lee&rft.au=Wu%2C+Chonglin&rft.date=2025-04-15&rft.issn=0957-4174&rft.volume=269&rft.spage=126410&rft_id=info:doi/10.1016%2Fj.eswa.2025.126410&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2025_126410
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon