Generative adversarial networks (GANs): Introduction, Taxonomy, Variants, Limitations, and Applications

The growing demand for applications based on Generative Adversarial Networks (GANs) has prompted substantial study and analysis in a variety of fields. GAN models have applications in NLP, architectural design, text-to-image, image-to-image, 3D object production, audio-to-image, and prediction. This...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 41; pp. 88811 - 88858
Main Authors Sharma, Preeti, Kumar, Manoj, Sharma, Hitesh Kumar, Biju, Soly Mathew
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The growing demand for applications based on Generative Adversarial Networks (GANs) has prompted substantial study and analysis in a variety of fields. GAN models have applications in NLP, architectural design, text-to-image, image-to-image, 3D object production, audio-to-image, and prediction. This technique is an important tool for both production and prediction, notably in identifying falsely created pictures, particularly in the context of face forgeries, to ensure visual integrity and security. GANs are critical in determining visual credibility in social media by identifying and assessing forgeries. As the field progresses, a variety of GAN variations arise, along with the development of diverse assessment techniques for assessing model efficacy and scope. The article provides a complete and exhaustive overview of the most recent advances in GAN model designs, the efficacy and breadth of GAN variations, GAN limits and potential solutions, and the blooming ecosystem of upcoming GAN tool domains. Additionally, it investigates key measures like as Inception Score (IS) and Fréchet Inception Distance (FID) as critical benchmarks for improving GAN performance in contrast to existing approaches.
AbstractList The growing demand for applications based on Generative Adversarial Networks (GANs) has prompted substantial study and analysis in a variety of fields. GAN models have applications in NLP, architectural design, text-to-image, image-to-image, 3D object production, audio-to-image, and prediction. This technique is an important tool for both production and prediction, notably in identifying falsely created pictures, particularly in the context of face forgeries, to ensure visual integrity and security. GANs are critical in determining visual credibility in social media by identifying and assessing forgeries. As the field progresses, a variety of GAN variations arise, along with the development of diverse assessment techniques for assessing model efficacy and scope. The article provides a complete and exhaustive overview of the most recent advances in GAN model designs, the efficacy and breadth of GAN variations, GAN limits and potential solutions, and the blooming ecosystem of upcoming GAN tool domains. Additionally, it investigates key measures like as Inception Score (IS) and Fréchet Inception Distance (FID) as critical benchmarks for improving GAN performance in contrast to existing approaches.
Author Sharma, Preeti
Kumar, Manoj
Sharma, Hitesh Kumar
Biju, Soly Mathew
Author_xml – sequence: 1
  givenname: Preeti
  surname: Sharma
  fullname: Sharma, Preeti
  email: preetiii.kashyup@gmail.com
  organization: Research Scholar, School of Computer Science, University of Petroleum and Energy Studies (UPES)
– sequence: 2
  givenname: Manoj
  orcidid: 0000-0001-5113-0639
  surname: Kumar
  fullname: Kumar, Manoj
  email: wss.manojkumar@gmail.com
  organization: School of Computer Science, FEIS, University of Wollongong in Dubai, Research Cluster Head, Network and Cyber Security, MEU Research Unit, Middle East University
– sequence: 3
  givenname: Hitesh Kumar
  surname: Sharma
  fullname: Sharma, Hitesh Kumar
  organization: School of Computer Science, University of Petroleum and Energy Studies (UPES)
– sequence: 4
  givenname: Soly Mathew
  surname: Biju
  fullname: Biju, Soly Mathew
  organization: School of Computer Science, FEIS, University of Wollongong in Dubai
BookMark eNp9kF1PwjAUhhuDiYD-Aa-WeKMJ035t7bwjRJGE6A1625SuI8XRznag-_cOR6LxgquenvM-5-MdgJ51VgNwieAtgpDdBYQgxTHENEacpSxuTkAfJYzEjGHU-xOfgUEIawhRmmDaB6upttrL2ux0JPOd9kF6I8vI6vrT-fcQXU_Hz-HmPprZ2rt8q2rj7ChayC9n3aYZRW97va3DKJqbjanlvt5-pM2jcVWVRnWZc3BayDLoi8M7BK-PD4vJUzx_mc4m43msMONNnOMEEZXjImMJo2mWM7jUaaIhTWlSaEk4SQiDKMkyrBnjVCmeaoYyTHKVLykZgquub-Xdx1aHWqzd1tt2pCCI8pSTjPNWhTuV8i4ErwtRebORvhEIir2hojNUtIaKH0NF00L8H6QO99ZemvI4Sjo0tHPsSvvfrY5Q3592jSA
CitedBy_id crossref_primary_10_3389_fdata_2024_1402926
crossref_primary_10_3390_s25020531
crossref_primary_10_3390_su16229963
crossref_primary_10_1038_s41598_024_73976_7
crossref_primary_10_3390_molecules29194626
crossref_primary_10_1007_s11042_024_19696_6
crossref_primary_10_1038_s41598_025_92895_9
crossref_primary_10_2516_stet_2024065
crossref_primary_10_1007_s10661_024_13390_8
crossref_primary_10_1007_s11042_024_20333_5
crossref_primary_10_3390_ai6020032
Cites_doi 10.1109/JAS.2017.7510583
10.1007/s12046-022-01807-4
10.3389/fninf.2020.611666
10.1016/j.enbenv.2021.10.003
10.1007/s00371-021-02133-2
10.18653/v1/2021.naacl-industry.30
10.1016/j.jbi.2022.104058
10.52842/conf.ecaade.2019.2.021
10.13140/RG.2.2.15043.73760
10.1049/ipr2.12497
10.1016/j.cviu.2018.10.009
10.1007/978-3-030-63823-8_37
10.1109/TPAMI.2020.2970919
10.1007/s11042-023-14653-1
10.1109/CVPR.2018.00917
10.1145/3439723
10.1109/CVPR.2017.632
10.1088/1742-6596/1187/4/042047
10.1007/978-3-642-33275-3_2
10.1016/j.jjimei.2020.100004
10.1109/ACCESS.2022.3141776
10.1109/ACCESS.2018.2886814
10.1109/ICCV48922.2021.01174
10.1109/ICCV.2017.244
10.1109/TKDE.2021.3130191
10.5505/itujfa.2020.54037
10.1109/ICTC49870.2020.9289248
10.1007/s11548-020-02254-4
10.1145/3301282
10.1016/j.inffus.2020.06.014
10.1145/3422622
10.1109/JSTSP.2020.2987417
10.5121/csit.2022.120805
10.1016/j.compmedimag.2021.101969
10.1145/3343031.3350944
10.3724/SP.J.1004.2013.00293
10.3390/app12168085
10.1007/s11227-021-04236-y
10.1109/ACCESS.2020.3026084
10.26615/978-954-452-072-4_056
10.3390/a11100164
10.1109/ICASSP.2019.8682383
10.3389/fdata.2019.00003
10.1109/IPDPS.2019.00095
10.1109/TPAMI.2018.2856256
10.1109/TPAMI.2020.3015948
10.1145/3474838
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Dec 2024
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-18767-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 88858
ExternalDocumentID 10_1007_s11042_024_18767_y
GrantInformation_xml – fundername: The University of Wollongong
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c278y-d2513cd2f9757469d70be65e04645fea383537015992e7784cc86e71923dcdb43
IEDL.DBID U2A
ISSN 1573-7721
1380-7501
IngestDate Fri Jul 25 22:46:55 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Tue Jul 01 04:13:34 EDT 2025
Fri Feb 21 02:36:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords Deep learning
Image vision
Deep fakes
GAN variants
GAN architecture
Digital forensics
Generative adversarial network
GAN models
Deep learning based methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c278y-d2513cd2f9757469d70be65e04645fea383537015992e7784cc86e71923dcdb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5113-0639
OpenAccessLink https://link.springer.com/10.1007/s11042-024-18767-y
PQID 3148683988
PQPubID 54626
PageCount 48
ParticipantIDs proquest_journals_3148683988
crossref_primary_10_1007_s11042_024_18767_y
crossref_citationtrail_10_1007_s11042_024_18767_y
springer_journals_10_1007_s11042_024_18767_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References M Benhenda (18767_CR98) 2018; bioRxiv
Y Cao (18767_CR7) 2019; 3536
J Li (18767_CR85) 2020; 14
P Yazdanian (18767_CR13) 2021; 77
18767_CR59
SS Khanuja (18767_CR51) 2021; 8
H Zhang (18767_CR35) 2019
T Karras (18767_CR39) 2021; 43
18767_CR65
R Namboodiri (18767_CR12) 2021
18767_CR67
G Ying (18767_CR14) 2022
P Isola (18767_CR21) 2017; 2017
18767_CR63
18767_CR60
N Sharma (18767_CR19) 2022; 0123456789
J Dubenskaya (18767_CR11) 2021
Y Byun (18767_CR64) 2022; 10
S Reed (18767_CR77) 2016
H Zhang (18767_CR22) 2019; 41
18767_CR48
18767_CR55
18767_CR8
18767_CR54
18767_CR6
18767_CR56
Y Li (18767_CR42) 2021; 92
18767_CR9
18767_CR52
18767_CR1
C Ledig (18767_CR23) 2017
I Goodfellow (18767_CR57) 2020; 63
G Daras (18767_CR38) 2020
18767_CR88
18767_CR89
18767_CR84
18767_CR83
18767_CR86
T Miyaji (18767_CR92) 1953; 44
18767_CR82
FY Wang (18767_CR91) 2004; 16
18767_CR81
A Brock (18767_CR37) 2019; 2019
18767_CR103
18767_CR101
18767_CR104
M Arjovsky (18767_CR29) 2017
18767_CR69
R Tolosana (18767_CR5) 2020; 64
18767_CR76
K Wang (18767_CR15) 2017; 4
18767_CR78
18767_CR73
18767_CR72
18767_CR75
18767_CR74
18767_CR71
FY Wang (18767_CR93) 2014; 39
18767_CR70
CH Wan (18767_CR80) 2019
X Wang (18767_CR32) 2018
T Xu (18767_CR30) 2018
18767_CR18
V Nair (18767_CR66) 2010
RK Dey (18767_CR102) 2022
I Goodfellow (18767_CR2) 2020; 63
L Yu (18767_CR96) 2017
Y Hong (18767_CR4) 2019; 52
18767_CR24
D Feng (18767_CR3) 2020; 1333
18767_CR20
L Xu (18767_CR47) 2022; 12
B Tian (18767_CR100) 2019
M Rezaei (18767_CR62) 2020; 15
S Festag (18767_CR87) 2022; 129
A Borji (18767_CR58) 2019; 1
18767_CR99
H Wu (18767_CR28) 2019
18767_CR95
18767_CR94
Z Wang (18767_CR50) 2021; 54
18767_CR97
JY Zhu (18767_CR26) 2017; 2017
J Gui (18767_CR49) 2021; 14
Z Liu (18767_CR79) 2023; 4
18767_CR36
18767_CR44
18767_CR43
18767_CR46
18767_CR45
18767_CR40
S Lala (18767_CR16) 2018; 1
18767_CR41
L Mescheder (18767_CR61) 2018
S Ioffe (18767_CR68) 2015
A Aggarwal (18767_CR10) 2022; 1
18767_CR25
18767_CR27
18767_CR33
18767_CR34
18767_CR31
FY Wang (18767_CR90) 2004; 19
C Yang (18767_CR53) 2020; 8
J Yoo (18767_CR17) 2020; 2020
References_xml – ident: 18767_CR44
– start-page: 37
  volume-title: European conference on computer vision
  year: 2022
  ident: 18767_CR14
– volume: 4
  start-page: 588
  issue: 4
  year: 2017
  ident: 18767_CR15
  publication-title: IEEE/CAA J Autom Sin
  doi: 10.1109/JAS.2017.7510583
– volume: 0123456789
  start-page: 2022
  year: 2022
  ident: 18767_CR19
  publication-title: Sādhanā
  doi: 10.1007/s12046-022-01807-4
– ident: 18767_CR41
  doi: 10.3389/fninf.2020.611666
– ident: 18767_CR73
– volume: 4
  start-page: 148
  issue: 2
  year: 2023
  ident: 18767_CR79
  publication-title: Energy Built Environ
  doi: 10.1016/j.enbenv.2021.10.003
– ident: 18767_CR45
  doi: 10.1007/s00371-021-02133-2
– start-page: 14531
  volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
  year: 2020
  ident: 18767_CR38
– ident: 18767_CR43
  doi: 10.18653/v1/2021.naacl-industry.30
– ident: 18767_CR76
– volume: 129
  start-page: 104058
  year: 2022
  ident: 18767_CR87
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2022.104058
– ident: 18767_CR83
  doi: 10.52842/conf.ecaade.2019.2.021
– ident: 18767_CR101
– ident: 18767_CR82
– ident: 18767_CR67
– ident: 18767_CR18
  doi: 10.13140/RG.2.2.15043.73760
– start-page: 1060
  volume-title: International conference on machine learning
  year: 2016
  ident: 18767_CR77
– ident: 18767_CR70
– ident: 18767_CR65
  doi: 10.1049/ipr2.12497
– volume-title: Proceedings of the European conference on computer vision (ECCV) workshops
  year: 2018
  ident: 18767_CR32
– ident: 18767_CR99
– volume: 1
  start-page: 41
  issue: 179
  year: 2019
  ident: 18767_CR58
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2018.10.009
– volume: 1333
  start-page: 316
  issue: December
  year: 2020
  ident: 18767_CR3
  publication-title: Commun Comput Inf Sci
  doi: 10.1007/978-3-030-63823-8_37
– ident: 18767_CR33
– volume: 43
  start-page: 4217
  issue: 12
  year: 2021
  ident: 18767_CR39
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.2970919
– ident: 18767_CR36
– ident: 18767_CR71
– ident: 18767_CR103
  doi: 10.1007/s11042-023-14653-1
– ident: 18767_CR59
– start-page: 7354
  volume-title: International conference on machine learning
  year: 2019
  ident: 18767_CR35
– start-page: 3481
  volume-title: International conference on machine learning
  year: 2018
  ident: 18767_CR61
– ident: 18767_CR75
  doi: 10.1109/CVPR.2018.00917
– volume: 54
  start-page: 1
  issue: 2
  year: 2021
  ident: 18767_CR50
  publication-title: ACM Comput Surv
  doi: 10.1145/3439723
– volume: 2017
  start-page: 5967
  year: 2017
  ident: 18767_CR21
  publication-title: Proceeding - 30th IEEE Conf Comput Vis Patt Recog
  doi: 10.1109/CVPR.2017.632
– volume: 1
  start-page: 1
  year: 2018
  ident: 18767_CR16
  publication-title: Poster High Perform Extrem Comput Conf
– ident: 18767_CR84
– ident: 18767_CR89
  doi: 10.1088/1742-6596/1187/4/042047
– volume: 16
  start-page: 893
  year: 2004
  ident: 18767_CR91
  publication-title: Control Decis
– volume: 2019
  start-page: 1
  year: 2019
  ident: 18767_CR37
  publication-title: Int Conf Learn Represent, ICLR
– ident: 18767_CR104
  doi: 10.1007/978-3-642-33275-3_2
– ident: 18767_CR20
– start-page: 807
  volume-title: Proceedings of the 27th international conference on machine learning (ICML-10)
  year: 2010
  ident: 18767_CR66
– volume: 1
  start-page: 2021
  year: 2022
  ident: 18767_CR10
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1016/j.jjimei.2020.100004
– ident: 18767_CR56
– volume: 8
  start-page: 836
  issue: 10
  year: 2021
  ident: 18767_CR51
  publication-title: International Research Journal of Engineering and Technology (IRJET)
– volume: bioRxiv
  year: 2018
  ident: 18767_CR98
  publication-title: Can AI reproduce observed chemical diversity?
– ident: 18767_CR31
– start-page: 1
  volume-title: 2021 12th international conference on computing communication and networking technologies (ICCCNT)
  year: 2021
  ident: 18767_CR12
– ident: 18767_CR63
– volume: 10
  start-page: 11036
  year: 2022
  ident: 18767_CR64
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3141776
– ident: 18767_CR40
– volume: 3536
  start-page: 14985
  year: 2019
  ident: 18767_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886814
– ident: 18767_CR78
  doi: 10.1109/ICCV48922.2021.01174
– start-page: 448
  volume-title: International conference on machine learning
  year: 2015
  ident: 18767_CR68
– ident: 18767_CR25
– start-page: 214
  volume-title: International conference on machine learning
  year: 2017
  ident: 18767_CR29
– volume: 2017
  start-page: 2242
  year: 2017
  ident: 18767_CR26
  publication-title: Proc IEEE Int Conf Comput Vis
  doi: 10.1109/ICCV.2017.244
– volume: 14
  start-page: 1
  issue: 8
  year: 2021
  ident: 18767_CR49
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2021.3130191
– ident: 18767_CR86
– ident: 18767_CR8
  doi: 10.5505/itujfa.2020.54037
– volume: 2020
  start-page: 100
  year: 2020
  ident: 18767_CR17
  publication-title: Int Conf ICT Converg
  doi: 10.1109/ICTC49870.2020.9289248
– ident: 18767_CR60
– ident: 18767_CR95
– volume: 15
  start-page: 1847
  issue: 11
  year: 2020
  ident: 18767_CR62
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-020-02254-4
– volume: 19
  start-page: 485
  year: 2004
  ident: 18767_CR90
  publication-title: Control Decis
– volume: 52
  start-page: 1
  issue: 1
  year: 2019
  ident: 18767_CR4
  publication-title: ACM Comput Surv
  doi: 10.1145/3301282
– volume: 64
  start-page: 131
  year: 2020
  ident: 18767_CR5
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2020.06.014
– ident: 18767_CR54
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  ident: 18767_CR2
  publication-title: Commun ACM
  doi: 10.1145/3422622
– volume: 14
  start-page: 517
  issue: 3
  year: 2020
  ident: 18767_CR85
  publication-title: IEEE J Select Top Signal Process
  doi: 10.1109/JSTSP.2020.2987417
– ident: 18767_CR6
  doi: 10.5121/csit.2022.120805
– start-page: 4681
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2017
  ident: 18767_CR23
– volume: 92
  start-page: 101969
  year: 2021
  ident: 18767_CR42
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2021.101969
– start-page: 2487
  volume-title: Proceedings of the 27th ACM international conference on multimedia
  year: 2019
  ident: 18767_CR28
  doi: 10.1145/3343031.3350944
– volume: 39
  start-page: 293
  issue: 4
  year: 2014
  ident: 18767_CR93
  publication-title: ACTA Autom Sin
  doi: 10.3724/SP.J.1004.2013.00293
– volume: 44
  start-page: 281
  issue: 2–3
  year: 1953
  ident: 18767_CR92
  publication-title: Gan
– volume: 12
  start-page: 8085
  issue: 16
  year: 2022
  ident: 18767_CR47
  publication-title: Appl Sci
  doi: 10.3390/app12168085
– ident: 18767_CR94
– volume: 77
  start-page: 11052
  issue: 10
  year: 2021
  ident: 18767_CR13
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04236-y
– volume: 8
  start-page: 174317
  year: 2020
  ident: 18767_CR53
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3026084
– ident: 18767_CR81
  doi: 10.26615/978-954-452-072-4_056
– ident: 18767_CR27
– start-page: 270
  volume-title: Proceedings of the 9th international conference GRID-2021, CEUR-WS
  year: 2021
  ident: 18767_CR11
– ident: 18767_CR88
  doi: 10.3390/a11100164
– ident: 18767_CR74
– ident: 18767_CR55
– start-page: 255
  volume-title: International conference on computational intelligence in pattern recognition
  year: 2022
  ident: 18767_CR102
– start-page: 496
  volume-title: ICASSP 2019–2019 IEEE international conference on acoustics, speech and signal processing (ICASSP)
  year: 2019
  ident: 18767_CR80
  doi: 10.1109/ICASSP.2019.8682383
– volume-title: Proceedings of the AAAI conference on artificial intelligence
  year: 2017
  ident: 18767_CR96
– ident: 18767_CR34
  doi: 10.3389/fdata.2019.00003
– ident: 18767_CR46
– ident: 18767_CR69
– start-page: 1316
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2018
  ident: 18767_CR30
– ident: 18767_CR72
– start-page: 444
  volume-title: Database Systems for Advanced Applications: DASFAA 2019 international workshops: BDMS, BDQM, and GDMA, Chiang Mai, Thailand, April 22–25, 2019, proceedings 24
  year: 2019
  ident: 18767_CR100
– ident: 18767_CR1
  doi: 10.1109/IPDPS.2019.00095
– volume: 41
  start-page: 1947
  issue: 8
  year: 2019
  ident: 18767_CR22
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2856256
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  ident: 18767_CR57
  publication-title: Commun ACM
  doi: 10.1145/3422622
– ident: 18767_CR97
– ident: 18767_CR52
– ident: 18767_CR24
– ident: 18767_CR48
  doi: 10.1109/TPAMI.2020.3015948
– ident: 18767_CR9
  doi: 10.1145/3474838
SSID ssj0016524
Score 2.5312254
Snippet The growing demand for applications based on Generative Adversarial Networks (GANs) has prompted substantial study and analysis in a variety of fields. GAN...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 88811
SubjectTerms Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Deepfake
Demand analysis
Effectiveness
Forensic sciences
Generative adversarial networks
Multimedia
Multimedia Information Systems
Neural networks
Special Purpose and Application-Based Systems
Taxonomy
Visual fields
Title Generative adversarial networks (GANs): Introduction, Taxonomy, Variants, Limitations, and Applications
URI https://link.springer.com/article/10.1007/s11042-024-18767-y
https://www.proquest.com/docview/3148683988
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDA4hYauPEjtnSqg9AdGpRmaI4dllQQKRI9N9jO0lbECAxRUrOUZS7833newGcK8oFo1JhotEC9gJfYSGZxLLFhQYkkse2HcP9iA4n3u3UnxZFYVmZ7V6GJO1OvSp2a5tSEm1TcFurMMOLTaj6xnfXUjxxw2XsgPquV5TH_Lzuqwla4cpvoVBrYfp7sFNAQxTmvNyHDZXWYLccu4AKLazB9loPwQN4yhtHm10LxWa6chYbmUJpnt-doYtBOMour9GNyUmXebNYB43jD1vO4KAHQ5_OMwfZYqf8BM9BcSpRuBbdPoRJvzfuDnExPQEnLgsWWGrkQhLpzjjzmXaCJWsJRX1lY5kzFWvX1CdMowHOXcVY4CVJQBUziE8mUnjkCCrpS6qOAREvFoQrIqSQnsu0AdPUxJX6PqeM-HVolz80SooPNRMunqNVU2TDhEgzIbJMiBZ1uFquec0ba_xJ3Sj5FBVKlkVEu3JUA7wgqINT8m71-Pe3nfyP_BS2XCs-JomlAZX527s601BkLppQDfudzshcB493vSZsdmm3aeXxE5pB2l4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADjwFiMCAHDiAasTVp0nKbJsYG204b4lY1TcYFFUSHxP49Tts9mACJa-tUVe3En2v7M8C5EYGSQhvKEC1Q7nuGKi011bVAISDRQZTRMfT6oj3k90_eU0GTY3thlvL31ym6J-5S9CS0jhtX0skqrHGMlG35XlM0ZxkD4bm8aIr5ed13xzNHk0sJ0MyvtHZgqwCEpJFrcBdWTFKG7emwBVLsvTJsLjAH7sFzThdtzyoS2ZnKaWQtiSR5VXdKLu4a_fTyhnRsJbrOKWIdMog-syYGhzxa-WScOiRrccr_2zkkSjRpLOS092HYuh0027SYmUBjV_oTqhGvsFi7o0B6EkNfLWvKCM9kGcyRiTAg9ZhEDBAErpHS53HsCyMtztOxVpwdQCl5TcwhEMYjxQLDlFaauxLdFkozV-P1QEjmVaA-_aBhXLyonWvxEs6pkK0SQlRCmCkhnFTgarbmLafT-FO6OtVTWGytNGQYwAmEdb5fAWequ_nt35929D_xM1hvD3rdsNvpPxzDhpuZki1jqUJp_P5hThCMjNVpZoVfgafVQw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEJ1oTYwe_Kgaq1X34EEjm7Ys7IK3plpbPxoPremNsOzWi8FGMLH_3t0FSjVq4hUGQphd5g0z7w3AqaQ-Z1RITBRawI7nSswFE1g0fa4AifBDI8fwMKC9kXM7dscLLH7T7V6UJDNOg1ZpitPGVEwaJfGtpWklKr7gltrODM-WYUVlKqZQ26GdeR2BuraTU2V-vu5rOCox5reyqIk23S3YyGEiamd-3YYlGVdhsxjBgPIdWYX1BT3BHXjORKT1FwyFetJyEur1heKs1ztBZzftQXJ-ifq6P11kwrEWGoYfhtpgoSdtH6eJhQzxKfubZ6EwFqi9UOnehVH3etjp4XySAo5s5s2wUCiGRMKe-MxlKiEWrMkldaWpa05kqNJUlzCFDHzflox5ThR5VDKN_kQkuEP2oBK_xnIfEHFCTnxJuODCsZkKZsqa2EId9ykjbg1axQsNovxB9bSLl6AUSNZOCJQTAuOEYFaDi_k100xk40_reuGnIN9wSUBUWkcV2PO8GliF78rTv9_t4H_mJ7D6eNUN7vuDu0NYs81K0r0tdaikb-_ySCGUlB-bRfgJxt7dig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+adversarial+networks+%28GANs%29%3A+Introduction%2C+Taxonomy%2C+Variants%2C+Limitations%2C+and+Applications&rft.jtitle=Multimedia+tools+and+applications&rft.au=Sharma%2C+Preeti&rft.au=Kumar%2C+Manoj&rft.au=Sharma%2C+Hitesh+Kumar&rft.au=Biju%2C+Soly+Mathew&rft.date=2024-12-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=83&rft.issue=41&rft.spage=88811&rft.epage=88858&rft_id=info:doi/10.1007%2Fs11042-024-18767-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_024_18767_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon