Cryogenic thermal conductivity of carbon fiber reinforced polymer composite laminates
•Evolutionary trend of cryogenic thermal conductivity of CFRP laminate is revealed.•Lay-up angle shows no effect on out-of-plane thermal conductivity.•A theoretical model is developed to evaluate the effect of stacking sequence. Carbon fiber reinforced polymer (CFRP) composites with excellent mechan...
Saved in:
Published in | International journal of heat and mass transfer Vol. 226; p. 125521 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Evolutionary trend of cryogenic thermal conductivity of CFRP laminate is revealed.•Lay-up angle shows no effect on out-of-plane thermal conductivity.•A theoretical model is developed to evaluate the effect of stacking sequence.
Carbon fiber reinforced polymer (CFRP) composites with excellent mechanical properties and low thermal conductivity are promising materials for cryogenic facility support structures. However, the temperature dependence and stacking sequence dependence of the laminates’ thermal conductivities challenge their thermo-mechanical design. Previous work dealing with the cryogenic thermal conductivity of laminates was relatively inadequate, and the effect of stacking sequence has not been sufficiently clarified. Herein, the cryogenic thermal conductivity of CFRP composite was investigated, and a theoretical model for the out-of-plane thermal conductivity of laminate was developed. To this end, the thermal conductivities of epoxy resin and laminates were measured at temperatures from 20 K to 293 K. The cryogenic thermal conductivity of carbon fiber was then extrapolated. Subsequently, a theoretical model was developed based on the thermal-electrical analogy method to evaluate the effect of stacking sequence. The obtained model was then validated by numerical analysis and experimental work. Lastly, the effects of lay-up angles and component properties on out-of-plane conductivity were examined. The test results suggested longitudinal thermal conductivity of composites exhibiting significant temperature dependence, with a decreasing trend recorded from 6.317 Wm−1K−1 to 0.355 Wm−1K−1 and transverse thermal conductivity decline from 0.626 Wm−1K−1 to 0.156 Wm−1K−1. The theoretical analysis indicated that the stacking sequence could reduce the out-of-face thermal conductivity by up to approximately 6.5 %, while the lay-up angle did not show any influence. In sum, novel insights into the cryogenic thermal conductivity of CFRP composites were provided, with guidance for the design and analysis of CFRP composites in cryogenic applications.
[Display omitted] |
---|---|
AbstractList | •Evolutionary trend of cryogenic thermal conductivity of CFRP laminate is revealed.•Lay-up angle shows no effect on out-of-plane thermal conductivity.•A theoretical model is developed to evaluate the effect of stacking sequence.
Carbon fiber reinforced polymer (CFRP) composites with excellent mechanical properties and low thermal conductivity are promising materials for cryogenic facility support structures. However, the temperature dependence and stacking sequence dependence of the laminates’ thermal conductivities challenge their thermo-mechanical design. Previous work dealing with the cryogenic thermal conductivity of laminates was relatively inadequate, and the effect of stacking sequence has not been sufficiently clarified. Herein, the cryogenic thermal conductivity of CFRP composite was investigated, and a theoretical model for the out-of-plane thermal conductivity of laminate was developed. To this end, the thermal conductivities of epoxy resin and laminates were measured at temperatures from 20 K to 293 K. The cryogenic thermal conductivity of carbon fiber was then extrapolated. Subsequently, a theoretical model was developed based on the thermal-electrical analogy method to evaluate the effect of stacking sequence. The obtained model was then validated by numerical analysis and experimental work. Lastly, the effects of lay-up angles and component properties on out-of-plane conductivity were examined. The test results suggested longitudinal thermal conductivity of composites exhibiting significant temperature dependence, with a decreasing trend recorded from 6.317 Wm−1K−1 to 0.355 Wm−1K−1 and transverse thermal conductivity decline from 0.626 Wm−1K−1 to 0.156 Wm−1K−1. The theoretical analysis indicated that the stacking sequence could reduce the out-of-face thermal conductivity by up to approximately 6.5 %, while the lay-up angle did not show any influence. In sum, novel insights into the cryogenic thermal conductivity of CFRP composites were provided, with guidance for the design and analysis of CFRP composites in cryogenic applications.
[Display omitted] |
ArticleNumber | 125521 |
Author | Zhang, Zhanzhi Zhao, Zeang Wu, Shengbao Li, Yuanchen Lei, Hongshuai |
Author_xml | – sequence: 1 givenname: Yuanchen surname: Li fullname: Li, Yuanchen organization: Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, PR China – sequence: 2 givenname: Zhanzhi surname: Zhang fullname: Zhang, Zhanzhi organization: Research and Development Centre, China Academy of Launch Vehicle Technology, Beijing 100076, PR China – sequence: 3 givenname: Shengbao surname: Wu fullname: Wu, Shengbao organization: Research and Development Centre, China Academy of Launch Vehicle Technology, Beijing 100076, PR China – sequence: 4 givenname: Zeang orcidid: 0000-0002-2308-9832 surname: Zhao fullname: Zhao, Zeang email: zza@pku.edu.cn organization: Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, PR China – sequence: 5 givenname: Hongshuai surname: Lei fullname: Lei, Hongshuai email: leihongshuai@pku.edu.cn organization: Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, PR China |
BookMark | eNqNkLtOwzAUhi1UJNrCO3hkSbBzceINVAEFVWKhs-XYx9RRYle2qZS3J1XZWJj-c5E-nfOt0MJ5BwjdU5JTQtlDn9v-ADKNMsYUpIsGQl6QosppUdcFvUJL2jY8K2jLF2hJCG0yXlJyg1Yx9ueWVGyJ9psw-S9wVuF0gDDKASvv9LdK9mTThL3BSobOO2xsBwEHsM74oEDjox-mcR4pPx59tAnwIEfrZIJ4i66NHCLc_eYa7V-ePzfbbPfx-rZ52mWqaHjKaFcw0IzPWdagO855x0w91yXTHSsr3jSqqivFpKRVpblujJHa1C1pW0Kaco0eL1wVfIwBjDgGO8owCUrEWZPoxV9N4qxJXDTNiPcLAuY7T3beRmXBzQ_aACoJ7e3_YT8oSIGR |
Cites_doi | 10.1021/acsami.6b02529 10.1016/j.cryogenics.2017.10.010 10.1016/j.ijheatmasstransfer.2020.120883 10.1016/j.compositesa.2017.04.018 10.1063/1.1728579 10.1016/j.compstruct.2021.113870 10.1016/j.coco.2020.03.011 10.1016/j.compositesb.2016.10.067 10.1016/j.compscitech.2006.05.006 10.1016/j.compositesa.2020.106226 10.1016/j.ijheatmasstransfer.2019.118620 10.1063/1.4882300 10.1016/j.cryogenics.2015.10.008 10.1016/j.compstruct.2016.07.071 10.1016/j.ijheatmasstransfer.2012.06.059 10.1016/j.ast.2022.107724 10.1016/j.compstruct.2005.04.002 10.1007/s00707-009-0264-2 10.1016/j.progpolymsci.2016.05.001 10.1007/BF00549304 10.2514/3.812 10.1177/002199836700100206 10.1007/s10443-017-9664-y 10.1016/j.ijheatmasstransfer.2015.02.003 10.1016/j.matdes.2020.109028 10.1016/j.coco.2022.101278 10.1016/j.applthermaleng.2015.09.098 10.1016/j.icheatmasstransfer.2023.106992 10.1177/0021998307076492 10.1016/0266-3538(95)00036-4 10.1016/j.ijheatmasstransfer.2019.118917 10.1016/j.cryogenics.2011.07.002 10.1016/j.compstruct.2019.111756 10.1002/cplu.202000318 10.1016/j.compscitech.2023.110357 10.1016/j.cryogenics.2008.06.002 10.1016/j.compscitech.2021.108850 10.3390/ma10010001 10.1177/002199839202600109 10.1016/j.ijheatmasstransfer.2014.05.047 10.1016/j.ijheatmasstransfer.2017.06.116 10.1016/j.progpolymsci.2016.03.001 10.1016/j.coco.2017.09.002 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijheatmasstransfer.2024.125521 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2024_125521 S0017931024003521 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAXKI AAYXX AFJKZ CITATION |
ID | FETCH-LOGICAL-c279t-1b26ed691b235edb999b6f535e36db634977c454c6aa144d9d7ffadf580880073 |
IEDL.DBID | AIKHN |
ISSN | 0017-9310 |
IngestDate | Thu Sep 26 19:31:21 EDT 2024 Sat Apr 27 15:44:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal conductivity Cryogenic environments Theoretical model Polymer composite |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c279t-1b26ed691b235edb999b6f535e36db634977c454c6aa144d9d7ffadf580880073 |
ORCID | 0000-0002-2308-9832 |
ParticipantIDs | crossref_primary_10_1016_j_ijheatmasstransfer_2024_125521 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2024_125521 |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Alzina, Toussaint, Béakou, Skoczen (bib0014) 2006; 74 Hashin, Shtrikman (bib0042) 1962; 33 Jiang, Yi, Cheng, Kong, Li, Wang, Liu, Takagi, Wang, Yang (bib0048) 2017; 6 Wang, Wu, Weng, Ge, Jiang, Huang, Mulvihill, Chen, Guo, Jazzar, He, Zhang, Xu (bib0001) 2023; 33 Zhang, Chen, Ren, Wu, Zhao (bib0019) 2011; 51 Chen, Li, Yuan, Gao, Cui, Li, Liu, Wang, Peng, Wu (bib0012) 2021; 13 Hohe, Neubrand, Fliegener, Beckmann, Schober, Weiss, Appel (bib0010) 2021; 141 Springer, Tsai (bib0044) 1967; 1 Tsai (bib0035) 1980; 10–65 Pilling, Yates, Black, Tattersall (bib0030) 1979; 14 Liang, Liu, Wang, Zhang, Wu, Qing, Wang (bib0018) 2022; 127 Rajainmaki, Foussat, Rodriguez, Evans, Fanthome, Losasso, Diaz (bib0016) 2014; 60 Fang, Li, Wang, Li, Wang, Gu, Liu, Tian, Zhang (bib0026) 2018; 25 Gori, Corasaniti (bib0011) 2014; 77 Rolfes, Hammerschmidt (bib0049) 1995 Yu, Heider, Advani (bib0037) 2015; 85 Sápi, Butler (bib0009) 2020; 111 Scott, Beck (bib0036) 1992; 26 Staab (bib0050) 1999 Burger, Laachachi, Ferriol, Lutz, Toniazzo, Ruch (bib0024) 2016; 61 Inkrataite, Zabiliute-Karaliune, Aglinskaite, Vitta, Kristinaityte, Marsalka, Skaudzius (bib0005) 2020; 85 Tian, Cole (bib0027) 2012; 55 Ju, Pickle, Morgan, Reddy (bib0022) 2007; 41 Tuttle, Canavan, Jahromi (bib0023) 2017; 88 McCartney, Kelly (bib0034) 2007; 67 Dong, Liu, Pan, Gu, Sun (bib0028) 2016; 154 Cugnet, Hauviller, Kuijper, Parma, Vandoni, Hadron, Project (bib0015) 2002 Wu, Guo, Hu, Li, Fu, Fu (bib0017) 2022; 35 Li, Chen, Yuan, Gao, Cui, Wang, Liu, Liu, Wu (bib0038) 2020; 195 Farmer, Covert (bib0033) 1996; 10 Yan, Wen, Xu (bib0040) 2016; 94 Qian, Pang, Zhou, Yang, Lin, Hui (bib0047) 2017; 116 Runyan, Jones (bib0031) 2008; 48 Muliana, Kim (bib0025) 2010; 212 Fang, Bai, Wong (bib0004) 2017; 100 Jung, Lee, Ryu, Ryu (bib0045) 2019; 144 Chen, Ginzburg, Yang, Yang, Liu, Huang, Du, Chen (bib0002) 2016; 59 Wan, Li, Yao, Zeng, Zhu, Sun (bib0003) 2020; 19 Ngo, Prabhakar Vattikuti, Byon (bib0043) 2017; 114 Dai, Huang (bib0046) 2020; 147 Fesmire (bib0013) 2016; 74 Zhang, Wu, Xiao, Du, Tang (bib0029) 2021; 267 Wang, Dai, Zhang, Gao, Zhao (bib0039) 2016; 9 Jiang, Liu, Yan, Wu (bib0021) 2024; 245 Ye, Wang, Li, Saafi, Jia, Huang, Ye (bib0041) 2020; 235 Abbas, Park (bib0007) 2021; 169 Battaglia, Saboul, Pailhes, Saci, Kusiak, Fudym (bib0032) 2014; 115 Meyns, Perálvarez, Heuer-Jungemann, Hertog, Ibáñez, Nafria, Genç, Arbiol, Kovalenko, Carreras, Cabot, Kanaras (bib0006) 2016; 8 Hohe, Schober, Fliegener, Weiss, Appel (bib0020) 2021; 212 Rohani, Park (bib0008) 2023; 147 Wu (10.1016/j.ijheatmasstransfer.2024.125521_bib0017) 2022; 35 Ju (10.1016/j.ijheatmasstransfer.2024.125521_bib0022) 2007; 41 Wan (10.1016/j.ijheatmasstransfer.2024.125521_bib0003) 2020; 19 Sápi (10.1016/j.ijheatmasstransfer.2024.125521_bib0009) 2020; 111 Chen (10.1016/j.ijheatmasstransfer.2024.125521_bib0012) 2021; 13 Alzina (10.1016/j.ijheatmasstransfer.2024.125521_bib0014) 2006; 74 Hashin (10.1016/j.ijheatmasstransfer.2024.125521_bib0042) 1962; 33 Wang (10.1016/j.ijheatmasstransfer.2024.125521_bib0039) 2016; 9 Qian (10.1016/j.ijheatmasstransfer.2024.125521_bib0047) 2017; 116 Zhang (10.1016/j.ijheatmasstransfer.2024.125521_bib0019) 2011; 51 Staab (10.1016/j.ijheatmasstransfer.2024.125521_bib0050) 1999 Ye (10.1016/j.ijheatmasstransfer.2024.125521_bib0041) 2020; 235 Rohani (10.1016/j.ijheatmasstransfer.2024.125521_bib0008) 2023; 147 Liang (10.1016/j.ijheatmasstransfer.2024.125521_bib0018) 2022; 127 Gori (10.1016/j.ijheatmasstransfer.2024.125521_bib0011) 2014; 77 Rajainmaki (10.1016/j.ijheatmasstransfer.2024.125521_bib0016) 2014; 60 Yu (10.1016/j.ijheatmasstransfer.2024.125521_bib0037) 2015; 85 Springer (10.1016/j.ijheatmasstransfer.2024.125521_bib0044) 1967; 1 Dai (10.1016/j.ijheatmasstransfer.2024.125521_bib0046) 2020; 147 Tian (10.1016/j.ijheatmasstransfer.2024.125521_bib0027) 2012; 55 Battaglia (10.1016/j.ijheatmasstransfer.2024.125521_bib0032) 2014; 115 Jiang (10.1016/j.ijheatmasstransfer.2024.125521_bib0021) 2024; 245 Hohe (10.1016/j.ijheatmasstransfer.2024.125521_bib0010) 2021; 141 Zhang (10.1016/j.ijheatmasstransfer.2024.125521_bib0029) 2021; 267 Hohe (10.1016/j.ijheatmasstransfer.2024.125521_bib0020) 2021; 212 Muliana (10.1016/j.ijheatmasstransfer.2024.125521_bib0025) 2010; 212 Jung (10.1016/j.ijheatmasstransfer.2024.125521_bib0045) 2019; 144 Farmer (10.1016/j.ijheatmasstransfer.2024.125521_bib0033) 1996; 10 Tsai (10.1016/j.ijheatmasstransfer.2024.125521_bib0035) 1980; 10–65 Inkrataite (10.1016/j.ijheatmasstransfer.2024.125521_bib0005) 2020; 85 Fang (10.1016/j.ijheatmasstransfer.2024.125521_bib0026) 2018; 25 Rolfes (10.1016/j.ijheatmasstransfer.2024.125521_bib0049) 1995 Wang (10.1016/j.ijheatmasstransfer.2024.125521_bib0001) 2023; 33 Pilling (10.1016/j.ijheatmasstransfer.2024.125521_bib0030) 1979; 14 Chen (10.1016/j.ijheatmasstransfer.2024.125521_bib0002) 2016; 59 Abbas (10.1016/j.ijheatmasstransfer.2024.125521_bib0007) 2021; 169 Li (10.1016/j.ijheatmasstransfer.2024.125521_bib0038) 2020; 195 Yan (10.1016/j.ijheatmasstransfer.2024.125521_bib0040) 2016; 94 Burger (10.1016/j.ijheatmasstransfer.2024.125521_bib0024) 2016; 61 Scott (10.1016/j.ijheatmasstransfer.2024.125521_bib0036) 1992; 26 McCartney (10.1016/j.ijheatmasstransfer.2024.125521_bib0034) 2007; 67 Ngo (10.1016/j.ijheatmasstransfer.2024.125521_bib0043) 2017; 114 Dong (10.1016/j.ijheatmasstransfer.2024.125521_bib0028) 2016; 154 Runyan (10.1016/j.ijheatmasstransfer.2024.125521_bib0031) 2008; 48 Meyns (10.1016/j.ijheatmasstransfer.2024.125521_bib0006) 2016; 8 Fesmire (10.1016/j.ijheatmasstransfer.2024.125521_bib0013) 2016; 74 Tuttle (10.1016/j.ijheatmasstransfer.2024.125521_bib0023) 2017; 88 Jiang (10.1016/j.ijheatmasstransfer.2024.125521_bib0048) 2017; 6 Fang (10.1016/j.ijheatmasstransfer.2024.125521_bib0004) 2017; 100 Cugnet (10.1016/j.ijheatmasstransfer.2024.125521_bib0015) 2002 |
References_xml | – volume: 127 year: 2022 ident: bib0018 article-title: FBG-based strain monitoring and temperature compensation for composite tank publication-title: Aerosp. Sci. Technol. contributor: fullname: Wang – volume: 25 start-page: 1255 year: 2018 end-page: 1268 ident: bib0026 article-title: Geometrical effect on thermal conductivity of unidirectional fiber-reinforced polymer composite along different in-plane orientations publication-title: Appl. Compos. Mater. contributor: fullname: Zhang – volume: 195 year: 2020 ident: bib0038 article-title: Influence of flexible molecular structure on the cryogenic mechanical properties of epoxy matrix and carbon fiber/epoxy composite laminate publication-title: Mater. Des. contributor: fullname: Wu – volume: 267 year: 2021 ident: bib0029 article-title: Experimental study of the anisotropic thermal conductivity of 2D carbon-fiber/epoxy woven composites publication-title: Compos. Struct. contributor: fullname: Tang – volume: 147 year: 2020 ident: bib0046 article-title: Nonlinear thermal conductivity of periodic composites publication-title: Int. J. Heat Mass Transf. contributor: fullname: Huang – volume: 10–65 start-page: 329 year: 1980 end-page: 333 ident: bib0035 publication-title: Introduction to composite materials contributor: fullname: Tsai – volume: 144 year: 2019 ident: bib0045 article-title: Investigation of effective thermoelectric properties of composite with interfacial resistance using micromechanics-based homogenisation publication-title: Int. J. Heat Mass Transf. contributor: fullname: Ryu – volume: 77 start-page: 653 year: 2014 end-page: 661 ident: bib0011 article-title: Effective thermal conductivity of composites publication-title: Int. J. Heat Mass Transf. contributor: fullname: Corasaniti – volume: 48 start-page: 448 year: 2008 end-page: 454 ident: bib0031 article-title: Thermal conductivity of thermally-isolating polymeric and composite structural support materials between 0.3 and 4K publication-title: Cryogenics (Guildf) contributor: fullname: Jones – volume: 61 start-page: 1 year: 2016 end-page: 28 ident: bib0024 article-title: Review of thermal conductivity in composites: mechanisms, parameters and theory publication-title: Prog. Polym. Sci. contributor: fullname: Ruch – volume: 169 year: 2021 ident: bib0007 article-title: Frosting and defrosting assessment of carbon fiber reinforced polymer composite with surface wettability and resistive heating characteristics publication-title: Int. J. Heat Mass Transf. contributor: fullname: Park – volume: 8 start-page: 19579 year: 2016 end-page: 19586 ident: bib0006 article-title: Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs publication-title: ACS Appl. Mater. Interfaces. contributor: fullname: Kanaras – volume: 116 start-page: 291 year: 2017 end-page: 297 ident: bib0047 article-title: Theoretical model and finite element simulation on the effective thermal conductivity of particulate composite materials publication-title: Compos. Part B Eng. contributor: fullname: Hui – volume: 6 start-page: 52 year: 2017 end-page: 58 ident: bib0048 article-title: Modified thermal resistance networks model for transverse thermal conductivity of unidirectional fiber composite publication-title: Compos. Commun. contributor: fullname: Yang – volume: 85 start-page: 897 year: 2015 end-page: 903 ident: bib0037 article-title: Role of in-plane stacking sequence on transverse effective thermal conductivity of unidirectional composite laminates publication-title: Int. J. Heat Mass Transf. contributor: fullname: Advani – volume: 100 start-page: 71 year: 2017 end-page: 80 ident: bib0004 article-title: Thermal, mechanical and dielectric properties of flexible BN foam and BN Nanosheets reinforced polymer composites for electronic packaging application publication-title: Compos. Part A Appl. Sci. Manuf. contributor: fullname: Wong – volume: 59 start-page: 41 year: 2016 end-page: 85 ident: bib0002 article-title: Thermal conductivity of polymer-based composites: fundamentals and applications publication-title: Prog. Polym. Sci contributor: fullname: Chen – volume: 55 start-page: 6530 year: 2012 end-page: 6537 ident: bib0027 article-title: Anisotropic thermal conductivity measurement of carbon-fiber/epoxy composite materials publication-title: Int. J. Heat Mass Transf. contributor: fullname: Cole – volume: 9 start-page: 1 year: 2016 end-page: 14 ident: bib0039 article-title: Micromechanical modeling of fiber-reinforced composites with statistically equivalent random fiber distribution publication-title: Materials (Basel) contributor: fullname: Zhao – volume: 35 year: 2022 ident: bib0017 article-title: Investigation of polyurethane toughened epoxy resins for composite cryotank applications. Part I: phase separation phenomenon and cryogenic mechanical behaviors publication-title: Compos. Commun. contributor: fullname: Fu – volume: 147 year: 2023 ident: bib0008 article-title: The resistive heating, defrosting, and thermal performance of CFRPs as a heat transfer unit in a frozen environment publication-title: Int. Commun. Heat Mass Transf. contributor: fullname: Park – volume: 10 start-page: 467 year: 1996 end-page: 475 ident: bib0033 article-title: Thermal conductivity of a thermosetting advanced composite during its cure publication-title: J. Thermophys. Heat Transf. contributor: fullname: Covert – volume: 212 year: 2021 ident: bib0020 article-title: Effect of cryogenic environments on failure of carbon fiber reinforced composites publication-title: Compos. Sci. Technol. contributor: fullname: Appel – volume: 114 start-page: 727 year: 2017 end-page: 734 ident: bib0043 article-title: A modified Hashin-Shtrikman model for predicting the thermal conductivity of polymer composites reinforced with randomly distributed hybrid fillers publication-title: Int. J. Heat Mass Transf. contributor: fullname: Byon – volume: 94 start-page: 827 year: 2016 end-page: 835 ident: bib0040 article-title: A Monte Carlo simulation and effective thermal conductivity calculation for unidirectional fiber reinforced CMC publication-title: Appl. Therm. Eng. contributor: fullname: Xu – volume: 19 start-page: 154 year: 2020 end-page: 167 ident: bib0003 article-title: Recent advances in polymer-based electronic packaging materials publication-title: Compos. Commun. contributor: fullname: Sun – start-page: 191 year: 1999 end-page: 282 ident: bib0050 article-title: 6 - Laminate analysis publication-title: Butterworth-Heinemann contributor: fullname: Staab – volume: 67 start-page: 646 year: 2007 end-page: 661 ident: bib0034 article-title: Effective thermal and elastic properties of [+θ/-θ]s laminates publication-title: Compos. Sci. Technol. contributor: fullname: Kelly – volume: 13 start-page: 1 year: 2021 end-page: 29 ident: bib0012 article-title: A review of the polymer for cryogenic application: methods, mechanisms and perspectives publication-title: Polymers (Basel) contributor: fullname: Wu – volume: 41 start-page: 2545 year: 2007 end-page: 2568 ident: bib0022 article-title: An initial and progressive failure analysis for cryogenic composite fuel tank design publication-title: J. Compos. Mater. contributor: fullname: Reddy – volume: 33 start-page: 3125 year: 1962 end-page: 3131 ident: bib0042 article-title: A Variational approach to the theory of the effective magnetic permeability of multiphase materials publication-title: J. Appl. Phys. contributor: fullname: Shtrikman – start-page: 45 year: 1995 end-page: 54 ident: bib0049 article-title: Transverse thermal conductivity of CFRP laminates: a numerical and experimental validation of approximation formulae publication-title: Compos. Sci. Technol contributor: fullname: Hammerschmidt – volume: 74 start-page: 154 year: 2016 end-page: 165 ident: bib0013 article-title: Layered composite thermal insulation system for nonvacuum cryogenic applications publication-title: Cryogenics (Guildf) contributor: fullname: Fesmire – volume: 85 start-page: 1504 year: 2020 end-page: 1510 ident: bib0005 article-title: Study of YAG : ce and polymer composite properties for application in LED devices publication-title: Chempluschem contributor: fullname: Skaudzius – volume: 235 year: 2020 ident: bib0041 article-title: Failure analysis of fiber-reinforced composites subjected to coupled thermo-mechanical loading publication-title: Compos. Struct. contributor: fullname: Ye – volume: 26 start-page: 132 year: 1992 end-page: 149 ident: bib0036 article-title: Estimation of thermal properties in Epoxy matrix/carbon fiber composite materials publication-title: J. Compos. Mater. contributor: fullname: Beck – volume: 33 start-page: 1 year: 2023 end-page: 38 ident: bib0001 article-title: A roadmap review of thermally conductive polymer composites: critical factors, progress, and prospects publication-title: Adv. Funct. Mater. contributor: fullname: Xu – volume: 51 start-page: 534 year: 2011 end-page: 540 ident: bib0019 article-title: Thermal conductivity measurement of the epoxies and composite material for low temperature superconducting magnet design publication-title: Cryogenics (Guildf) contributor: fullname: Zhao – volume: 115 year: 2014 ident: bib0032 article-title: Carbon epoxy composites thermal conductivity at 77K and 300K publication-title: J. Appl. Phys. contributor: fullname: Fudym – volume: 74 start-page: 175 year: 2006 end-page: 185 ident: bib0014 article-title: Multiscale modelling of thermal conductivity in composite materials for cryogenic structures publication-title: Compos. Struct. contributor: fullname: Skoczen – volume: 1 start-page: 166 year: 1967 end-page: 173 ident: bib0044 article-title: Thermal conductivities of unidirectional materials publication-title: J. Compos. Mater. contributor: fullname: Tsai – start-page: 1 year: 2002 end-page: 4 ident: bib0015 article-title: Thermal conductivity of structural glass/fibre epoxy composite as a function of fibre orientation publication-title: Eur. Organ. Nucl. Res. Eur. Lab. Part. Phys. contributor: fullname: Project – volume: 141 year: 2021 ident: bib0010 article-title: Performance of fiber reinforced materials under cryogenic conditions—A review publication-title: Compos. Part A Appl. Sci. Manuf. contributor: fullname: Appel – volume: 245 year: 2024 ident: bib0021 article-title: Room-to-low temperature thermo-mechanical behavior and corresponding constitutive model of liquid oxygen compatible epoxy composites publication-title: Compos. Sci. Technol. contributor: fullname: Wu – volume: 88 start-page: 36 year: 2017 end-page: 43 ident: bib0023 article-title: Cryogenic thermal conductivity measurements on candidate materials for space missions publication-title: Cryogenics (Guildf) contributor: fullname: Jahromi – volume: 212 start-page: 319 year: 2010 end-page: 347 ident: bib0025 article-title: A two-scale homogenization framework for nonlinear effective thermal conductivity of laminated composites publication-title: Acta Mech contributor: fullname: Kim – volume: 111 year: 2020 ident: bib0009 article-title: Properties of cryogenic and low temperature composite materials – A review publication-title: Cryogenics (Guildf) contributor: fullname: Butler – volume: 14 start-page: 1326 year: 1979 end-page: 1338 ident: bib0030 article-title: The thermal conductivity of carbon fibre-reinforced composites publication-title: J. Mater. Sci. contributor: fullname: Tattersall – volume: 60 start-page: 92 year: 2014 end-page: 99 ident: bib0016 article-title: The ITER pre-compression rings - A first in cryogenic composite technology publication-title: AIP Conf. Proc. 1574 contributor: fullname: Diaz – volume: 154 start-page: 319 year: 2016 end-page: 333 ident: bib0028 article-title: Experimental and numerical investigation on the thermal conduction properties of 2.5D angle-interlock woven composites publication-title: Compos. Struct. contributor: fullname: Sun – volume: 8 start-page: 19579 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0006 article-title: Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.6b02529 contributor: fullname: Meyns – volume: 88 start-page: 36 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0023 article-title: Cryogenic thermal conductivity measurements on candidate materials for space missions publication-title: Cryogenics (Guildf) doi: 10.1016/j.cryogenics.2017.10.010 contributor: fullname: Tuttle – volume: 169 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0007 article-title: Frosting and defrosting assessment of carbon fiber reinforced polymer composite with surface wettability and resistive heating characteristics publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.120883 contributor: fullname: Abbas – volume: 100 start-page: 71 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0004 article-title: Thermal, mechanical and dielectric properties of flexible BN foam and BN Nanosheets reinforced polymer composites for electronic packaging application publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2017.04.018 contributor: fullname: Fang – volume: 33 start-page: 3125 year: 1962 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0042 article-title: A Variational approach to the theory of the effective magnetic permeability of multiphase materials publication-title: J. Appl. Phys. doi: 10.1063/1.1728579 contributor: fullname: Hashin – volume: 267 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0029 article-title: Experimental study of the anisotropic thermal conductivity of 2D carbon-fiber/epoxy woven composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.113870 contributor: fullname: Zhang – volume: 19 start-page: 154 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0003 article-title: Recent advances in polymer-based electronic packaging materials publication-title: Compos. Commun. doi: 10.1016/j.coco.2020.03.011 contributor: fullname: Wan – volume: 116 start-page: 291 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0047 article-title: Theoretical model and finite element simulation on the effective thermal conductivity of particulate composite materials publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2016.10.067 contributor: fullname: Qian – volume: 67 start-page: 646 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0034 article-title: Effective thermal and elastic properties of [+θ/-θ]s laminates publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2006.05.006 contributor: fullname: McCartney – volume: 141 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0010 article-title: Performance of fiber reinforced materials under cryogenic conditions—A review publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2020.106226 contributor: fullname: Hohe – volume: 144 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0045 article-title: Investigation of effective thermoelectric properties of composite with interfacial resistance using micromechanics-based homogenisation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118620 contributor: fullname: Jung – volume: 115 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0032 article-title: Carbon epoxy composites thermal conductivity at 77K and 300K publication-title: J. Appl. Phys. doi: 10.1063/1.4882300 contributor: fullname: Battaglia – volume: 10–65 start-page: 329 year: 1980 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0035 contributor: fullname: Tsai – volume: 74 start-page: 154 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0013 article-title: Layered composite thermal insulation system for nonvacuum cryogenic applications publication-title: Cryogenics (Guildf) doi: 10.1016/j.cryogenics.2015.10.008 contributor: fullname: Fesmire – volume: 60 start-page: 92 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0016 article-title: The ITER pre-compression rings - A first in cryogenic composite technology publication-title: AIP Conf. Proc. 1574 contributor: fullname: Rajainmaki – volume: 154 start-page: 319 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0028 article-title: Experimental and numerical investigation on the thermal conduction properties of 2.5D angle-interlock woven composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2016.07.071 contributor: fullname: Dong – volume: 55 start-page: 6530 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0027 article-title: Anisotropic thermal conductivity measurement of carbon-fiber/epoxy composite materials publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.06.059 contributor: fullname: Tian – volume: 127 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0018 article-title: FBG-based strain monitoring and temperature compensation for composite tank publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2022.107724 contributor: fullname: Liang – volume: 74 start-page: 175 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0014 article-title: Multiscale modelling of thermal conductivity in composite materials for cryogenic structures publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2005.04.002 contributor: fullname: Alzina – volume: 212 start-page: 319 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0025 article-title: A two-scale homogenization framework for nonlinear effective thermal conductivity of laminated composites publication-title: Acta Mech doi: 10.1007/s00707-009-0264-2 contributor: fullname: Muliana – volume: 61 start-page: 1 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0024 article-title: Review of thermal conductivity in composites: mechanisms, parameters and theory publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2016.05.001 contributor: fullname: Burger – volume: 14 start-page: 1326 year: 1979 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0030 article-title: The thermal conductivity of carbon fibre-reinforced composites publication-title: J. Mater. Sci. doi: 10.1007/BF00549304 contributor: fullname: Pilling – volume: 10 start-page: 467 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0033 article-title: Thermal conductivity of a thermosetting advanced composite during its cure publication-title: J. Thermophys. Heat Transf. doi: 10.2514/3.812 contributor: fullname: Farmer – volume: 111 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0009 article-title: Properties of cryogenic and low temperature composite materials – A review publication-title: Cryogenics (Guildf) contributor: fullname: Sápi – volume: 1 start-page: 166 year: 1967 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0044 article-title: Thermal conductivities of unidirectional materials publication-title: J. Compos. Mater. doi: 10.1177/002199836700100206 contributor: fullname: Springer – volume: 25 start-page: 1255 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0026 article-title: Geometrical effect on thermal conductivity of unidirectional fiber-reinforced polymer composite along different in-plane orientations publication-title: Appl. Compos. Mater. doi: 10.1007/s10443-017-9664-y contributor: fullname: Fang – volume: 85 start-page: 897 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0037 article-title: Role of in-plane stacking sequence on transverse effective thermal conductivity of unidirectional composite laminates publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.02.003 contributor: fullname: Yu – volume: 195 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0038 article-title: Influence of flexible molecular structure on the cryogenic mechanical properties of epoxy matrix and carbon fiber/epoxy composite laminate publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109028 contributor: fullname: Li – volume: 35 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0017 article-title: Investigation of polyurethane toughened epoxy resins for composite cryotank applications. Part I: phase separation phenomenon and cryogenic mechanical behaviors publication-title: Compos. Commun. doi: 10.1016/j.coco.2022.101278 contributor: fullname: Wu – volume: 94 start-page: 827 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0040 article-title: A Monte Carlo simulation and effective thermal conductivity calculation for unidirectional fiber reinforced CMC publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.09.098 contributor: fullname: Yan – volume: 147 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0008 article-title: The resistive heating, defrosting, and thermal performance of CFRPs as a heat transfer unit in a frozen environment publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2023.106992 contributor: fullname: Rohani – volume: 41 start-page: 2545 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0022 article-title: An initial and progressive failure analysis for cryogenic composite fuel tank design publication-title: J. Compos. Mater. doi: 10.1177/0021998307076492 contributor: fullname: Ju – volume: 13 start-page: 1 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0012 article-title: A review of the polymer for cryogenic application: methods, mechanisms and perspectives publication-title: Polymers (Basel) contributor: fullname: Chen – start-page: 45 year: 1995 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0049 article-title: Transverse thermal conductivity of CFRP laminates: a numerical and experimental validation of approximation formulae publication-title: Compos. Sci. Technol doi: 10.1016/0266-3538(95)00036-4 contributor: fullname: Rolfes – volume: 147 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0046 article-title: Nonlinear thermal conductivity of periodic composites publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118917 contributor: fullname: Dai – volume: 51 start-page: 534 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0019 article-title: Thermal conductivity measurement of the epoxies and composite material for low temperature superconducting magnet design publication-title: Cryogenics (Guildf) doi: 10.1016/j.cryogenics.2011.07.002 contributor: fullname: Zhang – volume: 33 start-page: 1 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0001 article-title: A roadmap review of thermally conductive polymer composites: critical factors, progress, and prospects publication-title: Adv. Funct. Mater. contributor: fullname: Wang – volume: 235 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0041 article-title: Failure analysis of fiber-reinforced composites subjected to coupled thermo-mechanical loading publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.111756 contributor: fullname: Ye – volume: 85 start-page: 1504 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0005 article-title: Study of YAG : ce and polymer composite properties for application in LED devices publication-title: Chempluschem doi: 10.1002/cplu.202000318 contributor: fullname: Inkrataite – volume: 245 year: 2024 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0021 article-title: Room-to-low temperature thermo-mechanical behavior and corresponding constitutive model of liquid oxygen compatible epoxy composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2023.110357 contributor: fullname: Jiang – volume: 48 start-page: 448 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0031 article-title: Thermal conductivity of thermally-isolating polymeric and composite structural support materials between 0.3 and 4K publication-title: Cryogenics (Guildf) doi: 10.1016/j.cryogenics.2008.06.002 contributor: fullname: Runyan – volume: 212 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0020 article-title: Effect of cryogenic environments on failure of carbon fiber reinforced composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.108850 contributor: fullname: Hohe – volume: 9 start-page: 1 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0039 article-title: Micromechanical modeling of fiber-reinforced composites with statistically equivalent random fiber distribution publication-title: Materials (Basel) doi: 10.3390/ma10010001 contributor: fullname: Wang – volume: 26 start-page: 132 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0036 article-title: Estimation of thermal properties in Epoxy matrix/carbon fiber composite materials publication-title: J. Compos. Mater. doi: 10.1177/002199839202600109 contributor: fullname: Scott – volume: 77 start-page: 653 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0011 article-title: Effective thermal conductivity of composites publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.05.047 contributor: fullname: Gori – volume: 114 start-page: 727 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0043 article-title: A modified Hashin-Shtrikman model for predicting the thermal conductivity of polymer composites reinforced with randomly distributed hybrid fillers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.06.116 contributor: fullname: Ngo – start-page: 191 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0050 article-title: 6 - Laminate analysis contributor: fullname: Staab – volume: 59 start-page: 41 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0002 article-title: Thermal conductivity of polymer-based composites: fundamentals and applications publication-title: Prog. Polym. Sci doi: 10.1016/j.progpolymsci.2016.03.001 contributor: fullname: Chen – start-page: 1 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0015 article-title: Thermal conductivity of structural glass/fibre epoxy composite as a function of fibre orientation publication-title: Eur. Organ. Nucl. Res. Eur. Lab. Part. Phys. contributor: fullname: Cugnet – volume: 6 start-page: 52 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2024.125521_bib0048 article-title: Modified thermal resistance networks model for transverse thermal conductivity of unidirectional fiber composite publication-title: Compos. Commun. doi: 10.1016/j.coco.2017.09.002 contributor: fullname: Jiang |
SSID | ssj0017046 |
Score | 2.484916 |
Snippet | •Evolutionary trend of cryogenic thermal conductivity of CFRP laminate is revealed.•Lay-up angle shows no effect on out-of-plane thermal conductivity.•A... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 125521 |
SubjectTerms | Cryogenic environments Polymer composite Theoretical model Thermal conductivity |
Title | Cryogenic thermal conductivity of carbon fiber reinforced polymer composite laminates |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2024.125521 |
Volume | 226 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED6VViAWxFOUR-WBgSV9OM5rrCKqQqUOiIpukRPbUhBNqhKGLvx27pKUh2BgYHJiJVb05fTdZ_nzGeAKc7iOfS0sKbS2hKeRB2PuWIZzT0nu95UsXb5TdzwTd3Nn3oBwsxeGbJU191ecXrJ13dOr0ewt05T2-FJwDahIFxX1xClQC9MR95vQGt5OxtOPxQSvX-3XIUKmF3bg-tPmlT4R6S1QqRalUtRUJJSLLiZ-hw9-z1ZfMtBoH_Zq6ciG1dcdQENnh7BdWjiTlyOYhat1juGQJoxE3QIfxbkulXMtz4dguWGJXMV5xgy5RNhKl0VTEQG2zJ_XC-wifzmZuDTDOEkzkqHHMBvdPIRjqz40wUq4FxTWIOauVm6Are1oFaMAjF3j4LXtqti1BQq-RDgicaXEyZQKlGeMVMbxkW9o3e4Emlme6VNgSgYGFYI0vg6ENLb0HSkThAWJwHDptSHYgBMtq9oY0cY09hT9BDYiYKMK2DaEGzSjb_87Qir_8yhn_zLKOezSXWXCvYBmsXrVlyg1irgDW923QacOKGon94-TdzxW2o0 |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27bsIwFLUQqI-l6lOlTw8duqSAcV4jQkVQKBNIbJYd21JQSVCaDvx9701CH2qHDt0iJ7Gi45tzj-Xja0LuIIcbFRjuSG6Mw30DPKiY61jGfC1Z0NaycPlOveGcPy3cRY30t3th0FZZcX_J6QVbVy2tCs3WOo5xjy8GVweLdGFRT5gCNUANhPB3Nnqj8XD6sZjgt8v9OkjI-MIuuf-0ecVLJL0VKNW8UIoGi4Qy_gCJ32Wd37PVlww0OCQHlXSkvfLrjkjNJMdkp7BwRq8nZN7PNimEQxxRFHUreBTmuljOtTgfgqaWRjJTaUItukRoZoqiqYAAXacvmxU0ob8cTVyGQpzECcrQUzIfPM76Q6c6NMGJmB_mTkcxz2iAQbGua7QCAag868J119PK63IQfBF3eeRJCZMpHWrfWqmtGwDf4LrdGaknaWLOCdUytKAQpA1MyKXtysCVMgJYgAgsk36ThFtwxLqsjSG2prGl-AmsQGBFCWyT9Ldoim_jLYDK_9zLxb_0ckv2hrPniZiMpuNLso93SkPuFann2Zu5BtmRq5sqrN4BsOXa3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryogenic+thermal+conductivity+of+carbon+fiber+reinforced+polymer+composite+laminates&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Li%2C+Yuanchen&rft.au=Zhang%2C+Zhanzhi&rft.au=Wu%2C+Shengbao&rft.au=Zhao%2C+Zeang&rft.date=2024-07-01&rft.issn=0017-9310&rft.volume=226&rft.spage=125521&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2024.125521&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2024_125521 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |