Stationary Apollonian Packings

The notion of stationary Apollonian packings in the d -dimensional Euclidean space is introduced as a mathematical formalization of so-called random Apollonian packings and rotational random Apollonian packings, which constitute popular grain packing models in physics. Apart from dealing with issues...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical physics Vol. 161; no. 1; pp. 35 - 72
Main Authors Hirsch, Christian, Delaney, Gary, Schmidt, Volker
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2015
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The notion of stationary Apollonian packings in the d -dimensional Euclidean space is introduced as a mathematical formalization of so-called random Apollonian packings and rotational random Apollonian packings, which constitute popular grain packing models in physics. Apart from dealing with issues of existence and uniqueness in the entire Euclidean space, asymptotic results are provided for the growth durations and it is shown that the packing is space-filling with probability 1, in the sense that the Lebesgue measure of its complement is zero. Finally, the phenomenon is studied that grains arrange in clusters and properties related to percolation are investigated.
AbstractList The notion of stationary Apollonian packings in the d-dimensional Euclidean space is introduced as a mathematical formalization of so-called random Apollonian packings and rotational random Apollonian packings, which constitute popular grain packing models in physics. Apart from dealing with issues of existence and uniqueness in the entire Euclidean space, asymptotic results are provided for the growth durations and it is shown that the packing is space-filling with probability 1, in the sense that the Lebesgue measure of its complement is zero. Finally, the phenomenon is studied that grains arrange in clusters and properties related to percolation are investigated. Keywords Dense packing * Fractal germ-grain model * Continuum percolation * Growth model Mathematics Subject Classification 60D05 * 05C70 * 28A80
The notion of stationary Apollonian packings in the d -dimensional Euclidean space is introduced as a mathematical formalization of so-called random Apollonian packings and rotational random Apollonian packings, which constitute popular grain packing models in physics. Apart from dealing with issues of existence and uniqueness in the entire Euclidean space, asymptotic results are provided for the growth durations and it is shown that the packing is space-filling with probability 1, in the sense that the Lebesgue measure of its complement is zero. Finally, the phenomenon is studied that grains arrange in clusters and properties related to percolation are investigated.
Audience Academic
Author Hirsch, Christian
Delaney, Gary
Schmidt, Volker
Author_xml – sequence: 1
  givenname: Christian
  surname: Hirsch
  fullname: Hirsch, Christian
  email: christian.hirsch@wias-berlin.de
  organization: Weierstrass Institute for Applied Analysis and Stochastics
– sequence: 2
  givenname: Gary
  surname: Delaney
  fullname: Delaney, Gary
  organization: CSIRO Digital Productivity Flagship
– sequence: 3
  givenname: Volker
  surname: Schmidt
  fullname: Schmidt, Volker
  organization: Institute of Stochastics, Ulm University
BookMark eNp9kM9KAzEQh4NUsK0-gBfpC6ROks0mOZbiPygoqOeQTpOSus2WZD349qasZ5nDwDDfDL9vRiapT56QWwZLBqDuCwMjJQUmKRO8pe0FmTKpODUtExMyBeCcNorJKzIr5QAARhs5JXfvgxtin1z-WaxOfdf1Kbq0eHP4FdO-XJPL4Lrib_76nHw-Pnysn-nm9ellvdpQ5MoM9Yn0Ao3YtlvvRSNQOYUKtJbKOIPYYGi2EkPQSqAA4RjqoHctMGEEwk7MyXK8u3edtzGFfsgOa-38MWKNGmKdrxqhOSgpZQXYCGDuS8k-2FOOx5rCMrBnI3Y0YqsRezZi28rwkSl1N-19tof-O6ea6x_oF9vvY_w
Cites_doi 10.1007/978-3-540-78859-1
10.1239/aap/1363354101
10.1017/CBO9780511750489
10.1112/S0025579300004745
10.1239/aap/1029955194
10.1214/08-AOP415
10.1239/aap/1127483738
10.1006/anbo.1996.0018
10.1017/CBO9781139174695
10.1002/rsa.20410
10.1007/PL00001103
10.1007/s00440-005-0459-y
10.1007/BF01048305
10.1214/aop/1024404279
10.1239/aap/1086957574
10.1007/s10955-008-9523-1
10.1002/rsa.20099
10.1103/PhysRevLett.77.1785
10.1007/s10955-009-9722-4
10.1002/(SICI)1098-2418(199610)9:3<295::AID-RSA3>3.0.CO;2-S
10.1080/15326349.2015.973722
10.1515/9780691209296
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
COPYRIGHT 2015 Springer
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: COPYRIGHT 2015 Springer
DBID AAYXX
CITATION
DOI 10.1007/s10955-015-1326-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Physics
EISSN 1572-9613
EndPage 72
ExternalDocumentID A438207555
10_1007_s10955_015_1326_6
GroupedDBID -54
-5F
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
XOL
YLTOR
YQT
YYP
Z45
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8Q
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ID FETCH-LOGICAL-c279t-965e3c93b6bee343c7a7c7088579a9cc4cf4b5cff873c303a1c8f8d601393c0d3
IEDL.DBID U2A
ISSN 0022-4715
IngestDate Tue Jun 10 20:25:21 EDT 2025
Tue Jul 01 00:19:08 EDT 2025
Fri Feb 21 02:36:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 60D05
Growth model
Fractal germ-grain model
28A80
Dense packing
05C70
Continuum percolation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c279t-965e3c93b6bee343c7a7c7088579a9cc4cf4b5cff873c303a1c8f8d601393c0d3
PageCount 38
ParticipantIDs gale_infotracacademiconefile_A438207555
crossref_primary_10_1007_s10955_015_1326_6
springer_journals_10_1007_s10955_015_1326_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle 1
PublicationTitle Journal of statistical physics
PublicationTitleAbbrev J Stat Phys
PublicationYear 2015
Publisher Springer US
Springer
Publisher_xml – name: Springer US
– name: Springer
References Dodds, Weitz (CR8) 2002; 65
Hug, Last, Weil (CR16) 2006; 135
Hecht (CR12) 2000; 157
Last, Penrose (CR17) 2013; 42
Daley, Last (CR6) 2005; 37
Delaney, Hutzler, Aste (CR7) 2008; 101
Hirsch, Neuhäuser, Schmidt (CR14) 2013; 45
Boyd (CR2) 1973; 20
Cotar, Volkov (CR3) 2004; 36
Fey, Meester, Redig (CR10) 2009; 37
Liggett, Schonmann, Stacey (CR19) 1997; 25
Schneider, Weil (CR23) 2008
Daley, Stoyan, Stoyan (CR5) 1999; 31
Lawler, Révész, Tóth (CR18) 1999
CR4
Heveling, Last (CR13) 2006; 29
Häggström, Meester (CR11) 1996; 9
CR9
Takahashi (CR24) 1996; 77
Manna, Vicsek (CR20) 1991; 64
Horn (CR15) 1971
Radin (CR22) 2008; 131
Mörters, Peres (CR21) 2010
Turcotte (CR25) 1997
van der Marck (CR26) 1996; 77
Aristoff, Radin (CR1) 2009; 135
PS Dodds (1326_CR8) 2002; 65
H Horn (1326_CR15) 1971
GW Delaney (1326_CR7) 2008; 101
D Turcotte (1326_CR25) 1997
C Hecht (1326_CR12) 2000; 157
TM Liggett (1326_CR19) 1997; 25
D Aristoff (1326_CR1) 2009; 135
DJ Daley (1326_CR5) 1999; 31
M Heveling (1326_CR13) 2006; 29
S Manna (1326_CR20) 1991; 64
C Radin (1326_CR22) 2008; 131
GF Lawler (1326_CR18) 1999
DW Boyd (1326_CR2) 1973; 20
P Mörters (1326_CR21) 2010
1326_CR4
C Hirsch (1326_CR14) 2013; 45
A Fey (1326_CR10) 2009; 37
K Takahashi (1326_CR24) 1996; 77
DJ Daley (1326_CR6) 2005; 37
C Cotar (1326_CR3) 2004; 36
O Häggström (1326_CR11) 1996; 9
D Hug (1326_CR16) 2006; 135
R Schneider (1326_CR23) 2008
G Last (1326_CR17) 2013; 42
SC Marck van der (1326_CR26) 1996; 77
1326_CR9
References_xml – volume: 101
  start-page: 602
  issue: 120
  year: 2008
  ident: CR7
  article-title: Relation between grain shape and fractal properties in random Apollonian packing with grain rotation
  publication-title: Phys. Rev. Lett.
– year: 2008
  ident: CR23
  publication-title: Stochastic and Integral Geometry
  doi: 10.1007/978-3-540-78859-1
– volume: 45
  start-page: 20
  year: 2013
  end-page: 36
  ident: CR14
  article-title: Connectivity of random geometric graphs related to minimal spanning forests
  publication-title: Adv. Appl. Probab.
  doi: 10.1239/aap/1363354101
– ident: CR4
– year: 2010
  ident: CR21
  publication-title: Brownian Motion
  doi: 10.1017/CBO9780511750489
– volume: 20
  start-page: 170
  year: 1973
  end-page: 174
  ident: CR2
  article-title: The residual set dimension of the Apollonian packing
  publication-title: Mathematika
  doi: 10.1112/S0025579300004745
– volume: 31
  start-page: 610
  year: 1999
  end-page: 624
  ident: CR5
  article-title: The volume fraction of a Poisson germ model with maximally non-overlapping spherical grains
  publication-title: Adv. Appl. Probab.
  doi: 10.1239/aap/1029955194
– volume: 37
  start-page: 654
  year: 2009
  end-page: 675
  ident: CR10
  article-title: Stabilizability and percolation in the infinite volume sandpile model
  publication-title: Ann. Probab.
  doi: 10.1214/08-AOP415
– volume: 65
  start-page: 108
  issue: 056
  year: 2002
  ident: CR8
  article-title: Packing-limited growth
  publication-title: Phys. Rev. E
– volume: 37
  start-page: 604
  year: 2005
  end-page: 628
  ident: CR6
  article-title: Descending chains, the lilypond model, and mutual-nearest-neighbour matching
  publication-title: Adv. Appl. Probab.
  doi: 10.1239/aap/1127483738
– volume: 77
  start-page: 159
  year: 1996
  end-page: 164
  ident: CR24
  article-title: Plastic response of crown architecture to crowding in understorey trees of two co-dominating conifers
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.1996.0018
– year: 1997
  ident: CR25
  publication-title: Fractals and Chaos in Geology and Geophysics
  doi: 10.1017/CBO9781139174695
– volume: 42
  start-page: 226
  year: 2013
  end-page: 249
  ident: CR17
  article-title: Percolation and limit theory for the Poisson lilypond model
  publication-title: Random Struct. Algorithms
  doi: 10.1002/rsa.20410
– volume: 157
  start-page: 487
  year: 2000
  end-page: 504
  ident: CR12
  article-title: Appolonian packing and fractal shape of grains improving geomechanical properties in engineering geology
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/PL00001103
– volume: 135
  start-page: 169
  year: 2006
  end-page: 200
  ident: CR16
  article-title: Polynomial parallel volume, convexity and contact distributions of random sets
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/s00440-005-0459-y
– volume: 64
  start-page: 525
  year: 1991
  end-page: 539
  ident: CR20
  article-title: Multifractality of space-filling bearings and Apollonian packings
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01048305
– volume: 25
  start-page: 71
  year: 1997
  end-page: 95
  ident: CR19
  article-title: Domination by product measures
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1024404279
– year: 1971
  ident: CR15
  publication-title: Adaptive Geometry of Trees
– volume: 36
  start-page: 325
  year: 2004
  end-page: 339
  ident: CR3
  article-title: A note on the lilypond model
  publication-title: Adv. Appl. Probab.
  doi: 10.1239/aap/1086957574
– volume: 131
  start-page: 567
  year: 2008
  end-page: 573
  ident: CR22
  article-title: Random close packing of granular matter
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-008-9523-1
– volume: 29
  start-page: 338
  year: 2006
  end-page: 350
  ident: CR13
  article-title: Existence, uniqueness, and algorithmic computation of general lilypond systems
  publication-title: Random Struct. Algorithms
  doi: 10.1002/rsa.20099
– volume: 77
  start-page: 1785
  year: 1996
  end-page: 1788
  ident: CR26
  article-title: Network approach to void percolation in a pack of unequal spheres
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.1785
– ident: CR9
– volume: 135
  start-page: 1
  year: 2009
  end-page: 23
  ident: CR1
  article-title: Random loose packing in granular matter
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-009-9722-4
– volume: 9
  start-page: 295
  year: 1996
  end-page: 315
  ident: CR11
  article-title: Nearest neighbor and hard sphere models in continuum percolation
  publication-title: Random Struct. Algorithms
  doi: 10.1002/(SICI)1098-2418(199610)9:3<295::AID-RSA3>3.0.CO;2-S
– start-page: 219
  year: 1999
  end-page: 258
  ident: CR18
  article-title: Geometric and fractal properties of Brownian motion and random walk paths in two and three dimensions
  publication-title: Random Walks (Budapest, 1998)
– volume-title: Fractals and Chaos in Geology and Geophysics
  year: 1997
  ident: 1326_CR25
  doi: 10.1017/CBO9781139174695
– volume: 135
  start-page: 169
  year: 2006
  ident: 1326_CR16
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/s00440-005-0459-y
– volume: 36
  start-page: 325
  year: 2004
  ident: 1326_CR3
  publication-title: Adv. Appl. Probab.
  doi: 10.1239/aap/1086957574
– start-page: 219
  volume-title: Random Walks (Budapest, 1998)
  year: 1999
  ident: 1326_CR18
– ident: 1326_CR9
  doi: 10.1080/15326349.2015.973722
– volume: 64
  start-page: 525
  year: 1991
  ident: 1326_CR20
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01048305
– volume: 77
  start-page: 1785
  year: 1996
  ident: 1326_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.1785
– volume: 31
  start-page: 610
  year: 1999
  ident: 1326_CR5
  publication-title: Adv. Appl. Probab.
  doi: 10.1239/aap/1029955194
– ident: 1326_CR4
– volume: 9
  start-page: 295
  year: 1996
  ident: 1326_CR11
  publication-title: Random Struct. Algorithms
  doi: 10.1002/(SICI)1098-2418(199610)9:3<295::AID-RSA3>3.0.CO;2-S
– volume: 29
  start-page: 338
  year: 2006
  ident: 1326_CR13
  publication-title: Random Struct. Algorithms
  doi: 10.1002/rsa.20099
– volume: 37
  start-page: 654
  year: 2009
  ident: 1326_CR10
  publication-title: Ann. Probab.
  doi: 10.1214/08-AOP415
– volume-title: Stochastic and Integral Geometry
  year: 2008
  ident: 1326_CR23
  doi: 10.1007/978-3-540-78859-1
– volume: 25
  start-page: 71
  year: 1997
  ident: 1326_CR19
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1024404279
– volume: 45
  start-page: 20
  year: 2013
  ident: 1326_CR14
  publication-title: Adv. Appl. Probab.
  doi: 10.1239/aap/1363354101
– volume-title: Brownian Motion
  year: 2010
  ident: 1326_CR21
  doi: 10.1017/CBO9780511750489
– volume: 65
  start-page: 108
  issue: 056
  year: 2002
  ident: 1326_CR8
  publication-title: Phys. Rev. E
– volume: 101
  start-page: 602
  issue: 120
  year: 2008
  ident: 1326_CR7
  publication-title: Phys. Rev. Lett.
– volume-title: Adaptive Geometry of Trees
  year: 1971
  ident: 1326_CR15
  doi: 10.1515/9780691209296
– volume: 135
  start-page: 1
  year: 2009
  ident: 1326_CR1
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-009-9722-4
– volume: 131
  start-page: 567
  year: 2008
  ident: 1326_CR22
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-008-9523-1
– volume: 157
  start-page: 487
  year: 2000
  ident: 1326_CR12
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/PL00001103
– volume: 77
  start-page: 159
  year: 1996
  ident: 1326_CR24
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.1996.0018
– volume: 37
  start-page: 604
  year: 2005
  ident: 1326_CR6
  publication-title: Adv. Appl. Probab.
  doi: 10.1239/aap/1127483738
– volume: 42
  start-page: 226
  year: 2013
  ident: 1326_CR17
  publication-title: Random Struct. Algorithms
  doi: 10.1002/rsa.20410
– volume: 20
  start-page: 170
  year: 1973
  ident: 1326_CR2
  publication-title: Mathematika
  doi: 10.1112/S0025579300004745
SSID ssj0009895
Score 2.1000056
Snippet The notion of stationary Apollonian packings in the d -dimensional Euclidean space is introduced as a mathematical formalization of so-called random Apollonian...
The notion of stationary Apollonian packings in the d-dimensional Euclidean space is introduced as a mathematical formalization of so-called random Apollonian...
SourceID gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 35
SubjectTerms Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
Title Stationary Apollonian Packings
URI https://link.springer.com/article/10.1007/s10955-015-1326-6
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60RehFtCrWR-lBEJSFJpvd7B5TaS2KRdBCPS2b6ebYljYe_PfO5kEt6MFTLsmEfDM7j53ZLwA30lLU1NwyF0Qhi7QKmBJKMuec6ru50BL91sDLRI6n0dNMzKpz3Jt62r1uSRae-sdhNy38oJlgVEFJJvehKXzpTkY8DZMt067SoqYIJ88r6lbmbyJ2glHtkncbokWcGR3BYZUg9pJSo8ew5xZtOCgGNXHThpbPDkty5RPovpWNdLv-6iWrpW-hk7Z7rxaLDfBTmI6G7w9jVv3wgGEY65xpKRxHzVOZOscjjrGNMSY_IGJtNWKEWZQKzDIVc6TYYwNUmZpLn8Zx7M_5GTQWy4U7h15MTxDUGDiNVJP4qiZQadjXGQ9IGnbgrv5ysyp5LcyWwdjDZAgm42EysgO3HhvjbT5fW7TV6D69yrNHmcR3Eyn3EKID9zV8ploMm7_lXvzr7ktohYXq_CTdFTTy9ae7powgT7vQTEaDwcRfHz-eh93CIr4BH4ms2A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60IvYiWhXro-YgCMpCk81udo9FLFXbItiCt2Uz3Rzb0saD_97ZPKgFPXhPJuSbzTz2-3YCcCstZU3NLXNhHLFYq5ApoSRzzqmumwkt0W8NjMZyMI1fPsRHdY57Xavda0qyiNQ_Drtp4YVmglEHJZnchT2qBZTXcU2j3mbSrtKiHhFOkVfUVOZvJraSUR2StwnRIs_0j-CwKhCDXunRY9hx8xbsF0JNXLeg6avDcrjyCXTeSyLdrr6C3nLhKXTydvBmsdgAP4Vp_2nyOGDVDw8YRonOmZbCcdQ8lalzPOaY2AQTigMi0VYjxpjFqcAsUwlHyj02RJWpmfRlHMfujJ9BY76Yu3MIErqDoMbQaaSexHc1oUqjrs54SNawDff1m5tlOdfCbCYYe5gMwWQ8TEa24c5jY_yaz1cWbSXdp0f56VGm59lEqj2EaMNDDZ-pPob133Yv_nX1DRwMJqOhGT6PXy-hGRVu9Kq6K2jkq093TdVBnnaK1fANkwOsuw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60ovQiWhXro-YgCMrSJpvd7B6DWuqrFLTQ27KZbI5paePBf-9uHtSCHrwnE_LN7Dx2Zr8FuObaRk1JNTF-GJBQCp8IJjgxxoiBSZnk6LYG3sZ8NA2fZ2xW33O6aqbdm5ZkdabBsTTlRX-RZv0fB98kc0NnjNhqihO-DTvWG_vOrKdBvGbdFZI1dOHWC7OmrfmbiI3A1LjnzeZoGXOGB7BfJ4teXGn3ELZM3oHdcmgTVx1ou0yxIlo-gt571VTXyy8vXsxdO91q3ptoLDfDj2E6fPy4H5H68gOCQSQLIjkzFCVNeGIMDSlGOsLI-gQWSS0RQ8zChGGWiYiijUPaR5GJlLuUjuIgpSfQyue5OQUvsm9Y2NE3Em194iocXyTBQGbUt9KwC7fNn6tFxXGh1mzGDiZlYVIOJsW7cOOwUc7-i6VGXY_x2085JikVu86izUMY68JdA5-qF8bqb7ln_3r6CvYmD0P1-jR-OYd2UGrRDdhdQKtYfppLmygUSa80hm8ol7D3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stationary+Apollonian+Packings&rft.jtitle=Journal+of+statistical+physics&rft.au=Hirsch%2C+Christian&rft.au=Delaney%2C+Gary&rft.au=Schmidt%2C+Volker&rft.date=2015-10-01&rft.pub=Springer+US&rft.issn=0022-4715&rft.eissn=1572-9613&rft.volume=161&rft.issue=1&rft.spage=35&rft.epage=72&rft_id=info:doi/10.1007%2Fs10955-015-1326-6&rft.externalDocID=10_1007_s10955_015_1326_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4715&client=summon