Approximate Solution to Nonlinear Dynamics of a Piezoelectric Energy Harvesting Device Subject to Mechanical Impact and Winkler–Pasternak Foundation

To explore the nonlinear dynamics of a piezoelectric energy harvesting device, we consider the simultaneous parametric and external excitations. Based on Bernoulli–Euler beam theory, a new dynamic model is proposed taking into account the curvature of the beam, geometric and electro-mechanical coupl...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 18; no. 7; p. 1502
Main Authors Marinca, Vasile, Herisanu, Nicolae, Marinca, Bogdan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 27.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To explore the nonlinear dynamics of a piezoelectric energy harvesting device, we consider the simultaneous parametric and external excitations. Based on Bernoulli–Euler beam theory, a new dynamic model is proposed taking into account the curvature of the beam, geometric and electro-mechanical coupling nonlinearities, and damping nonlinearity, with inextensible deformation. The system is discretized by using the Galerkin–Bubnov procedure and then is investigated by the optimal auxiliary functions method. Explicit analytical expressions of the approximate solutions are presented for a complex problem near the primary resonance. The main novelty of our approach relies on the presence of different auxiliary functions, the involvement of a few convergence-control parameters, the construction of the initial and first iteration, and much freedom in selecting the procedure for obtaining the optimal values of the convergence-control parameters. Our procedure proves to be very efficient, simple, easy to implement, and very accurate to solve a complicated nonlinear dynamical system. To study the stability of equilibrium points, the Routh–Hurwitz criterion is adopted. The Hopf and saddle node bifurcations are studied. Global stability is analyzed by the Lyapunov function, La Salle’s invariance principle, and Pontryagin’s principle with respect to the control variables.
AbstractList To explore the nonlinear dynamics of a piezoelectric energy harvesting device, we consider the simultaneous parametric and external excitations. Based on Bernoulli–Euler beam theory, a new dynamic model is proposed taking into account the curvature of the beam, geometric and electro-mechanical coupling nonlinearities, and damping nonlinearity, with inextensible deformation. The system is discretized by using the Galerkin–Bubnov procedure and then is investigated by the optimal auxiliary functions method. Explicit analytical expressions of the approximate solutions are presented for a complex problem near the primary resonance. The main novelty of our approach relies on the presence of different auxiliary functions, the involvement of a few convergence-control parameters, the construction of the initial and first iteration, and much freedom in selecting the procedure for obtaining the optimal values of the convergence-control parameters. Our procedure proves to be very efficient, simple, easy to implement, and very accurate to solve a complicated nonlinear dynamical system. To study the stability of equilibrium points, the Routh–Hurwitz criterion is adopted. The Hopf and saddle node bifurcations are studied. Global stability is analyzed by the Lyapunov function, La Salle’s invariance principle, and Pontryagin’s principle with respect to the control variables.
To explore the nonlinear dynamics of a piezoelectric energy harvesting device, we consider the simultaneous parametric and external excitations. Based on Bernoulli-Euler beam theory, a new dynamic model is proposed taking into account the curvature of the beam, geometric and electro-mechanical coupling nonlinearities, and damping nonlinearity, with inextensible deformation. The system is discretized by using the Galerkin-Bubnov procedure and then is investigated by the optimal auxiliary functions method. Explicit analytical expressions of the approximate solutions are presented for a complex problem near the primary resonance. The main novelty of our approach relies on the presence of different auxiliary functions, the involvement of a few convergence-control parameters, the construction of the initial and first iteration, and much freedom in selecting the procedure for obtaining the optimal values of the convergence-control parameters. Our procedure proves to be very efficient, simple, easy to implement, and very accurate to solve a complicated nonlinear dynamical system. To study the stability of equilibrium points, the Routh-Hurwitz criterion is adopted. The Hopf and saddle node bifurcations are studied. Global stability is analyzed by the Lyapunov function, La Salle's invariance principle, and Pontryagin's principle with respect to the control variables.To explore the nonlinear dynamics of a piezoelectric energy harvesting device, we consider the simultaneous parametric and external excitations. Based on Bernoulli-Euler beam theory, a new dynamic model is proposed taking into account the curvature of the beam, geometric and electro-mechanical coupling nonlinearities, and damping nonlinearity, with inextensible deformation. The system is discretized by using the Galerkin-Bubnov procedure and then is investigated by the optimal auxiliary functions method. Explicit analytical expressions of the approximate solutions are presented for a complex problem near the primary resonance. The main novelty of our approach relies on the presence of different auxiliary functions, the involvement of a few convergence-control parameters, the construction of the initial and first iteration, and much freedom in selecting the procedure for obtaining the optimal values of the convergence-control parameters. Our procedure proves to be very efficient, simple, easy to implement, and very accurate to solve a complicated nonlinear dynamical system. To study the stability of equilibrium points, the Routh-Hurwitz criterion is adopted. The Hopf and saddle node bifurcations are studied. Global stability is analyzed by the Lyapunov function, La Salle's invariance principle, and Pontryagin's principle with respect to the control variables.
Audience Academic
Author Marinca, Bogdan
Marinca, Vasile
Herisanu, Nicolae
Author_xml – sequence: 1
  givenname: Vasile
  surname: Marinca
  fullname: Marinca, Vasile
– sequence: 2
  givenname: Nicolae
  orcidid: 0000-0003-2968-5309
  surname: Herisanu
  fullname: Herisanu, Nicolae
– sequence: 3
  givenname: Bogdan
  orcidid: 0000-0003-2340-1280
  surname: Marinca
  fullname: Marinca, Bogdan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40271674$$D View this record in MEDLINE/PubMed
BookMark eNpdks1u1DAQxy1UREvphQdAlrggpC1xnMT2cdUPWqlAJUAco4kzXrx17K2dVCwn3gGJB-RJcLTlQ9gHW-Pf_DWe_zwmez54JOQpK445V8WrAZgsBKuL8gE5YEo1C6aqau-f-z45Smld5MU5k6V6RParohSsEdUB-bHcbGL4YgcYkb4Pbhpt8HQM9G3wznqESE-3HgarEw2GAr22-DWgQz1Gq-mZx7ja0guId5hG61f0FO-szlJTt87MrPQG9WfwVoOjl8MGchB8Tz9Zf-Mw_vz2_RrSiNHDDT0Pk-9hruAJeWjAJTy6Pw_Jx_OzDycXi6t3ry9PllcLXQo1LrhkRhdMdXXToKhZreueCV52TSdZA6pTjIlegeLzuzEapek6phs0mom65ofkxU43N-F2yl9oB5s0Ogcew5RanhtY1jldZPT5f-g6TLlsN1NSSp49kJk63lErcNhab8IYQefdY-5hts7YHF9KLiuuSjHLPruXnboB-3YTsxdx2_62KAMvd4COIaWI5g_CinYegfbvCPBfwKSkhA
Cites_doi 10.1007/s11012-020-01235-w
10.1038/s41598-021-04476-1
10.1038/s41598-024-69307-5
10.1007/s11071-024-09551-6
10.1007/s00419-020-01721-3
10.1109/WPW54272.2022.9853996
10.1155/2021/3832406
10.1088/1361-665X/ad1c40
10.1142/S0217979206033796
10.3390/mi12091045
10.1063/1.4954169
10.1115/1.4026278
10.1007/s10483-019-2542-5
10.1038/s41598-020-59836-0
10.1038/s41598-024-61355-1
10.3390/s25041063
10.1007/s10409-017-0743-y
10.3390/sym15071376
10.1007/s11071-022-07227-7
10.1088/1361-665X/ad5890
10.3390/en12050915
10.3390/en17194935
10.1007/s11071-019-05133-z
10.3390/sym12081335
10.1051/matecconf/201824101025
10.1016/j.prime.2024.100724
10.1007/s00419-017-1270-9
10.1016/j.apenergy.2024.124507
10.1007/s12206-019-1006-6
10.1007/s11071-020-05812-2
10.3390/s23135978
10.3390/mi14051013
10.3390/math8081364
10.3390/mi12060595
10.1016/j.apenergy.2023.122285
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.3390/ma18071502
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID A838439277
40271674
10_3390_ma18071502
Genre Journal Article
GeographicLocations Romania
GeographicLocations_xml – name: Romania
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
NPM
PQGLB
PMFND
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c279t-381fc019b566e7515c5d1732b6b816a9b9117d9a9366e7ffce8fbb1c6efc17553
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Fri Jul 11 18:30:48 EDT 2025
Fri Jul 25 11:42:46 EDT 2025
Tue Jun 10 20:58:23 EDT 2025
Mon Jul 21 05:51:38 EDT 2025
Tue Jul 01 05:15:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords energy harvesting
piezoelectricity
OAFM
Routh–Hurwitz
Lyapunov
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c279t-381fc019b566e7515c5d1732b6b816a9b9117d9a9366e7ffce8fbb1c6efc17553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2968-5309
0000-0003-2340-1280
OpenAccessLink https://www.proquest.com/docview/3188831508?pq-origsite=%requestingapplication%
PMID 40271674
PQID 3188831508
PQPubID 2032366
ParticipantIDs proquest_miscellaneous_3194259367
proquest_journals_3188831508
gale_infotracacademiconefile_A838439277
pubmed_primary_40271674
crossref_primary_10_3390_ma18071502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-27
PublicationDateYYYYMMDD 2025-03-27
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-27
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
ref_30
Sun (ref_23) 2024; 33
Xia (ref_13) 2020; 90
Man (ref_9) 2021; 2021
Fang (ref_12) 2018; 34
ref_19
ref_18
ref_17
ref_16
ref_15
Luo (ref_36) 2022; 108
Nisanth (ref_26) 2024; 9
Yin (ref_27) 2025; 377
Zhu (ref_3) 2017; 87
Yao (ref_25) 2024; 357
Zhao (ref_22) 2024; 112
Zhou (ref_4) 2018; 241
He (ref_35) 2006; 20
Kim (ref_2) 2016; 108
Wang (ref_7) 2019; 97
Rui (ref_5) 2019; 33
ref_24
ref_21
Paruchuri (ref_14) 2020; 10
Daqaq (ref_1) 2014; 14
ref_28
Cao (ref_6) 2019; 40
ref_8
Plagianakos (ref_20) 2024; 30
Herisanu (ref_29) 2021; 56
References_xml – volume: 56
  start-page: 813
  year: 2021
  ident: ref_29
  article-title: An effective analytical approach to nonlinear free vibration of elastically actuated microtubes
  publication-title: Meccanica
  doi: 10.1007/s11012-020-01235-w
– ident: ref_15
  doi: 10.1038/s41598-021-04476-1
– ident: ref_19
  doi: 10.1038/s41598-024-69307-5
– volume: 112
  start-page: 9043
  year: 2024
  ident: ref_22
  article-title: Modeling and vibration analysis of a double-beam system with a coupled nonlinear energy sink
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-024-09551-6
– ident: ref_34
– volume: 90
  start-page: 2297
  year: 2020
  ident: ref_13
  article-title: Performance analysis of piezoelectric energy harvesters with a tip mass and nonlinearities of geometric and damping under parametric and external excitations
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-020-01721-3
– ident: ref_21
  doi: 10.1109/WPW54272.2022.9853996
– volume: 2021
  start-page: 3832406
  year: 2021
  ident: ref_9
  article-title: Analysis of dynamic characteristics of tristable piezoelectric energy harvester based on the modified model
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/3832406
– volume: 33
  start-page: 025016
  year: 2024
  ident: ref_23
  article-title: Design and performance of a novel magnetically induced penta-stable piezoelectric energy harvester
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ad1c40
– volume: 20
  start-page: 1141
  year: 2006
  ident: ref_35
  article-title: Some asymptotic methods for strongly nonlinear equations
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979206033796
– ident: ref_10
  doi: 10.3390/mi12091045
– volume: 108
  start-page: 243902
  year: 2016
  ident: ref_2
  article-title: Triple well potential with a uniform depth: Advantageous aspects in designing a multi-stable energy harvester
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4954169
– volume: 14
  start-page: 040801
  year: 2014
  ident: ref_1
  article-title: On the role of nonlinearities in vibratory energy harvesting: A critical review and discussion
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4026278
– volume: 40
  start-page: 1777
  year: 2019
  ident: ref_6
  article-title: Low frequency and broadband vibration energy harvester driven by mechanical impact based on layer separated piezoelectric beam
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-019-2542-5
– ident: ref_8
  doi: 10.1038/s41598-020-59836-0
– ident: ref_18
  doi: 10.1038/s41598-024-61355-1
– ident: ref_28
  doi: 10.3390/s25041063
– volume: 34
  start-page: 561
  year: 2018
  ident: ref_12
  article-title: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-017-0743-y
– ident: ref_32
  doi: 10.3390/sym15071376
– volume: 108
  start-page: 97
  year: 2022
  ident: ref_36
  article-title: dynamical analysis and chaos control of MEMS resonator by using the analogic circuit
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07227-7
– volume: 30
  start-page: 075033
  year: 2024
  ident: ref_20
  article-title: Piezoelectric energy harvester for wind turbine blades based on bistable response of a composite beam in post-buckling
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ad5890
– ident: ref_30
  doi: 10.3390/en12050915
– ident: ref_24
  doi: 10.3390/en17194935
– volume: 97
  start-page: 2371
  year: 2019
  ident: ref_7
  article-title: Nonlinear magnetic force and dynamic characetristics of a tr-stable piezoelectric energy harvester
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05133-z
– ident: ref_33
  doi: 10.3390/sym12081335
– volume: 241
  start-page: 01025
  year: 2018
  ident: ref_4
  article-title: Bifurcation, elastic and hysteresis phenomena of broadband tri-stable energy harvesters
  publication-title: Matec Web Conf.
  doi: 10.1051/matecconf/201824101025
– volume: 9
  start-page: 100724
  year: 2024
  ident: ref_26
  article-title: A novel design strategy for cantilever-based MEMS piezoelectric vibration energy harvesters: FEM parametric analysis and modeling
  publication-title: e-Prime-Adv. Electr. Eng. Electron. Energy
  doi: 10.1016/j.prime.2024.100724
– volume: 87
  start-page: 1541
  year: 2017
  ident: ref_3
  article-title: Theoretical and experimental studies on the characteristics of a tri-stable piezoelectric harvester
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-017-1270-9
– volume: 377
  start-page: 124507
  year: 2025
  ident: ref_27
  article-title: Harnessing ultra-low-frequency vibration energy by a rolling-swing electromagnetic energy harvester with counter rotations
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.124507
– volume: 33
  start-page: 5169
  year: 2019
  ident: ref_5
  article-title: Modeling and analysis of a rotational piezoelectric energy harvester with limiters
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-019-1006-6
– volume: 10
  start-page: 1397
  year: 2020
  ident: ref_14
  article-title: Reproducing kernel Hilbert space embedding for adaptive estimation of nonlinearities in piezoelectric systems
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05812-2
– ident: ref_16
  doi: 10.3390/s23135978
– ident: ref_17
  doi: 10.3390/mi14051013
– ident: ref_31
  doi: 10.3390/math8081364
– ident: ref_11
  doi: 10.3390/mi12060595
– volume: 357
  start-page: 122285
  year: 2024
  ident: ref_25
  article-title: Optimal design of piezoelectric energy harvesters for bridge infrastructure effects of location and traffic intensity on energy production
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.122285
SSID ssj0000331829
Score 2.4037983
Snippet To explore the nonlinear dynamics of a piezoelectric energy harvesting device, we consider the simultaneous parametric and external excitations. Based on...
SourceID proquest
gale
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage 1502
SubjectTerms Beam theory (structures)
Bifurcations
Convergence
Damping
Dynamic models
Dynamical systems
Electric power production
Energy
Energy harvesting
Euler-Bernoulli beams
Finite element analysis
Force and energy
Foundations
Investigations
Liapunov functions
Magnetic fields
Nonlinear dynamics
Nonlinearity
Parameters
Piezoelectricity
Pontryagin principle
Routh-Hurwitz criterion
Stability
Vibration
Title Approximate Solution to Nonlinear Dynamics of a Piezoelectric Energy Harvesting Device Subject to Mechanical Impact and Winkler–Pasternak Foundation
URI https://www.ncbi.nlm.nih.gov/pubmed/40271674
https://www.proquest.com/docview/3188831508
https://www.proquest.com/docview/3194259367
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7R9AIHVN6hpVoEEiersdf27p5QSpMWpEYRoiI3a72erSLALokrIU78ByR-IL-kM34kqAeO1trrx-zMfDPr-QbgNWIcudz6IFVIAUqsWKWkDQrtON9gnXS8o3s-S88u4g-LZNEl3Nbdb5W9TWwMdVE5zpEf0drTWjJ7-dur7wF3jeLd1a6Fxg7skgnWegC7x5PZ_OMmyzKSdF1kWl5SSfH90TcbanKrSZdH6T3RbXt8C2U23ma6B_c7mCjGrVwfwB0sH8K9f8gDH8GfMdOB_1gS5ETRZ7dEXYlZy35hV-KkbTe_FpUXVsyX-LNq294snZg0RX-CewMx0UZ5KU6QrYYgU8K5GZ7pHLkumMUo3jfVlMKWhfhM4etXXP399XtuG5oF-0VsuzM9hovp5NO7s6DrshC4SJk6IJftHQG9nIAdKoI3LilCJaM8zXWYWpOTOVSFsUbyuPcOtc_z0KXoHWGPRD6BQVmV-AyE5rJ64wnUSR9riWYUuyTFODYYjYxNh_Cq_-LZVUumkVEQwnLJtnIZwhsWRsYaVq-ss12hAN2DuaqysZaaYFSk1BAOenllneqts-1CGcLLzTApDe-E2BKraz7HkK2iN6IpnrZy3jwQBdSKSzOe_3_yfbgbcSvgkQwidQCDenWNLwif1Pkh7Ojp6WG3FOnodBHeAFr96ig
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB1VZQEsEOXVtAUGAWJl1ZlxPDMLhCLSkNAm6qIV3Znx-A6KoHabuOKx4h8q8Rl8FF_CvX4kqAt2XY81ftz3Hd9zGHsBEAmXWh_ECrBAiRSZlLRBph31G6yTjk50J9N4dBy9P-mdrLHf7SwM_VbZ-sTKUWeFox75Luqe1pLQy9-cnQfEGkWnqy2FRq0W-_D9K5Zsi9fjAcr3pRDDvaO3o6BhFQicUKYMMER5h4lNiokMKAznrpd1lRRpnOpubE2K5q8yY42kde8daJ-mXReDdxhriSUCXf6NSGIkp8n04btlTyeU-JTC1CiouB7untquxiDea7o2bdy76v2v5LRVbBveZXeapJT3ay3aYGuQ32O3_4EqvM9-9Ql8_NsME1zgbS-NlwWf1lgbds4HNbn9gheeW344gx9FTbIzc3yvGjHkxEREsB75Jz4A8lEcHRd1gminCdAUMikNH1ezm9zmGf-AxfIXmP_5eXloK1AH-5mvuKAesONr-foP2Xpe5LDJuKYhfuMxhZQ-0hJMGLleDFFkQITGxh32vP3iyVkN3ZFgyUNySVZy6bBXJIyE7LmcW2ebsQS8ByFjJX0tNSZtQqkO22nllTSGvkhWatlhz5bLaKJ07mJzKC7oGoOeEd8It3hUy3n5QFi-KxoE2fr_5k_ZzdHR5CA5GE_3t9ktQSTEoQyE2mHr5fwCHmNmVKZPKnXk7ON16_9f9hYj3g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFL2qUgnBAvEmUGAQIFZWnBnHM7NAKJBEDaVRhKjozh2PZ1BEa5fEFY8V_4DEx_A5fAn3-pGgLth1bWv8uO87c88BeOpcxG1qfBBLhwVKJMmkhAkyZanfYKywtKO7P4t3D6I3h4PDLfjdzsLQscrWJ1aOOiss9ch7qHtKCUIv7_nmWMR8NHl5-jkgBinaaW3pNGoV2XPfvmD5tnoxHaGsn3E-Gb9_vRs0DAOB5VKXAYYrbzHJSTGpcRJDux1kfSl4GqeqHxudoiuQmTZa0HXvrVM-Tfs2dt5i3CXGCHT_25Kqog5svxrP5u_WHZ5Q4DtzXWOiCqHD3onpK7xz0PRw2ih4Phacy3CrSDe5BlebFJUNa526DlsuvwFX_gEuvAm_hgRF_nWB6a5jbWeNlQWb1cgbZslGNdX9ihWeGTZfuO9FTbmzsGxcDRwy4iUikI_8Ixs58lgM3Rj1hWilfUczyaRCbFpNcjKTZ-wDls7Hbvnnx8-5qSAezCe2YYa6BQcX8v9vQycvcncXmKKRfu0xoRQ-UsLpMLKD2EWRdjzUJu7Ck_aPJ6c1kEeCBRDJJdnIpQvPSRgJWXe5NNY0Qwr4DMLJSoZKKEzhuJRd2GnllTRmv0o2StqFx-vLaLC0C2NyV5zRPRr9JH4RLnGnlvP6hbCYlzQWcu__iz-CS6j7ydvpbO8-XObESByKgMsd6JTLM_cA06QyfdjoI4OjizaBvyDoKXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Solution+to+Nonlinear+Dynamics+of+a+Piezoelectric+Energy+Harvesting+Device+Subject+to+Mechanical+Impact+and+Winkler-Pasternak+Foundation&rft.jtitle=Materials&rft.au=Marinca%2C+Vasile&rft.au=Herisanu%2C+Nicolae&rft.au=Marinca%2C+Bogdan&rft.date=2025-03-27&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=18&rft.issue=7&rft_id=info:doi/10.3390%2Fma18071502&rft_id=info%3Apmid%2F40271674&rft.externalDocID=40271674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon