Edge optimized and personalized lifelogging framework using ensembled metaheuristic algorithms
•A four-layer edge optimized and user-personalized framework for life-logging human activities is proposed.•A lightweight edge intelligence module requiring low computation is designed, which reduces data transmission to the cloud.•A novel Max Score Pooling (MSP) algorithm based on ensembled metaheu...
Saved in:
Published in | Computers & electrical engineering Vol. 100; p. 107884 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.05.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A four-layer edge optimized and user-personalized framework for life-logging human activities is proposed.•A lightweight edge intelligence module requiring low computation is designed, which reduces data transmission to the cloud.•A novel Max Score Pooling (MSP) algorithm based on ensembled metaheuristic algorithms is developed for the user-specific parameter selection. Additionally, it makes the framework resilient to certain sensor failures.•The MSP optimized Decision Tree classifier is developed for real-time activity recognition in the Spark environment.•Experimental evaluation demonstrates the outperformance of the proposed model with existing ones.
The fostered use of smart wearables for lifelogging daily activities has fuelled massive data generation. Lack of personalization, massive network traffic, increased latency, and high vulnerability to missing and noisy data are the significant impediments that existing frameworks face. This paper proposes a user-personalized and edge-optimized four-layer framework for lifelogging activities to address these impediments. A lightweight Edge Intelligence (EI) module with low computation requirements is designed to reduce data transmission to the cloud, lowering energy consumption. A novel Max Score Pooling (MSP) algorithm based on ensembled metaheuristic algorithms is proposed to provide a user-specific and optimized set of features. MSP optimized Decision Tree (MSP-DT) classifier is developed for real-time activity recognition in the Spark environment. The classifier's performance is calibrated regularly, making the framework resilient to sensor failure. Experiments demonstrate that the proposed framework can recognize 12 physical activities of different subjects with a mean accuracy of 97.67% and 47.66% reduction in transmitted data.
[Display omitted] |
---|---|
AbstractList | The fostered use of smart wearables for lifelogging daily activities has fuelled massive data generation. Lack of personalization, massive network traffic, increased latency, and high vulnerability to missing and noisy data are the significant impediments that existing frameworks face. This paper proposes a user-personalized and edge-optimized four-layer framework for lifelogging activities to address these impediments. A lightweight Edge Intelligence (EI) module with low computation requirements is designed to reduce data transmission to the cloud, lowering energy consumption. A novel Max Score Pooling (MSP) algorithm based on ensembled metaheuristic algorithms is proposed to provide a user-specific and optimized set of features. MSP optimized Decision Tree (MSP-DT) classifier is developed for real-time activity recognition in the Spark environment. The classifier's performance is calibrated regularly, making the framework resilient to sensor failure. Experiments demonstrate that the proposed framework can recognize 12 physical activities of different subjects with a mean accuracy of 97.67% and 47.66% reduction in transmitted data. •A four-layer edge optimized and user-personalized framework for life-logging human activities is proposed.•A lightweight edge intelligence module requiring low computation is designed, which reduces data transmission to the cloud.•A novel Max Score Pooling (MSP) algorithm based on ensembled metaheuristic algorithms is developed for the user-specific parameter selection. Additionally, it makes the framework resilient to certain sensor failures.•The MSP optimized Decision Tree classifier is developed for real-time activity recognition in the Spark environment.•Experimental evaluation demonstrates the outperformance of the proposed model with existing ones. The fostered use of smart wearables for lifelogging daily activities has fuelled massive data generation. Lack of personalization, massive network traffic, increased latency, and high vulnerability to missing and noisy data are the significant impediments that existing frameworks face. This paper proposes a user-personalized and edge-optimized four-layer framework for lifelogging activities to address these impediments. A lightweight Edge Intelligence (EI) module with low computation requirements is designed to reduce data transmission to the cloud, lowering energy consumption. A novel Max Score Pooling (MSP) algorithm based on ensembled metaheuristic algorithms is proposed to provide a user-specific and optimized set of features. MSP optimized Decision Tree (MSP-DT) classifier is developed for real-time activity recognition in the Spark environment. The classifier's performance is calibrated regularly, making the framework resilient to sensor failure. Experiments demonstrate that the proposed framework can recognize 12 physical activities of different subjects with a mean accuracy of 97.67% and 47.66% reduction in transmitted data. [Display omitted] |
ArticleNumber | 107884 |
Author | Alam, Mansaf Agarwal, Preeti |
Author_xml | – sequence: 1 givenname: Preeti surname: Agarwal fullname: Agarwal, Preeti – sequence: 2 givenname: Mansaf surname: Alam fullname: Alam, Mansaf email: malam2@jmi.ac.in |
BookMark | eNqNkM2O1DAQhC20SMwuvEMQ5wxtJ_HPCaHRsiCtxAWuWLbTznpI7GB7QPD0ZBgOiNOeWlWqKqm_a3IVU0RCXlLYU6D89XHv0rLijA7jtGfA2OYLKfsnZEelUC2IYbgiO4B-aIUC_oxcl3KETXMqd-TL7Thhk9YalvALx8bEsVkxlxTN_MeYg8c5TVOIU-OzWfBHyl-bUzlrjAUXO2-pBat5wFMOpQbXmHlKOdSHpTwnT72ZC774e2_I53e3nw7v2_uPdx8Ob-9bx4SqraLUdr3qKCgOshsQOt_bQY2cdar33gJYsN72XIABKTgDL8AzOwrbUWW7G_Lqsrvm9O2EpepjOuXth6IZlz0DKRnfUm8uKZdTKRm9dqGaGlKs2YRZU9BnqPqo_4Gqz1D1Beq2oP5bWHNYTP75qO7h0sUNxPeAWRcXMDocQ0ZX9ZjCI1Z-A2jNnJk |
CitedBy_id | crossref_primary_10_1016_j_iot_2022_100629 crossref_primary_10_1007_s42044_025_00248_6 crossref_primary_10_1007_s42044_025_00236_w crossref_primary_10_1007_s11761_024_00416_9 crossref_primary_10_1007_s11042_024_19382_7 crossref_primary_10_1016_j_adhoc_2024_103700 crossref_primary_10_1007_s10586_023_04154_z crossref_primary_10_1007_s11277_024_11653_8 crossref_primary_10_1016_j_compbiomed_2023_107908 crossref_primary_10_2174_2210327913666230911113149 crossref_primary_10_1007_s11227_024_06348_7 |
Cites_doi | 10.1134/S1990478912030039 10.1007/s11036-020-01681-6 10.1007/s10898-007-9149-x 10.1177/003754970107600201 10.1007/978-3-642-12538-6_6 10.1136/bjsports-2021-104080 10.1016/j.procs.2015.01.031 10.3390/s20061655 10.1109/JIOT.2019.2920283 10.3389/fpubh.2017.00335 10.36548/jscp.2021.1.002 10.1109/ACCESS.2020.2982225 10.1016/j.scs.2021.102970 10.1007/BF00175354 10.1016/j.future.2019.06.004 10.1109/ACCESS.2020.2992584 10.26599/BDMA.2020.9020022 10.1016/j.procs.2020.03.289 10.1007/s11036-019-01445-x 10.1109/ACCESS.2019.2941836 10.1007/s00521-018-3533-y |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV May 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV May 2022 |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.compeleceng.2022.107884 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0755 |
ExternalDocumentID | 10_1016_j_compeleceng_2022_107884 S0045790622001732 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7SC 7SP 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c279t-911b349310960835e03f4b59d62394ffb00b0bfb4670a087620f70f2bd7b319b3 |
IEDL.DBID | .~1 |
ISSN | 0045-7906 |
IngestDate | Fri Jul 25 08:10:36 EDT 2025 Thu Apr 24 23:11:32 EDT 2025 Tue Jul 01 01:45:54 EDT 2025 Sun Apr 06 06:53:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Internet of Things (IoT) Human Activity Recognition (HAR) Cloud Computing (CC) Big Data Analytics (BDA) Edge intelligence Metaheuristic algorithms Edge Computing (EC) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c279t-911b349310960835e03f4b59d62394ffb00b0bfb4670a087620f70f2bd7b319b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2684208826 |
PQPubID | 2045266 |
ParticipantIDs | proquest_journals_2684208826 crossref_citationtrail_10_1016_j_compeleceng_2022_107884 crossref_primary_10_1016_j_compeleceng_2022_107884 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2022_107884 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers & electrical engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Ha, Seungjin (bib0024) 2016 Wan, Qi, Xu, Tong, Gu (bib0005) 2020; 25 Agarwal, Alam (bib0007) 2020; 167 (accessed September 22, 2021). Jaul, Barron (bib0001) 2017; 5 Hassan, El Desouky, Badawy, Sarhan, Elhoseny, Gunasekaran (bib0010) 2019; 31 Karaboga, Basturk (bib0019) 2007; 39 Al-Janabi, Salman (bib0009) 2021; 4 Banos O, Garcia R, Saez A. UCI Machine Learning Repository: MHEALTH Dataset Data Set 2019. Syed, Jabeen, Alsaeedi (bib0003) 2019; 101 Whitley (bib0016) 1994; 4 Anguita, Ghio, Oneto, Parra, Reyes-Ortiz (bib0026) 2013 Zebin, Scully, Ozanyan (bib0030) 2017 Foundation W. Wireshark Go deep. Wireshark Found 2016. Zhou, Yu, Shi (bib0008) 2020; 8 Kennedy J, Eberhart R, Gov B. Particle Swarm Optimization. ICNN'95 - international conf on neural computing, 1995. Ghosh, Grolinger (bib0011) 2021; 17 Chetty, White, Akther (bib0027) 2015; 46 Javed, Faheem, Asim, Baker, Beg (bib0004) 2021; 71 Pienaar, Malekian (bib0029) 2019 Zalewski, Marchegiani, Elsts, Piechocki, Craddock, Fafoutis (bib0012) 2020; 20 Khatun, Morshed (bib0025) 2018 . (accessed July 23, 2021). Guo, Woźniak (bib0014) 2021; 26 Zebin, Scully, Peek, Casson, Ozanyan (bib0006) 2019; 7 Bianchi, Bassoli, Lombardo, Fornacciari, Mordonini, De Munari (bib0013) 2019; 6 Sungheetha, Sharma (bib0015) 2021; 3 Yang (bib0018) 2010; 284 Geem, Kim, Loganathan (bib0020) 2001; 76 Eremeev (bib0021) 2012; 6 Sallis, Young, Tartof, Sallis, Sall, Li (bib0002) 2021; 55 Xia, Huang, Wang (bib0028) 2020; 8 Al-Janabi (10.1016/j.compeleceng.2022.107884_bib0009) 2021; 4 Zalewski (10.1016/j.compeleceng.2022.107884_bib0012) 2020; 20 Syed (10.1016/j.compeleceng.2022.107884_bib0003) 2019; 101 Hassan (10.1016/j.compeleceng.2022.107884_bib0010) 2019; 31 Whitley (10.1016/j.compeleceng.2022.107884_bib0016) 1994; 4 10.1016/j.compeleceng.2022.107884_bib0023 10.1016/j.compeleceng.2022.107884_bib0022 Yang (10.1016/j.compeleceng.2022.107884_bib0018) 2010; 284 Khatun (10.1016/j.compeleceng.2022.107884_bib0025) 2018 Zhou (10.1016/j.compeleceng.2022.107884_bib0008) 2020; 8 Bianchi (10.1016/j.compeleceng.2022.107884_bib0013) 2019; 6 Anguita (10.1016/j.compeleceng.2022.107884_bib0026) 2013 Jaul (10.1016/j.compeleceng.2022.107884_bib0001) 2017; 5 Javed (10.1016/j.compeleceng.2022.107884_bib0004) 2021; 71 Zebin (10.1016/j.compeleceng.2022.107884_bib0006) 2019; 7 Agarwal (10.1016/j.compeleceng.2022.107884_bib0007) 2020; 167 Zebin (10.1016/j.compeleceng.2022.107884_bib0030) 2017 Pienaar (10.1016/j.compeleceng.2022.107884_bib0029) 2019 Karaboga (10.1016/j.compeleceng.2022.107884_bib0019) 2007; 39 Guo (10.1016/j.compeleceng.2022.107884_bib0014) 2021; 26 Eremeev (10.1016/j.compeleceng.2022.107884_bib0021) 2012; 6 Geem (10.1016/j.compeleceng.2022.107884_bib0020) 2001; 76 Sallis (10.1016/j.compeleceng.2022.107884_bib0002) 2021; 55 Ha (10.1016/j.compeleceng.2022.107884_bib0024) 2016 Wan (10.1016/j.compeleceng.2022.107884_bib0005) 2020; 25 Sungheetha (10.1016/j.compeleceng.2022.107884_bib0015) 2021; 3 Xia (10.1016/j.compeleceng.2022.107884_bib0028) 2020; 8 Ghosh (10.1016/j.compeleceng.2022.107884_bib0011) 2021; 17 Chetty (10.1016/j.compeleceng.2022.107884_bib0027) 2015; 46 10.1016/j.compeleceng.2022.107884_bib0017 |
References_xml | – volume: 4 start-page: 65 year: 1994 end-page: 85 ident: bib0016 article-title: A genetic algorithm tutorial publication-title: Stat Comput – start-page: 934 year: 2018 end-page: 938 ident: bib0025 article-title: Fully-automated human activity recognition with transition awareness from wearable sensor data for MHealth publication-title: Proceedings of the IEEE international conference on electro-information technology – volume: 17 start-page: 2191 year: 2021 end-page: 2200 ident: bib0011 article-title: Edge-cloud computing for internet of things data analytics: embedding intelligence in the edge with deep learning publication-title: IEEE Trans Ind Inform – reference: (accessed July 23, 2021). – volume: 284 start-page: 65 year: 2010 end-page: 74 ident: bib0018 article-title: A new metaheuristic bat-inspired algorithm publication-title: Stud Comput Intell – volume: 46 start-page: 1181 year: 2015 end-page: 1187 ident: bib0027 article-title: Smart phone based data mining for human activity recognition publication-title: Procedia Comput Sci – volume: 76 start-page: 60 year: 2001 end-page: 68 ident: bib0020 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation – volume: 7 start-page: 133509 year: 2019 end-page: 133520 ident: bib0006 article-title: Design and implementation of a convolutional neural network on an edge computing smartphone for human activity recognition publication-title: IEEE Access – start-page: 381 year: 2016 end-page: 388 ident: bib0024 article-title: Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors publication-title: Proceedings of the international joint conference on neural networks (IJCNN) – year: 2017 ident: bib0030 article-title: Human activity recognition with inertial sensors using a deep learning approach publication-title: Proceedings of the IEEE Sensors – volume: 8 start-page: 86411 year: 2020 end-page: 86418 ident: bib0008 article-title: Human activity recognition based on improved bayesian convolution network to analyze health care datausing wearable IoT device publication-title: IEEE Access – start-page: 1 year: 2019 end-page: 5 ident: bib0029 article-title: Human activity recognition using LSTM-RNN deep neural network architecture publication-title: Proceedings of the IEEE 2nd Wireless Africa Conference – volume: 20 start-page: 1655 year: 2020 ident: bib0012 article-title: From bits of data to bits of knowledge—an on-board classification framework for wearable sensing systems publication-title: Sensors – volume: 8 start-page: 56855 year: 2020 end-page: 56866 ident: bib0028 article-title: LSTM-CNN architecture for human activity recognition publication-title: IEEE Access – volume: 6 start-page: 8553 year: 2019 end-page: 8562 ident: bib0013 article-title: IoT wearable sensor and deep learning: an integrated approach for personalized human activity recognition in a smart home environment publication-title: IEEE Internet Things J – reference: Kennedy J, Eberhart R, Gov B. Particle Swarm Optimization. ICNN'95 - international conf on neural computing, 1995. – volume: 167 start-page: 2364 year: 2020 end-page: 2373 ident: bib0007 article-title: Lightweight deep learning model for human activity recognition on edge devices publication-title: Procedia Comput Sci – volume: 26 start-page: 390 year: 2021 end-page: 403 ident: bib0014 article-title: An image super-resolution reconstruction method with single frame character based on wavelet neural network in internet of things publication-title: Mob Netw Appl – volume: 71 year: 2021 ident: bib0004 article-title: A smartphone sensors-based personalized human activity recognition system for sustainable smart cities publication-title: Sustain Cities Soc – volume: 6 start-page: 286 year: 2012 end-page: 294 ident: bib0021 article-title: A geetic algorithm with tournament selection as a local search method publication-title: J Appl Ind Math – volume: 5 year: 2017 ident: bib0001 article-title: Age-related diseases and clinical and public health implications for the 85 years old and over population publication-title: Front Public Health – reference: . – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: bib0019 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J Glob Optim – reference: Banos O, Garcia R, Saez A. UCI Machine Learning Repository: MHEALTH Dataset Data Set 2019. – volume: 101 start-page: 136 year: 2019 end-page: 151 ident: bib0003 article-title: Smart healthcare framework for ambient assisted living using IoMT and big data analytics techniques publication-title: Future Gener Comput Syst – volume: 4 start-page: 124 year: 2021 end-page: 138 ident: bib0009 article-title: Sensitive integration of multilevel optimization model in human activity recognition for smartphone and smartwatch applications publication-title: Big Data Min Anal – volume: 55 start-page: 1099 year: 2021 end-page: 1105 ident: bib0002 article-title: Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients publication-title: Br J Sport Med – volume: 25 start-page: 743 year: 2020 end-page: 755 ident: bib0005 article-title: Deep learning models for real-time human activity recognition with smartphones publication-title: Mob Netw Appl – reference: Foundation W. Wireshark Go deep. Wireshark Found 2016. – volume: 3 start-page: 10 year: 2021 end-page: 18 ident: bib0015 article-title: Fuzzy chaos whale optimization and bat integrated algorithm for parameter estimation in sewage treatment publication-title: J Soft Comput Paradig – volume: 31 start-page: 1275 year: 2019 end-page: 1300 ident: bib0010 article-title: EoT-driven hybrid ambient assisted living framework with naïve Bayes–firefly algorithm publication-title: Neural Comput Appl – reference: (accessed September 22, 2021). – year: 2013 ident: bib0026 article-title: A public domain dataset for human activity recognition using smartphones publication-title: Proceedings of the European symposium on artificial neural networks, computational intelligence and machine learning – ident: 10.1016/j.compeleceng.2022.107884_bib0022 – volume: 6 start-page: 286 year: 2012 ident: 10.1016/j.compeleceng.2022.107884_bib0021 article-title: A geetic algorithm with tournament selection as a local search method publication-title: J Appl Ind Math doi: 10.1134/S1990478912030039 – volume: 26 start-page: 390 year: 2021 ident: 10.1016/j.compeleceng.2022.107884_bib0014 article-title: An image super-resolution reconstruction method with single frame character based on wavelet neural network in internet of things publication-title: Mob Netw Appl doi: 10.1007/s11036-020-01681-6 – volume: 39 start-page: 459 year: 2007 ident: 10.1016/j.compeleceng.2022.107884_bib0019 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J Glob Optim doi: 10.1007/s10898-007-9149-x – volume: 76 start-page: 60 year: 2001 ident: 10.1016/j.compeleceng.2022.107884_bib0020 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 284 start-page: 65 year: 2010 ident: 10.1016/j.compeleceng.2022.107884_bib0018 article-title: A new metaheuristic bat-inspired algorithm publication-title: Stud Comput Intell doi: 10.1007/978-3-642-12538-6_6 – volume: 55 start-page: 1099 year: 2021 ident: 10.1016/j.compeleceng.2022.107884_bib0002 article-title: Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients publication-title: Br J Sport Med doi: 10.1136/bjsports-2021-104080 – year: 2013 ident: 10.1016/j.compeleceng.2022.107884_bib0026 article-title: A public domain dataset for human activity recognition using smartphones – volume: 46 start-page: 1181 year: 2015 ident: 10.1016/j.compeleceng.2022.107884_bib0027 article-title: Smart phone based data mining for human activity recognition publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.01.031 – volume: 20 start-page: 1655 year: 2020 ident: 10.1016/j.compeleceng.2022.107884_bib0012 article-title: From bits of data to bits of knowledge—an on-board classification framework for wearable sensing systems publication-title: Sensors doi: 10.3390/s20061655 – volume: 17 start-page: 2191 year: 2021 ident: 10.1016/j.compeleceng.2022.107884_bib0011 article-title: Edge-cloud computing for internet of things data analytics: embedding intelligence in the edge with deep learning publication-title: IEEE Trans Ind Inform – volume: 6 start-page: 8553 year: 2019 ident: 10.1016/j.compeleceng.2022.107884_bib0013 article-title: IoT wearable sensor and deep learning: an integrated approach for personalized human activity recognition in a smart home environment publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2019.2920283 – volume: 5 year: 2017 ident: 10.1016/j.compeleceng.2022.107884_bib0001 article-title: Age-related diseases and clinical and public health implications for the 85 years old and over population publication-title: Front Public Health doi: 10.3389/fpubh.2017.00335 – volume: 3 start-page: 10 year: 2021 ident: 10.1016/j.compeleceng.2022.107884_bib0015 article-title: Fuzzy chaos whale optimization and bat integrated algorithm for parameter estimation in sewage treatment publication-title: J Soft Comput Paradig doi: 10.36548/jscp.2021.1.002 – volume: 8 start-page: 56855 year: 2020 ident: 10.1016/j.compeleceng.2022.107884_bib0028 article-title: LSTM-CNN architecture for human activity recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982225 – ident: 10.1016/j.compeleceng.2022.107884_bib0023 – start-page: 934 year: 2018 ident: 10.1016/j.compeleceng.2022.107884_bib0025 article-title: Fully-automated human activity recognition with transition awareness from wearable sensor data for MHealth – volume: 71 year: 2021 ident: 10.1016/j.compeleceng.2022.107884_bib0004 article-title: A smartphone sensors-based personalized human activity recognition system for sustainable smart cities publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2021.102970 – volume: 4 start-page: 65 year: 1994 ident: 10.1016/j.compeleceng.2022.107884_bib0016 article-title: A genetic algorithm tutorial publication-title: Stat Comput doi: 10.1007/BF00175354 – volume: 101 start-page: 136 year: 2019 ident: 10.1016/j.compeleceng.2022.107884_bib0003 article-title: Smart healthcare framework for ambient assisted living using IoMT and big data analytics techniques publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2019.06.004 – volume: 8 start-page: 86411 year: 2020 ident: 10.1016/j.compeleceng.2022.107884_bib0008 article-title: Human activity recognition based on improved bayesian convolution network to analyze health care datausing wearable IoT device publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992584 – ident: 10.1016/j.compeleceng.2022.107884_bib0017 – start-page: 1 year: 2019 ident: 10.1016/j.compeleceng.2022.107884_bib0029 article-title: Human activity recognition using LSTM-RNN deep neural network architecture – volume: 4 start-page: 124 year: 2021 ident: 10.1016/j.compeleceng.2022.107884_bib0009 article-title: Sensitive integration of multilevel optimization model in human activity recognition for smartphone and smartwatch applications publication-title: Big Data Min Anal doi: 10.26599/BDMA.2020.9020022 – volume: 167 start-page: 2364 year: 2020 ident: 10.1016/j.compeleceng.2022.107884_bib0007 article-title: Lightweight deep learning model for human activity recognition on edge devices publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.03.289 – volume: 25 start-page: 743 year: 2020 ident: 10.1016/j.compeleceng.2022.107884_bib0005 article-title: Deep learning models for real-time human activity recognition with smartphones publication-title: Mob Netw Appl doi: 10.1007/s11036-019-01445-x – volume: 7 start-page: 133509 year: 2019 ident: 10.1016/j.compeleceng.2022.107884_bib0006 article-title: Design and implementation of a convolutional neural network on an edge computing smartphone for human activity recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2941836 – start-page: 381 year: 2016 ident: 10.1016/j.compeleceng.2022.107884_bib0024 article-title: Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors – volume: 31 start-page: 1275 year: 2019 ident: 10.1016/j.compeleceng.2022.107884_bib0010 article-title: EoT-driven hybrid ambient assisted living framework with naïve Bayes–firefly algorithm publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3533-y – year: 2017 ident: 10.1016/j.compeleceng.2022.107884_bib0030 article-title: Human activity recognition with inertial sensors using a deep learning approach |
SSID | ssj0004618 |
Score | 2.3292792 |
Snippet | •A four-layer edge optimized and user-personalized framework for life-logging human activities is proposed.•A lightweight edge intelligence module requiring... The fostered use of smart wearables for lifelogging daily activities has fuelled massive data generation. Lack of personalization, massive network traffic,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107884 |
SubjectTerms | Activity recognition Algorithms Big Data Analytics (BDA) Classifiers Cloud Computing (CC) Communications traffic Customization Data transmission Decision trees Edge Computing (EC) Edge intelligence Energy consumption Feature recognition Heuristic methods Human Activity Recognition (HAR) Internet of Things (IoT) Metaheuristic algorithms |
Title | Edge optimized and personalized lifelogging framework using ensembled metaheuristic algorithms |
URI | https://dx.doi.org/10.1016/j.compeleceng.2022.107884 https://www.proquest.com/docview/2684208826 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jguhB_InTOSJ4revStGnByxgbU2EnBzsZmibpKms3tu7iwb_dvLXVKQgDjw1NKS8v33sPvvc9hO58qk0YCD1LSDewTAjQVhAFkWVcQQjHeFCp9jnyhmP6NHEnNdSremGAVllif4HpG7QuV9qlNduLJIEeX-oykNkFWhBzAIcpZeDl9x-drd7IToHGFKQZbW8f3X5zvIC2DeNmVBabUpEQs25KQvpXjPqF1psQNDhGR2XuiLvF752gmspO0eGWouAZeu3LWOG5wYE0eVcSh5nEiyrfhoVZopWBOxhNhHVFzMLAfo-xqWhVKmbmrVTl4VStCxVnHM7i-TLJp-nqHI0H_Zfe0CpHKFgRYUEOUCYcGoD8pwfJlrIdTYUbSA9GomttLp2whRYGLu0Q1OmIrZmtiZBMmMspnAtUz-aZukTYJxFjfuT6oXKplL7QgSDM1VQ7gbYj0UB-ZTQelfriMOZixisi2RvfsjcHe_PC3g1EvrYuCpGNXTY9VCfDf3gMN8Fgl-3N6jR5eW1XHKRvCBQd3tX_vn6NDuCpYEY2UT1frtWNyV5y0dq4ZwvtdR-fh6NPuFLxQA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kgo-D-MT6XMFraNxsXuBFRGl99NRCTy7ZZLdG2rTUePHXO2M2WgWh4HWTDWF29psZ-OYbgPNIGAwDSeCozI8dDAHGidM4ddAVlPLQg6zaZzdo98XdwB8swXXdC0O0Sov9FaZ_orVdaVlrtqZ5Tj2-wg9JZpdoQaGHOLxM6lR-A5avOvft7lx75EUFyILUGd1gBc6-aV7E3KaJM7oYYrXIOa5jVSj-ClO_APszCt1uwoZNH9lV9YdbsKSLbVifExXcgaebbKjZBKFgnL_rjCVFxqZ1yk0Lo9xoRDyaTsRMzc1iRIAfMixq9ViN8K2xLpNn_VYJObNkNJzM8vJ5_LoL_dub3nXbsVMUnJSHcUlopjwRkwJoQPmWdj0jlB9nAU1FNwbvnXKVUYiYbkICddw1oWu4ykKF91N5e9AoJoXeBxbxNAyj1I8S7Yssi5SJFQ99I4wXGzdVTYhqo8nUSozTpIuRrLlkL3LO3pLsLSt7N4F_bZ1WOhuLbLqsT0b-cBqJ8WCR7Uf1aUp7c18lqd9wqjuCg_99_RRW273HB_nQ6d4fwho9qYiSR9AoZ2_6GJOZUp1YZ_0A9zvz8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge+optimized+and+personalized+lifelogging+framework+using+ensembled+metaheuristic+algorithms&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Agarwal%2C+Preeti&rft.au=Alam%2C+Mansaf&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.volume=100&rft_id=info:doi/10.1016%2Fj.compeleceng.2022.107884&rft.externalDocID=S0045790622001732 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |