Approximate Solution to Nonlinear Dynamics of a Piezoelectric Energy Harvesting Device Subject to Mechanical Impact and Winkler–Pasternak Foundation
To explore the nonlinear dynamics of a piezoelectric energy harvesting device, we consider the simultaneous parametric and external excitations. Based on Bernoulli–Euler beam theory, a new dynamic model is proposed taking into account the curvature of the beam, geometric and electro-mechanical coupl...
Saved in:
Published in | Materials Vol. 18; no. 7; p. 1502 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
27.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To explore the nonlinear dynamics of a piezoelectric energy harvesting device, we consider the simultaneous parametric and external excitations. Based on Bernoulli–Euler beam theory, a new dynamic model is proposed taking into account the curvature of the beam, geometric and electro-mechanical coupling nonlinearities, and damping nonlinearity, with inextensible deformation. The system is discretized by using the Galerkin–Bubnov procedure and then is investigated by the optimal auxiliary functions method. Explicit analytical expressions of the approximate solutions are presented for a complex problem near the primary resonance. The main novelty of our approach relies on the presence of different auxiliary functions, the involvement of a few convergence-control parameters, the construction of the initial and first iteration, and much freedom in selecting the procedure for obtaining the optimal values of the convergence-control parameters. Our procedure proves to be very efficient, simple, easy to implement, and very accurate to solve a complicated nonlinear dynamical system. To study the stability of equilibrium points, the Routh–Hurwitz criterion is adopted. The Hopf and saddle node bifurcations are studied. Global stability is analyzed by the Lyapunov function, La Salle’s invariance principle, and Pontryagin’s principle with respect to the control variables. |
---|---|
AbstractList | To explore the nonlinear dynamics of a piezoelectric energy harvesting device, we consider the simultaneous parametric and external excitations. Based on Bernoulli–Euler beam theory, a new dynamic model is proposed taking into account the curvature of the beam, geometric and electro-mechanical coupling nonlinearities, and damping nonlinearity, with inextensible deformation. The system is discretized by using the Galerkin–Bubnov procedure and then is investigated by the optimal auxiliary functions method. Explicit analytical expressions of the approximate solutions are presented for a complex problem near the primary resonance. The main novelty of our approach relies on the presence of different auxiliary functions, the involvement of a few convergence-control parameters, the construction of the initial and first iteration, and much freedom in selecting the procedure for obtaining the optimal values of the convergence-control parameters. Our procedure proves to be very efficient, simple, easy to implement, and very accurate to solve a complicated nonlinear dynamical system. To study the stability of equilibrium points, the Routh–Hurwitz criterion is adopted. The Hopf and saddle node bifurcations are studied. Global stability is analyzed by the Lyapunov function, La Salle’s invariance principle, and Pontryagin’s principle with respect to the control variables. To explore the nonlinear dynamics of a piezoelectric energy harvesting device, we consider the simultaneous parametric and external excitations. Based on Bernoulli-Euler beam theory, a new dynamic model is proposed taking into account the curvature of the beam, geometric and electro-mechanical coupling nonlinearities, and damping nonlinearity, with inextensible deformation. The system is discretized by using the Galerkin-Bubnov procedure and then is investigated by the optimal auxiliary functions method. Explicit analytical expressions of the approximate solutions are presented for a complex problem near the primary resonance. The main novelty of our approach relies on the presence of different auxiliary functions, the involvement of a few convergence-control parameters, the construction of the initial and first iteration, and much freedom in selecting the procedure for obtaining the optimal values of the convergence-control parameters. Our procedure proves to be very efficient, simple, easy to implement, and very accurate to solve a complicated nonlinear dynamical system. To study the stability of equilibrium points, the Routh-Hurwitz criterion is adopted. The Hopf and saddle node bifurcations are studied. Global stability is analyzed by the Lyapunov function, La Salle's invariance principle, and Pontryagin's principle with respect to the control variables.To explore the nonlinear dynamics of a piezoelectric energy harvesting device, we consider the simultaneous parametric and external excitations. Based on Bernoulli-Euler beam theory, a new dynamic model is proposed taking into account the curvature of the beam, geometric and electro-mechanical coupling nonlinearities, and damping nonlinearity, with inextensible deformation. The system is discretized by using the Galerkin-Bubnov procedure and then is investigated by the optimal auxiliary functions method. Explicit analytical expressions of the approximate solutions are presented for a complex problem near the primary resonance. The main novelty of our approach relies on the presence of different auxiliary functions, the involvement of a few convergence-control parameters, the construction of the initial and first iteration, and much freedom in selecting the procedure for obtaining the optimal values of the convergence-control parameters. Our procedure proves to be very efficient, simple, easy to implement, and very accurate to solve a complicated nonlinear dynamical system. To study the stability of equilibrium points, the Routh-Hurwitz criterion is adopted. The Hopf and saddle node bifurcations are studied. Global stability is analyzed by the Lyapunov function, La Salle's invariance principle, and Pontryagin's principle with respect to the control variables. |
Audience | Academic |
Author | Marinca, Bogdan Marinca, Vasile Herisanu, Nicolae |
Author_xml | – sequence: 1 givenname: Vasile surname: Marinca fullname: Marinca, Vasile – sequence: 2 givenname: Nicolae orcidid: 0000-0003-2968-5309 surname: Herisanu fullname: Herisanu, Nicolae – sequence: 3 givenname: Bogdan orcidid: 0000-0003-2340-1280 surname: Marinca fullname: Marinca, Bogdan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40271674$$D View this record in MEDLINE/PubMed |
BookMark | eNpdks1u1DAQxy1UREvphQdAlrggpC1xnMT2cdUPWqlAJUAco4kzXrx17K2dVCwn3gGJB-RJcLTlQ9gHW-Pf_DWe_zwmez54JOQpK445V8WrAZgsBKuL8gE5YEo1C6aqau-f-z45Smld5MU5k6V6RParohSsEdUB-bHcbGL4YgcYkb4Pbhpt8HQM9G3wznqESE-3HgarEw2GAr22-DWgQz1Gq-mZx7ja0guId5hG61f0FO-szlJTt87MrPQG9WfwVoOjl8MGchB8Tz9Zf-Mw_vz2_RrSiNHDDT0Pk-9hruAJeWjAJTy6Pw_Jx_OzDycXi6t3ry9PllcLXQo1LrhkRhdMdXXToKhZreueCV52TSdZA6pTjIlegeLzuzEapek6phs0mom65ofkxU43N-F2yl9oB5s0Ogcew5RanhtY1jldZPT5f-g6TLlsN1NSSp49kJk63lErcNhab8IYQefdY-5hts7YHF9KLiuuSjHLPruXnboB-3YTsxdx2_62KAMvd4COIaWI5g_CinYegfbvCPBfwKSkhA |
Cites_doi | 10.1007/s11012-020-01235-w 10.1038/s41598-021-04476-1 10.1038/s41598-024-69307-5 10.1007/s11071-024-09551-6 10.1007/s00419-020-01721-3 10.1109/WPW54272.2022.9853996 10.1155/2021/3832406 10.1088/1361-665X/ad1c40 10.1142/S0217979206033796 10.3390/mi12091045 10.1063/1.4954169 10.1115/1.4026278 10.1007/s10483-019-2542-5 10.1038/s41598-020-59836-0 10.1038/s41598-024-61355-1 10.3390/s25041063 10.1007/s10409-017-0743-y 10.3390/sym15071376 10.1007/s11071-022-07227-7 10.1088/1361-665X/ad5890 10.3390/en12050915 10.3390/en17194935 10.1007/s11071-019-05133-z 10.3390/sym12081335 10.1051/matecconf/201824101025 10.1016/j.prime.2024.100724 10.1007/s00419-017-1270-9 10.1016/j.apenergy.2024.124507 10.1007/s12206-019-1006-6 10.1007/s11071-020-05812-2 10.3390/s23135978 10.3390/mi14051013 10.3390/math8081364 10.3390/mi12060595 10.1016/j.apenergy.2023.122285 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.3390/ma18071502 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | A838439277 40271674 10_3390_ma18071502 |
Genre | Journal Article |
GeographicLocations | Romania |
GeographicLocations_xml | – name: Romania |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS NPM PQGLB PMFND 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c279t-381fc019b566e7515c5d1732b6b816a9b9117d9a9366e7ffce8fbb1c6efc17553 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Fri Jul 11 18:30:48 EDT 2025 Fri Jul 25 11:42:46 EDT 2025 Tue Jun 10 20:58:23 EDT 2025 Mon Jul 21 05:51:38 EDT 2025 Tue Jul 01 05:15:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | energy harvesting piezoelectricity OAFM Routh–Hurwitz Lyapunov |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c279t-381fc019b566e7515c5d1732b6b816a9b9117d9a9366e7ffce8fbb1c6efc17553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2968-5309 0000-0003-2340-1280 |
OpenAccessLink | https://www.proquest.com/docview/3188831508?pq-origsite=%requestingapplication% |
PMID | 40271674 |
PQID | 3188831508 |
PQPubID | 2032366 |
ParticipantIDs | proquest_miscellaneous_3194259367 proquest_journals_3188831508 gale_infotracacademiconefile_A838439277 pubmed_primary_40271674 crossref_primary_10_3390_ma18071502 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-27 |
PublicationDateYYYYMMDD | 2025-03-27 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 Sun (ref_23) 2024; 33 Xia (ref_13) 2020; 90 Man (ref_9) 2021; 2021 Fang (ref_12) 2018; 34 ref_19 ref_18 ref_17 ref_16 ref_15 Luo (ref_36) 2022; 108 Nisanth (ref_26) 2024; 9 Yin (ref_27) 2025; 377 Zhu (ref_3) 2017; 87 Yao (ref_25) 2024; 357 Zhao (ref_22) 2024; 112 Zhou (ref_4) 2018; 241 He (ref_35) 2006; 20 Kim (ref_2) 2016; 108 Wang (ref_7) 2019; 97 Rui (ref_5) 2019; 33 ref_24 ref_21 Paruchuri (ref_14) 2020; 10 Daqaq (ref_1) 2014; 14 ref_28 Cao (ref_6) 2019; 40 ref_8 Plagianakos (ref_20) 2024; 30 Herisanu (ref_29) 2021; 56 |
References_xml | – volume: 56 start-page: 813 year: 2021 ident: ref_29 article-title: An effective analytical approach to nonlinear free vibration of elastically actuated microtubes publication-title: Meccanica doi: 10.1007/s11012-020-01235-w – ident: ref_15 doi: 10.1038/s41598-021-04476-1 – ident: ref_19 doi: 10.1038/s41598-024-69307-5 – volume: 112 start-page: 9043 year: 2024 ident: ref_22 article-title: Modeling and vibration analysis of a double-beam system with a coupled nonlinear energy sink publication-title: Nonlinear Dyn. doi: 10.1007/s11071-024-09551-6 – ident: ref_34 – volume: 90 start-page: 2297 year: 2020 ident: ref_13 article-title: Performance analysis of piezoelectric energy harvesters with a tip mass and nonlinearities of geometric and damping under parametric and external excitations publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-020-01721-3 – ident: ref_21 doi: 10.1109/WPW54272.2022.9853996 – volume: 2021 start-page: 3832406 year: 2021 ident: ref_9 article-title: Analysis of dynamic characteristics of tristable piezoelectric energy harvester based on the modified model publication-title: Math. Probl. Eng. doi: 10.1155/2021/3832406 – volume: 33 start-page: 025016 year: 2024 ident: ref_23 article-title: Design and performance of a novel magnetically induced penta-stable piezoelectric energy harvester publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ad1c40 – volume: 20 start-page: 1141 year: 2006 ident: ref_35 article-title: Some asymptotic methods for strongly nonlinear equations publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979206033796 – ident: ref_10 doi: 10.3390/mi12091045 – volume: 108 start-page: 243902 year: 2016 ident: ref_2 article-title: Triple well potential with a uniform depth: Advantageous aspects in designing a multi-stable energy harvester publication-title: Appl. Phys. Lett. doi: 10.1063/1.4954169 – volume: 14 start-page: 040801 year: 2014 ident: ref_1 article-title: On the role of nonlinearities in vibratory energy harvesting: A critical review and discussion publication-title: Appl. Mech. Rev. doi: 10.1115/1.4026278 – volume: 40 start-page: 1777 year: 2019 ident: ref_6 article-title: Low frequency and broadband vibration energy harvester driven by mechanical impact based on layer separated piezoelectric beam publication-title: Appl. Math. Mech. doi: 10.1007/s10483-019-2542-5 – ident: ref_8 doi: 10.1038/s41598-020-59836-0 – ident: ref_18 doi: 10.1038/s41598-024-61355-1 – ident: ref_28 doi: 10.3390/s25041063 – volume: 34 start-page: 561 year: 2018 ident: ref_12 article-title: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations publication-title: Acta Mech. Sin. doi: 10.1007/s10409-017-0743-y – ident: ref_32 doi: 10.3390/sym15071376 – volume: 108 start-page: 97 year: 2022 ident: ref_36 article-title: dynamical analysis and chaos control of MEMS resonator by using the analogic circuit publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-07227-7 – volume: 30 start-page: 075033 year: 2024 ident: ref_20 article-title: Piezoelectric energy harvester for wind turbine blades based on bistable response of a composite beam in post-buckling publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ad5890 – ident: ref_30 doi: 10.3390/en12050915 – ident: ref_24 doi: 10.3390/en17194935 – volume: 97 start-page: 2371 year: 2019 ident: ref_7 article-title: Nonlinear magnetic force and dynamic characetristics of a tr-stable piezoelectric energy harvester publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05133-z – ident: ref_33 doi: 10.3390/sym12081335 – volume: 241 start-page: 01025 year: 2018 ident: ref_4 article-title: Bifurcation, elastic and hysteresis phenomena of broadband tri-stable energy harvesters publication-title: Matec Web Conf. doi: 10.1051/matecconf/201824101025 – volume: 9 start-page: 100724 year: 2024 ident: ref_26 article-title: A novel design strategy for cantilever-based MEMS piezoelectric vibration energy harvesters: FEM parametric analysis and modeling publication-title: e-Prime-Adv. Electr. Eng. Electron. Energy doi: 10.1016/j.prime.2024.100724 – volume: 87 start-page: 1541 year: 2017 ident: ref_3 article-title: Theoretical and experimental studies on the characteristics of a tri-stable piezoelectric harvester publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-017-1270-9 – volume: 377 start-page: 124507 year: 2025 ident: ref_27 article-title: Harnessing ultra-low-frequency vibration energy by a rolling-swing electromagnetic energy harvester with counter rotations publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.124507 – volume: 33 start-page: 5169 year: 2019 ident: ref_5 article-title: Modeling and analysis of a rotational piezoelectric energy harvester with limiters publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-019-1006-6 – volume: 10 start-page: 1397 year: 2020 ident: ref_14 article-title: Reproducing kernel Hilbert space embedding for adaptive estimation of nonlinearities in piezoelectric systems publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05812-2 – ident: ref_16 doi: 10.3390/s23135978 – ident: ref_17 doi: 10.3390/mi14051013 – ident: ref_31 doi: 10.3390/math8081364 – ident: ref_11 doi: 10.3390/mi12060595 – volume: 357 start-page: 122285 year: 2024 ident: ref_25 article-title: Optimal design of piezoelectric energy harvesters for bridge infrastructure effects of location and traffic intensity on energy production publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.122285 |
SSID | ssj0000331829 |
Score | 2.4037983 |
Snippet | To explore the nonlinear dynamics of a piezoelectric energy harvesting device, we consider the simultaneous parametric and external excitations. Based on... |
SourceID | proquest gale pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | 1502 |
SubjectTerms | Beam theory (structures) Bifurcations Convergence Damping Dynamic models Dynamical systems Electric power production Energy Energy harvesting Euler-Bernoulli beams Finite element analysis Force and energy Foundations Investigations Liapunov functions Magnetic fields Nonlinear dynamics Nonlinearity Parameters Piezoelectricity Pontryagin principle Routh-Hurwitz criterion Stability Vibration |
Title | Approximate Solution to Nonlinear Dynamics of a Piezoelectric Energy Harvesting Device Subject to Mechanical Impact and Winkler–Pasternak Foundation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40271674 https://www.proquest.com/docview/3188831508 https://www.proquest.com/docview/3194259367 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7R9AIHVN6hpVoEEiersdf27p5QSpMWpEYRoiI3a72erSLALokrIU78ByR-IL-kM34kqAeO1trrx-zMfDPr-QbgNWIcudz6IFVIAUqsWKWkDQrtON9gnXS8o3s-S88u4g-LZNEl3Nbdb5W9TWwMdVE5zpEf0drTWjJ7-dur7wF3jeLd1a6Fxg7skgnWegC7x5PZ_OMmyzKSdF1kWl5SSfH90TcbanKrSZdH6T3RbXt8C2U23ma6B_c7mCjGrVwfwB0sH8K9f8gDH8GfMdOB_1gS5ETRZ7dEXYlZy35hV-KkbTe_FpUXVsyX-LNq294snZg0RX-CewMx0UZ5KU6QrYYgU8K5GZ7pHLkumMUo3jfVlMKWhfhM4etXXP399XtuG5oF-0VsuzM9hovp5NO7s6DrshC4SJk6IJftHQG9nIAdKoI3LilCJaM8zXWYWpOTOVSFsUbyuPcOtc_z0KXoHWGPRD6BQVmV-AyE5rJ64wnUSR9riWYUuyTFODYYjYxNh_Cq_-LZVUumkVEQwnLJtnIZwhsWRsYaVq-ss12hAN2DuaqysZaaYFSk1BAOenllneqts-1CGcLLzTApDe-E2BKraz7HkK2iN6IpnrZy3jwQBdSKSzOe_3_yfbgbcSvgkQwidQCDenWNLwif1Pkh7Ojp6WG3FOnodBHeAFr96ig |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB1VZQEsEOXVtAUGAWJl1ZlxPDMLhCLSkNAm6qIV3Znx-A6KoHabuOKx4h8q8Rl8FF_CvX4kqAt2XY81ftz3Hd9zGHsBEAmXWh_ECrBAiRSZlLRBph31G6yTjk50J9N4dBy9P-mdrLHf7SwM_VbZ-sTKUWeFox75Luqe1pLQy9-cnQfEGkWnqy2FRq0W-_D9K5Zsi9fjAcr3pRDDvaO3o6BhFQicUKYMMER5h4lNiokMKAznrpd1lRRpnOpubE2K5q8yY42kde8daJ-mXReDdxhriSUCXf6NSGIkp8n04btlTyeU-JTC1CiouB7untquxiDea7o2bdy76v2v5LRVbBveZXeapJT3ay3aYGuQ32O3_4EqvM9-9Ql8_NsME1zgbS-NlwWf1lgbds4HNbn9gheeW344gx9FTbIzc3yvGjHkxEREsB75Jz4A8lEcHRd1gminCdAUMikNH1ezm9zmGf-AxfIXmP_5eXloK1AH-5mvuKAesONr-foP2Xpe5LDJuKYhfuMxhZQ-0hJMGLleDFFkQITGxh32vP3iyVkN3ZFgyUNySVZy6bBXJIyE7LmcW2ebsQS8ByFjJX0tNSZtQqkO22nllTSGvkhWatlhz5bLaKJ07mJzKC7oGoOeEd8It3hUy3n5QFi-KxoE2fr_5k_ZzdHR5CA5GE_3t9ktQSTEoQyE2mHr5fwCHmNmVKZPKnXk7ON16_9f9hYj3g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFL2qUgnBAvEmUGAQIFZWnBnHM7NAKJBEDaVRhKjozh2PZ1BEa5fEFY8V_4DEx_A5fAn3-pGgLth1bWv8uO87c88BeOpcxG1qfBBLhwVKJMmkhAkyZanfYKywtKO7P4t3D6I3h4PDLfjdzsLQscrWJ1aOOiss9ch7qHtKCUIv7_nmWMR8NHl5-jkgBinaaW3pNGoV2XPfvmD5tnoxHaGsn3E-Gb9_vRs0DAOB5VKXAYYrbzHJSTGpcRJDux1kfSl4GqeqHxudoiuQmTZa0HXvrVM-Tfs2dt5i3CXGCHT_25Kqog5svxrP5u_WHZ5Q4DtzXWOiCqHD3onpK7xz0PRw2ih4Phacy3CrSDe5BlebFJUNa526DlsuvwFX_gEuvAm_hgRF_nWB6a5jbWeNlQWb1cgbZslGNdX9ihWeGTZfuO9FTbmzsGxcDRwy4iUikI_8Ixs58lgM3Rj1hWilfUczyaRCbFpNcjKTZ-wDls7Hbvnnx8-5qSAezCe2YYa6BQcX8v9vQycvcncXmKKRfu0xoRQ-UsLpMLKD2EWRdjzUJu7Ck_aPJ6c1kEeCBRDJJdnIpQvPSRgJWXe5NNY0Qwr4DMLJSoZKKEzhuJRd2GnllTRmv0o2StqFx-vLaLC0C2NyV5zRPRr9JH4RLnGnlvP6hbCYlzQWcu__iz-CS6j7ydvpbO8-XObESByKgMsd6JTLM_cA06QyfdjoI4OjizaBvyDoKXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Solution+to+Nonlinear+Dynamics+of+a+Piezoelectric+Energy+Harvesting+Device+Subject+to+Mechanical+Impact+and+Winkler-Pasternak+Foundation&rft.jtitle=Materials&rft.au=Marinca%2C+Vasile&rft.au=Herisanu%2C+Nicolae&rft.au=Marinca%2C+Bogdan&rft.date=2025-03-27&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=18&rft.issue=7&rft_id=info:doi/10.3390%2Fma18071502&rft_id=info%3Apmid%2F40271674&rft.externalDocID=40271674 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |