Edge optimized and personalized lifelogging framework using ensembled metaheuristic algorithms

•A four-layer edge optimized and user-personalized framework for life-logging human activities is proposed.•A lightweight edge intelligence module requiring low computation is designed, which reduces data transmission to the cloud.•A novel Max Score Pooling (MSP) algorithm based on ensembled metaheu...

Full description

Saved in:
Bibliographic Details
Published inComputers & electrical engineering Vol. 100; p. 107884
Main Authors Agarwal, Preeti, Alam, Mansaf
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.05.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A four-layer edge optimized and user-personalized framework for life-logging human activities is proposed.•A lightweight edge intelligence module requiring low computation is designed, which reduces data transmission to the cloud.•A novel Max Score Pooling (MSP) algorithm based on ensembled metaheuristic algorithms is developed for the user-specific parameter selection. Additionally, it makes the framework resilient to certain sensor failures.•The MSP optimized Decision Tree classifier is developed for real-time activity recognition in the Spark environment.•Experimental evaluation demonstrates the outperformance of the proposed model with existing ones. The fostered use of smart wearables for lifelogging daily activities has fuelled massive data generation. Lack of personalization, massive network traffic, increased latency, and high vulnerability to missing and noisy data are the significant impediments that existing frameworks face. This paper proposes a user-personalized and edge-optimized four-layer framework for lifelogging activities to address these impediments. A lightweight Edge Intelligence (EI) module with low computation requirements is designed to reduce data transmission to the cloud, lowering energy consumption. A novel Max Score Pooling (MSP) algorithm based on ensembled metaheuristic algorithms is proposed to provide a user-specific and optimized set of features. MSP optimized Decision Tree (MSP-DT) classifier is developed for real-time activity recognition in the Spark environment. The classifier's performance is calibrated regularly, making the framework resilient to sensor failure. Experiments demonstrate that the proposed framework can recognize 12 physical activities of different subjects with a mean accuracy of 97.67% and 47.66% reduction in transmitted data. [Display omitted]
AbstractList The fostered use of smart wearables for lifelogging daily activities has fuelled massive data generation. Lack of personalization, massive network traffic, increased latency, and high vulnerability to missing and noisy data are the significant impediments that existing frameworks face. This paper proposes a user-personalized and edge-optimized four-layer framework for lifelogging activities to address these impediments. A lightweight Edge Intelligence (EI) module with low computation requirements is designed to reduce data transmission to the cloud, lowering energy consumption. A novel Max Score Pooling (MSP) algorithm based on ensembled metaheuristic algorithms is proposed to provide a user-specific and optimized set of features. MSP optimized Decision Tree (MSP-DT) classifier is developed for real-time activity recognition in the Spark environment. The classifier's performance is calibrated regularly, making the framework resilient to sensor failure. Experiments demonstrate that the proposed framework can recognize 12 physical activities of different subjects with a mean accuracy of 97.67% and 47.66% reduction in transmitted data.
•A four-layer edge optimized and user-personalized framework for life-logging human activities is proposed.•A lightweight edge intelligence module requiring low computation is designed, which reduces data transmission to the cloud.•A novel Max Score Pooling (MSP) algorithm based on ensembled metaheuristic algorithms is developed for the user-specific parameter selection. Additionally, it makes the framework resilient to certain sensor failures.•The MSP optimized Decision Tree classifier is developed for real-time activity recognition in the Spark environment.•Experimental evaluation demonstrates the outperformance of the proposed model with existing ones. The fostered use of smart wearables for lifelogging daily activities has fuelled massive data generation. Lack of personalization, massive network traffic, increased latency, and high vulnerability to missing and noisy data are the significant impediments that existing frameworks face. This paper proposes a user-personalized and edge-optimized four-layer framework for lifelogging activities to address these impediments. A lightweight Edge Intelligence (EI) module with low computation requirements is designed to reduce data transmission to the cloud, lowering energy consumption. A novel Max Score Pooling (MSP) algorithm based on ensembled metaheuristic algorithms is proposed to provide a user-specific and optimized set of features. MSP optimized Decision Tree (MSP-DT) classifier is developed for real-time activity recognition in the Spark environment. The classifier's performance is calibrated regularly, making the framework resilient to sensor failure. Experiments demonstrate that the proposed framework can recognize 12 physical activities of different subjects with a mean accuracy of 97.67% and 47.66% reduction in transmitted data. [Display omitted]
ArticleNumber 107884
Author Alam, Mansaf
Agarwal, Preeti
Author_xml – sequence: 1
  givenname: Preeti
  surname: Agarwal
  fullname: Agarwal, Preeti
– sequence: 2
  givenname: Mansaf
  surname: Alam
  fullname: Alam, Mansaf
  email: malam2@jmi.ac.in
BookMark eNqNkM2O1DAQhC20SMwuvEMQ5wxtJ_HPCaHRsiCtxAWuWLbTznpI7GB7QPD0ZBgOiNOeWlWqKqm_a3IVU0RCXlLYU6D89XHv0rLijA7jtGfA2OYLKfsnZEelUC2IYbgiO4B-aIUC_oxcl3KETXMqd-TL7Thhk9YalvALx8bEsVkxlxTN_MeYg8c5TVOIU-OzWfBHyl-bUzlrjAUXO2-pBat5wFMOpQbXmHlKOdSHpTwnT72ZC774e2_I53e3nw7v2_uPdx8Ob-9bx4SqraLUdr3qKCgOshsQOt_bQY2cdar33gJYsN72XIABKTgDL8AzOwrbUWW7G_Lqsrvm9O2EpepjOuXth6IZlz0DKRnfUm8uKZdTKRm9dqGaGlKs2YRZU9BnqPqo_4Gqz1D1Beq2oP5bWHNYTP75qO7h0sUNxPeAWRcXMDocQ0ZX9ZjCI1Z-A2jNnJk
CitedBy_id crossref_primary_10_1016_j_iot_2022_100629
crossref_primary_10_1007_s42044_025_00248_6
crossref_primary_10_1007_s42044_025_00236_w
crossref_primary_10_1007_s11761_024_00416_9
crossref_primary_10_1007_s11042_024_19382_7
crossref_primary_10_1016_j_adhoc_2024_103700
crossref_primary_10_1007_s10586_023_04154_z
crossref_primary_10_1007_s11277_024_11653_8
crossref_primary_10_1016_j_compbiomed_2023_107908
crossref_primary_10_2174_2210327913666230911113149
crossref_primary_10_1007_s11227_024_06348_7
Cites_doi 10.1134/S1990478912030039
10.1007/s11036-020-01681-6
10.1007/s10898-007-9149-x
10.1177/003754970107600201
10.1007/978-3-642-12538-6_6
10.1136/bjsports-2021-104080
10.1016/j.procs.2015.01.031
10.3390/s20061655
10.1109/JIOT.2019.2920283
10.3389/fpubh.2017.00335
10.36548/jscp.2021.1.002
10.1109/ACCESS.2020.2982225
10.1016/j.scs.2021.102970
10.1007/BF00175354
10.1016/j.future.2019.06.004
10.1109/ACCESS.2020.2992584
10.26599/BDMA.2020.9020022
10.1016/j.procs.2020.03.289
10.1007/s11036-019-01445-x
10.1109/ACCESS.2019.2941836
10.1007/s00521-018-3533-y
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV May 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV May 2022
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2022.107884
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
ExternalDocumentID 10_1016_j_compeleceng_2022_107884
S0045790622001732
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7SC
7SP
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c279t-911b349310960835e03f4b59d62394ffb00b0bfb4670a087620f70f2bd7b319b3
IEDL.DBID .~1
ISSN 0045-7906
IngestDate Fri Jul 25 08:10:36 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
Tue Jul 01 01:45:54 EDT 2025
Sun Apr 06 06:53:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Internet of Things (IoT)
Human Activity Recognition (HAR)
Cloud Computing (CC)
Big Data Analytics (BDA)
Edge intelligence
Metaheuristic algorithms
Edge Computing (EC)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c279t-911b349310960835e03f4b59d62394ffb00b0bfb4670a087620f70f2bd7b319b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2684208826
PQPubID 2045266
ParticipantIDs proquest_journals_2684208826
crossref_citationtrail_10_1016_j_compeleceng_2022_107884
crossref_primary_10_1016_j_compeleceng_2022_107884
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2022_107884
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & electrical engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ha, Seungjin (bib0024) 2016
Wan, Qi, Xu, Tong, Gu (bib0005) 2020; 25
Agarwal, Alam (bib0007) 2020; 167
(accessed September 22, 2021).
Jaul, Barron (bib0001) 2017; 5
Hassan, El Desouky, Badawy, Sarhan, Elhoseny, Gunasekaran (bib0010) 2019; 31
Karaboga, Basturk (bib0019) 2007; 39
Al-Janabi, Salman (bib0009) 2021; 4
Banos O, Garcia R, Saez A. UCI Machine Learning Repository: MHEALTH Dataset Data Set 2019.
Syed, Jabeen, Alsaeedi (bib0003) 2019; 101
Whitley (bib0016) 1994; 4
Anguita, Ghio, Oneto, Parra, Reyes-Ortiz (bib0026) 2013
Zebin, Scully, Ozanyan (bib0030) 2017
Foundation W. Wireshark Go deep. Wireshark Found 2016.
Zhou, Yu, Shi (bib0008) 2020; 8
Kennedy J, Eberhart R, Gov B. Particle Swarm Optimization. ICNN'95 - international conf on neural computing, 1995.
Ghosh, Grolinger (bib0011) 2021; 17
Chetty, White, Akther (bib0027) 2015; 46
Javed, Faheem, Asim, Baker, Beg (bib0004) 2021; 71
Pienaar, Malekian (bib0029) 2019
Zalewski, Marchegiani, Elsts, Piechocki, Craddock, Fafoutis (bib0012) 2020; 20
Khatun, Morshed (bib0025) 2018
.
(accessed July 23, 2021).
Guo, Woźniak (bib0014) 2021; 26
Zebin, Scully, Peek, Casson, Ozanyan (bib0006) 2019; 7
Bianchi, Bassoli, Lombardo, Fornacciari, Mordonini, De Munari (bib0013) 2019; 6
Sungheetha, Sharma (bib0015) 2021; 3
Yang (bib0018) 2010; 284
Geem, Kim, Loganathan (bib0020) 2001; 76
Eremeev (bib0021) 2012; 6
Sallis, Young, Tartof, Sallis, Sall, Li (bib0002) 2021; 55
Xia, Huang, Wang (bib0028) 2020; 8
Al-Janabi (10.1016/j.compeleceng.2022.107884_bib0009) 2021; 4
Zalewski (10.1016/j.compeleceng.2022.107884_bib0012) 2020; 20
Syed (10.1016/j.compeleceng.2022.107884_bib0003) 2019; 101
Hassan (10.1016/j.compeleceng.2022.107884_bib0010) 2019; 31
Whitley (10.1016/j.compeleceng.2022.107884_bib0016) 1994; 4
10.1016/j.compeleceng.2022.107884_bib0023
10.1016/j.compeleceng.2022.107884_bib0022
Yang (10.1016/j.compeleceng.2022.107884_bib0018) 2010; 284
Khatun (10.1016/j.compeleceng.2022.107884_bib0025) 2018
Zhou (10.1016/j.compeleceng.2022.107884_bib0008) 2020; 8
Bianchi (10.1016/j.compeleceng.2022.107884_bib0013) 2019; 6
Anguita (10.1016/j.compeleceng.2022.107884_bib0026) 2013
Jaul (10.1016/j.compeleceng.2022.107884_bib0001) 2017; 5
Javed (10.1016/j.compeleceng.2022.107884_bib0004) 2021; 71
Zebin (10.1016/j.compeleceng.2022.107884_bib0006) 2019; 7
Agarwal (10.1016/j.compeleceng.2022.107884_bib0007) 2020; 167
Zebin (10.1016/j.compeleceng.2022.107884_bib0030) 2017
Pienaar (10.1016/j.compeleceng.2022.107884_bib0029) 2019
Karaboga (10.1016/j.compeleceng.2022.107884_bib0019) 2007; 39
Guo (10.1016/j.compeleceng.2022.107884_bib0014) 2021; 26
Eremeev (10.1016/j.compeleceng.2022.107884_bib0021) 2012; 6
Geem (10.1016/j.compeleceng.2022.107884_bib0020) 2001; 76
Sallis (10.1016/j.compeleceng.2022.107884_bib0002) 2021; 55
Ha (10.1016/j.compeleceng.2022.107884_bib0024) 2016
Wan (10.1016/j.compeleceng.2022.107884_bib0005) 2020; 25
Sungheetha (10.1016/j.compeleceng.2022.107884_bib0015) 2021; 3
Xia (10.1016/j.compeleceng.2022.107884_bib0028) 2020; 8
Ghosh (10.1016/j.compeleceng.2022.107884_bib0011) 2021; 17
Chetty (10.1016/j.compeleceng.2022.107884_bib0027) 2015; 46
10.1016/j.compeleceng.2022.107884_bib0017
References_xml – volume: 4
  start-page: 65
  year: 1994
  end-page: 85
  ident: bib0016
  article-title: A genetic algorithm tutorial
  publication-title: Stat Comput
– start-page: 934
  year: 2018
  end-page: 938
  ident: bib0025
  article-title: Fully-automated human activity recognition with transition awareness from wearable sensor data for MHealth
  publication-title: Proceedings of the IEEE international conference on electro-information technology
– volume: 17
  start-page: 2191
  year: 2021
  end-page: 2200
  ident: bib0011
  article-title: Edge-cloud computing for internet of things data analytics: embedding intelligence in the edge with deep learning
  publication-title: IEEE Trans Ind Inform
– reference: (accessed July 23, 2021).
– volume: 284
  start-page: 65
  year: 2010
  end-page: 74
  ident: bib0018
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Stud Comput Intell
– volume: 46
  start-page: 1181
  year: 2015
  end-page: 1187
  ident: bib0027
  article-title: Smart phone based data mining for human activity recognition
  publication-title: Procedia Comput Sci
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: bib0020
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simulation
– volume: 7
  start-page: 133509
  year: 2019
  end-page: 133520
  ident: bib0006
  article-title: Design and implementation of a convolutional neural network on an edge computing smartphone for human activity recognition
  publication-title: IEEE Access
– start-page: 381
  year: 2016
  end-page: 388
  ident: bib0024
  article-title: Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors
  publication-title: Proceedings of the international joint conference on neural networks (IJCNN)
– year: 2017
  ident: bib0030
  article-title: Human activity recognition with inertial sensors using a deep learning approach
  publication-title: Proceedings of the IEEE Sensors
– volume: 8
  start-page: 86411
  year: 2020
  end-page: 86418
  ident: bib0008
  article-title: Human activity recognition based on improved bayesian convolution network to analyze health care datausing wearable IoT device
  publication-title: IEEE Access
– start-page: 1
  year: 2019
  end-page: 5
  ident: bib0029
  article-title: Human activity recognition using LSTM-RNN deep neural network architecture
  publication-title: Proceedings of the IEEE 2nd Wireless Africa Conference
– volume: 20
  start-page: 1655
  year: 2020
  ident: bib0012
  article-title: From bits of data to bits of knowledge—an on-board classification framework for wearable sensing systems
  publication-title: Sensors
– volume: 8
  start-page: 56855
  year: 2020
  end-page: 56866
  ident: bib0028
  article-title: LSTM-CNN architecture for human activity recognition
  publication-title: IEEE Access
– volume: 6
  start-page: 8553
  year: 2019
  end-page: 8562
  ident: bib0013
  article-title: IoT wearable sensor and deep learning: an integrated approach for personalized human activity recognition in a smart home environment
  publication-title: IEEE Internet Things J
– reference: Kennedy J, Eberhart R, Gov B. Particle Swarm Optimization. ICNN'95 - international conf on neural computing, 1995.
– volume: 167
  start-page: 2364
  year: 2020
  end-page: 2373
  ident: bib0007
  article-title: Lightweight deep learning model for human activity recognition on edge devices
  publication-title: Procedia Comput Sci
– volume: 26
  start-page: 390
  year: 2021
  end-page: 403
  ident: bib0014
  article-title: An image super-resolution reconstruction method with single frame character based on wavelet neural network in internet of things
  publication-title: Mob Netw Appl
– volume: 71
  year: 2021
  ident: bib0004
  article-title: A smartphone sensors-based personalized human activity recognition system for sustainable smart cities
  publication-title: Sustain Cities Soc
– volume: 6
  start-page: 286
  year: 2012
  end-page: 294
  ident: bib0021
  article-title: A geetic algorithm with tournament selection as a local search method
  publication-title: J Appl Ind Math
– volume: 5
  year: 2017
  ident: bib0001
  article-title: Age-related diseases and clinical and public health implications for the 85 years old and over population
  publication-title: Front Public Health
– reference: .
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: bib0019
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J Glob Optim
– reference: Banos O, Garcia R, Saez A. UCI Machine Learning Repository: MHEALTH Dataset Data Set 2019.
– volume: 101
  start-page: 136
  year: 2019
  end-page: 151
  ident: bib0003
  article-title: Smart healthcare framework for ambient assisted living using IoMT and big data analytics techniques
  publication-title: Future Gener Comput Syst
– volume: 4
  start-page: 124
  year: 2021
  end-page: 138
  ident: bib0009
  article-title: Sensitive integration of multilevel optimization model in human activity recognition for smartphone and smartwatch applications
  publication-title: Big Data Min Anal
– volume: 55
  start-page: 1099
  year: 2021
  end-page: 1105
  ident: bib0002
  article-title: Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients
  publication-title: Br J Sport Med
– volume: 25
  start-page: 743
  year: 2020
  end-page: 755
  ident: bib0005
  article-title: Deep learning models for real-time human activity recognition with smartphones
  publication-title: Mob Netw Appl
– reference: Foundation W. Wireshark Go deep. Wireshark Found 2016.
– volume: 3
  start-page: 10
  year: 2021
  end-page: 18
  ident: bib0015
  article-title: Fuzzy chaos whale optimization and bat integrated algorithm for parameter estimation in sewage treatment
  publication-title: J Soft Comput Paradig
– volume: 31
  start-page: 1275
  year: 2019
  end-page: 1300
  ident: bib0010
  article-title: EoT-driven hybrid ambient assisted living framework with naïve Bayes–firefly algorithm
  publication-title: Neural Comput Appl
– reference: (accessed September 22, 2021).
– year: 2013
  ident: bib0026
  article-title: A public domain dataset for human activity recognition using smartphones
  publication-title: Proceedings of the European symposium on artificial neural networks, computational intelligence and machine learning
– ident: 10.1016/j.compeleceng.2022.107884_bib0022
– volume: 6
  start-page: 286
  year: 2012
  ident: 10.1016/j.compeleceng.2022.107884_bib0021
  article-title: A geetic algorithm with tournament selection as a local search method
  publication-title: J Appl Ind Math
  doi: 10.1134/S1990478912030039
– volume: 26
  start-page: 390
  year: 2021
  ident: 10.1016/j.compeleceng.2022.107884_bib0014
  article-title: An image super-resolution reconstruction method with single frame character based on wavelet neural network in internet of things
  publication-title: Mob Netw Appl
  doi: 10.1007/s11036-020-01681-6
– volume: 39
  start-page: 459
  year: 2007
  ident: 10.1016/j.compeleceng.2022.107884_bib0019
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J Glob Optim
  doi: 10.1007/s10898-007-9149-x
– volume: 76
  start-page: 60
  year: 2001
  ident: 10.1016/j.compeleceng.2022.107884_bib0020
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 284
  start-page: 65
  year: 2010
  ident: 10.1016/j.compeleceng.2022.107884_bib0018
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Stud Comput Intell
  doi: 10.1007/978-3-642-12538-6_6
– volume: 55
  start-page: 1099
  year: 2021
  ident: 10.1016/j.compeleceng.2022.107884_bib0002
  article-title: Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients
  publication-title: Br J Sport Med
  doi: 10.1136/bjsports-2021-104080
– year: 2013
  ident: 10.1016/j.compeleceng.2022.107884_bib0026
  article-title: A public domain dataset for human activity recognition using smartphones
– volume: 46
  start-page: 1181
  year: 2015
  ident: 10.1016/j.compeleceng.2022.107884_bib0027
  article-title: Smart phone based data mining for human activity recognition
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.01.031
– volume: 20
  start-page: 1655
  year: 2020
  ident: 10.1016/j.compeleceng.2022.107884_bib0012
  article-title: From bits of data to bits of knowledge—an on-board classification framework for wearable sensing systems
  publication-title: Sensors
  doi: 10.3390/s20061655
– volume: 17
  start-page: 2191
  year: 2021
  ident: 10.1016/j.compeleceng.2022.107884_bib0011
  article-title: Edge-cloud computing for internet of things data analytics: embedding intelligence in the edge with deep learning
  publication-title: IEEE Trans Ind Inform
– volume: 6
  start-page: 8553
  year: 2019
  ident: 10.1016/j.compeleceng.2022.107884_bib0013
  article-title: IoT wearable sensor and deep learning: an integrated approach for personalized human activity recognition in a smart home environment
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2920283
– volume: 5
  year: 2017
  ident: 10.1016/j.compeleceng.2022.107884_bib0001
  article-title: Age-related diseases and clinical and public health implications for the 85 years old and over population
  publication-title: Front Public Health
  doi: 10.3389/fpubh.2017.00335
– volume: 3
  start-page: 10
  year: 2021
  ident: 10.1016/j.compeleceng.2022.107884_bib0015
  article-title: Fuzzy chaos whale optimization and bat integrated algorithm for parameter estimation in sewage treatment
  publication-title: J Soft Comput Paradig
  doi: 10.36548/jscp.2021.1.002
– volume: 8
  start-page: 56855
  year: 2020
  ident: 10.1016/j.compeleceng.2022.107884_bib0028
  article-title: LSTM-CNN architecture for human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982225
– ident: 10.1016/j.compeleceng.2022.107884_bib0023
– start-page: 934
  year: 2018
  ident: 10.1016/j.compeleceng.2022.107884_bib0025
  article-title: Fully-automated human activity recognition with transition awareness from wearable sensor data for MHealth
– volume: 71
  year: 2021
  ident: 10.1016/j.compeleceng.2022.107884_bib0004
  article-title: A smartphone sensors-based personalized human activity recognition system for sustainable smart cities
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2021.102970
– volume: 4
  start-page: 65
  year: 1994
  ident: 10.1016/j.compeleceng.2022.107884_bib0016
  article-title: A genetic algorithm tutorial
  publication-title: Stat Comput
  doi: 10.1007/BF00175354
– volume: 101
  start-page: 136
  year: 2019
  ident: 10.1016/j.compeleceng.2022.107884_bib0003
  article-title: Smart healthcare framework for ambient assisted living using IoMT and big data analytics techniques
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.06.004
– volume: 8
  start-page: 86411
  year: 2020
  ident: 10.1016/j.compeleceng.2022.107884_bib0008
  article-title: Human activity recognition based on improved bayesian convolution network to analyze health care datausing wearable IoT device
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992584
– ident: 10.1016/j.compeleceng.2022.107884_bib0017
– start-page: 1
  year: 2019
  ident: 10.1016/j.compeleceng.2022.107884_bib0029
  article-title: Human activity recognition using LSTM-RNN deep neural network architecture
– volume: 4
  start-page: 124
  year: 2021
  ident: 10.1016/j.compeleceng.2022.107884_bib0009
  article-title: Sensitive integration of multilevel optimization model in human activity recognition for smartphone and smartwatch applications
  publication-title: Big Data Min Anal
  doi: 10.26599/BDMA.2020.9020022
– volume: 167
  start-page: 2364
  year: 2020
  ident: 10.1016/j.compeleceng.2022.107884_bib0007
  article-title: Lightweight deep learning model for human activity recognition on edge devices
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.03.289
– volume: 25
  start-page: 743
  year: 2020
  ident: 10.1016/j.compeleceng.2022.107884_bib0005
  article-title: Deep learning models for real-time human activity recognition with smartphones
  publication-title: Mob Netw Appl
  doi: 10.1007/s11036-019-01445-x
– volume: 7
  start-page: 133509
  year: 2019
  ident: 10.1016/j.compeleceng.2022.107884_bib0006
  article-title: Design and implementation of a convolutional neural network on an edge computing smartphone for human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2941836
– start-page: 381
  year: 2016
  ident: 10.1016/j.compeleceng.2022.107884_bib0024
  article-title: Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors
– volume: 31
  start-page: 1275
  year: 2019
  ident: 10.1016/j.compeleceng.2022.107884_bib0010
  article-title: EoT-driven hybrid ambient assisted living framework with naïve Bayes–firefly algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3533-y
– year: 2017
  ident: 10.1016/j.compeleceng.2022.107884_bib0030
  article-title: Human activity recognition with inertial sensors using a deep learning approach
SSID ssj0004618
Score 2.3292792
Snippet •A four-layer edge optimized and user-personalized framework for life-logging human activities is proposed.•A lightweight edge intelligence module requiring...
The fostered use of smart wearables for lifelogging daily activities has fuelled massive data generation. Lack of personalization, massive network traffic,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107884
SubjectTerms Activity recognition
Algorithms
Big Data Analytics (BDA)
Classifiers
Cloud Computing (CC)
Communications traffic
Customization
Data transmission
Decision trees
Edge Computing (EC)
Edge intelligence
Energy consumption
Feature recognition
Heuristic methods
Human Activity Recognition (HAR)
Internet of Things (IoT)
Metaheuristic algorithms
Title Edge optimized and personalized lifelogging framework using ensembled metaheuristic algorithms
URI https://dx.doi.org/10.1016/j.compeleceng.2022.107884
https://www.proquest.com/docview/2684208826
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jguhB_InTOSJ4revStGnByxgbU2EnBzsZmibpKms3tu7iwb_dvLXVKQgDjw1NKS8v33sPvvc9hO58qk0YCD1LSDewTAjQVhAFkWVcQQjHeFCp9jnyhmP6NHEnNdSremGAVllif4HpG7QuV9qlNduLJIEeX-oykNkFWhBzAIcpZeDl9x-drd7IToHGFKQZbW8f3X5zvIC2DeNmVBabUpEQs25KQvpXjPqF1psQNDhGR2XuiLvF752gmspO0eGWouAZeu3LWOG5wYE0eVcSh5nEiyrfhoVZopWBOxhNhHVFzMLAfo-xqWhVKmbmrVTl4VStCxVnHM7i-TLJp-nqHI0H_Zfe0CpHKFgRYUEOUCYcGoD8pwfJlrIdTYUbSA9GomttLp2whRYGLu0Q1OmIrZmtiZBMmMspnAtUz-aZukTYJxFjfuT6oXKplL7QgSDM1VQ7gbYj0UB-ZTQelfriMOZixisi2RvfsjcHe_PC3g1EvrYuCpGNXTY9VCfDf3gMN8Fgl-3N6jR5eW1XHKRvCBQd3tX_vn6NDuCpYEY2UT1frtWNyV5y0dq4ZwvtdR-fh6NPuFLxQA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kgo-D-MT6XMFraNxsXuBFRGl99NRCTy7ZZLdG2rTUePHXO2M2WgWh4HWTDWF29psZ-OYbgPNIGAwDSeCozI8dDAHGidM4ddAVlPLQg6zaZzdo98XdwB8swXXdC0O0Sov9FaZ_orVdaVlrtqZ5Tj2-wg9JZpdoQaGHOLxM6lR-A5avOvft7lx75EUFyILUGd1gBc6-aV7E3KaJM7oYYrXIOa5jVSj-ClO_APszCt1uwoZNH9lV9YdbsKSLbVifExXcgaebbKjZBKFgnL_rjCVFxqZ1yk0Lo9xoRDyaTsRMzc1iRIAfMixq9ViN8K2xLpNn_VYJObNkNJzM8vJ5_LoL_dub3nXbsVMUnJSHcUlopjwRkwJoQPmWdj0jlB9nAU1FNwbvnXKVUYiYbkICddw1oWu4ykKF91N5e9AoJoXeBxbxNAyj1I8S7Yssi5SJFQ99I4wXGzdVTYhqo8nUSozTpIuRrLlkL3LO3pLsLSt7N4F_bZ1WOhuLbLqsT0b-cBqJ8WCR7Uf1aUp7c18lqd9wqjuCg_99_RRW273HB_nQ6d4fwho9qYiSR9AoZ2_6GJOZUp1YZ_0A9zvz8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge+optimized+and+personalized+lifelogging+framework+using+ensembled+metaheuristic+algorithms&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Agarwal%2C+Preeti&rft.au=Alam%2C+Mansaf&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.volume=100&rft_id=info:doi/10.1016%2Fj.compeleceng.2022.107884&rft.externalDocID=S0045790622001732
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon