Generative adversarial networks (GANs): Introduction, Taxonomy, Variants, Limitations, and Applications
The growing demand for applications based on Generative Adversarial Networks (GANs) has prompted substantial study and analysis in a variety of fields. GAN models have applications in NLP, architectural design, text-to-image, image-to-image, 3D object production, audio-to-image, and prediction. This...
Saved in:
Published in | Multimedia tools and applications Vol. 83; no. 41; pp. 88811 - 88858 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The growing demand for applications based on Generative Adversarial Networks (GANs) has prompted substantial study and analysis in a variety of fields. GAN models have applications in NLP, architectural design, text-to-image, image-to-image, 3D object production, audio-to-image, and prediction. This technique is an important tool for both production and prediction, notably in identifying falsely created pictures, particularly in the context of face forgeries, to ensure visual integrity and security. GANs are critical in determining visual credibility in social media by identifying and assessing forgeries. As the field progresses, a variety of GAN variations arise, along with the development of diverse assessment techniques for assessing model efficacy and scope. The article provides a complete and exhaustive overview of the most recent advances in GAN model designs, the efficacy and breadth of GAN variations, GAN limits and potential solutions, and the blooming ecosystem of upcoming GAN tool domains. Additionally, it investigates key measures like as Inception Score (IS) and Fréchet Inception Distance (FID) as critical benchmarks for improving GAN performance in contrast to existing approaches. |
---|---|
AbstractList | The growing demand for applications based on Generative Adversarial Networks (GANs) has prompted substantial study and analysis in a variety of fields. GAN models have applications in NLP, architectural design, text-to-image, image-to-image, 3D object production, audio-to-image, and prediction. This technique is an important tool for both production and prediction, notably in identifying falsely created pictures, particularly in the context of face forgeries, to ensure visual integrity and security. GANs are critical in determining visual credibility in social media by identifying and assessing forgeries. As the field progresses, a variety of GAN variations arise, along with the development of diverse assessment techniques for assessing model efficacy and scope. The article provides a complete and exhaustive overview of the most recent advances in GAN model designs, the efficacy and breadth of GAN variations, GAN limits and potential solutions, and the blooming ecosystem of upcoming GAN tool domains. Additionally, it investigates key measures like as Inception Score (IS) and Fréchet Inception Distance (FID) as critical benchmarks for improving GAN performance in contrast to existing approaches. |
Author | Sharma, Preeti Kumar, Manoj Sharma, Hitesh Kumar Biju, Soly Mathew |
Author_xml | – sequence: 1 givenname: Preeti surname: Sharma fullname: Sharma, Preeti email: preetiii.kashyup@gmail.com organization: Research Scholar, School of Computer Science, University of Petroleum and Energy Studies (UPES) – sequence: 2 givenname: Manoj orcidid: 0000-0001-5113-0639 surname: Kumar fullname: Kumar, Manoj email: wss.manojkumar@gmail.com organization: School of Computer Science, FEIS, University of Wollongong in Dubai, Research Cluster Head, Network and Cyber Security, MEU Research Unit, Middle East University – sequence: 3 givenname: Hitesh Kumar surname: Sharma fullname: Sharma, Hitesh Kumar organization: School of Computer Science, University of Petroleum and Energy Studies (UPES) – sequence: 4 givenname: Soly Mathew surname: Biju fullname: Biju, Soly Mathew organization: School of Computer Science, FEIS, University of Wollongong in Dubai |
BookMark | eNp9kF1PwjAUhhuDiYD-Aa-WeKMJ035t7bwjRJGE6A1625SuI8XRznag-_cOR6LxgquenvM-5-MdgJ51VgNwieAtgpDdBYQgxTHENEacpSxuTkAfJYzEjGHU-xOfgUEIawhRmmDaB6upttrL2ux0JPOd9kF6I8vI6vrT-fcQXU_Hz-HmPprZ2rt8q2rj7ChayC9n3aYZRW97va3DKJqbjanlvt5-pM2jcVWVRnWZc3BayDLoi8M7BK-PD4vJUzx_mc4m43msMONNnOMEEZXjImMJo2mWM7jUaaIhTWlSaEk4SQiDKMkyrBnjVCmeaoYyTHKVLykZgquub-Xdx1aHWqzd1tt2pCCI8pSTjPNWhTuV8i4ErwtRebORvhEIir2hojNUtIaKH0NF00L8H6QO99ZemvI4Sjo0tHPsSvvfrY5Q3592jSA |
CitedBy_id | crossref_primary_10_3389_fdata_2024_1402926 crossref_primary_10_3390_s25020531 crossref_primary_10_3390_su16229963 crossref_primary_10_1038_s41598_024_73976_7 crossref_primary_10_3390_molecules29194626 crossref_primary_10_1007_s11042_024_19696_6 crossref_primary_10_1038_s41598_025_92895_9 crossref_primary_10_2516_stet_2024065 crossref_primary_10_1007_s10661_024_13390_8 crossref_primary_10_1007_s11042_024_20333_5 crossref_primary_10_3390_ai6020032 |
Cites_doi | 10.1109/JAS.2017.7510583 10.1007/s12046-022-01807-4 10.3389/fninf.2020.611666 10.1016/j.enbenv.2021.10.003 10.1007/s00371-021-02133-2 10.18653/v1/2021.naacl-industry.30 10.1016/j.jbi.2022.104058 10.52842/conf.ecaade.2019.2.021 10.13140/RG.2.2.15043.73760 10.1049/ipr2.12497 10.1016/j.cviu.2018.10.009 10.1007/978-3-030-63823-8_37 10.1109/TPAMI.2020.2970919 10.1007/s11042-023-14653-1 10.1109/CVPR.2018.00917 10.1145/3439723 10.1109/CVPR.2017.632 10.1088/1742-6596/1187/4/042047 10.1007/978-3-642-33275-3_2 10.1016/j.jjimei.2020.100004 10.1109/ACCESS.2022.3141776 10.1109/ACCESS.2018.2886814 10.1109/ICCV48922.2021.01174 10.1109/ICCV.2017.244 10.1109/TKDE.2021.3130191 10.5505/itujfa.2020.54037 10.1109/ICTC49870.2020.9289248 10.1007/s11548-020-02254-4 10.1145/3301282 10.1016/j.inffus.2020.06.014 10.1145/3422622 10.1109/JSTSP.2020.2987417 10.5121/csit.2022.120805 10.1016/j.compmedimag.2021.101969 10.1145/3343031.3350944 10.3724/SP.J.1004.2013.00293 10.3390/app12168085 10.1007/s11227-021-04236-y 10.1109/ACCESS.2020.3026084 10.26615/978-954-452-072-4_056 10.3390/a11100164 10.1109/ICASSP.2019.8682383 10.3389/fdata.2019.00003 10.1109/IPDPS.2019.00095 10.1109/TPAMI.2018.2856256 10.1109/TPAMI.2020.3015948 10.1145/3474838 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Dec 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Dec 2024 |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s11042-024-18767-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 88858 |
ExternalDocumentID | 10_1007_s11042_024_18767_y |
GrantInformation_xml | – fundername: The University of Wollongong |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c278y-d2513cd2f9757469d70be65e04645fea383537015992e7784cc86e71923dcdb43 |
IEDL.DBID | U2A |
ISSN | 1573-7721 1380-7501 |
IngestDate | Fri Jul 25 22:46:55 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Tue Jul 01 04:13:34 EDT 2025 Fri Feb 21 02:36:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Keywords | Deep learning Image vision Deep fakes GAN variants GAN architecture Digital forensics Generative adversarial network GAN models Deep learning based methods |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c278y-d2513cd2f9757469d70be65e04645fea383537015992e7784cc86e71923dcdb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5113-0639 |
OpenAccessLink | https://link.springer.com/10.1007/s11042-024-18767-y |
PQID | 3148683988 |
PQPubID | 54626 |
PageCount | 48 |
ParticipantIDs | proquest_journals_3148683988 crossref_primary_10_1007_s11042_024_18767_y crossref_citationtrail_10_1007_s11042_024_18767_y springer_journals_10_1007_s11042_024_18767_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241200 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | M Benhenda (18767_CR98) 2018; bioRxiv Y Cao (18767_CR7) 2019; 3536 J Li (18767_CR85) 2020; 14 P Yazdanian (18767_CR13) 2021; 77 18767_CR59 SS Khanuja (18767_CR51) 2021; 8 H Zhang (18767_CR35) 2019 T Karras (18767_CR39) 2021; 43 18767_CR65 R Namboodiri (18767_CR12) 2021 18767_CR67 G Ying (18767_CR14) 2022 P Isola (18767_CR21) 2017; 2017 18767_CR63 18767_CR60 N Sharma (18767_CR19) 2022; 0123456789 J Dubenskaya (18767_CR11) 2021 Y Byun (18767_CR64) 2022; 10 S Reed (18767_CR77) 2016 H Zhang (18767_CR22) 2019; 41 18767_CR48 18767_CR55 18767_CR8 18767_CR54 18767_CR6 18767_CR56 Y Li (18767_CR42) 2021; 92 18767_CR9 18767_CR52 18767_CR1 C Ledig (18767_CR23) 2017 I Goodfellow (18767_CR57) 2020; 63 G Daras (18767_CR38) 2020 18767_CR88 18767_CR89 18767_CR84 18767_CR83 18767_CR86 T Miyaji (18767_CR92) 1953; 44 18767_CR82 FY Wang (18767_CR91) 2004; 16 18767_CR81 A Brock (18767_CR37) 2019; 2019 18767_CR103 18767_CR101 18767_CR104 M Arjovsky (18767_CR29) 2017 18767_CR69 R Tolosana (18767_CR5) 2020; 64 18767_CR76 K Wang (18767_CR15) 2017; 4 18767_CR78 18767_CR73 18767_CR72 18767_CR75 18767_CR74 18767_CR71 FY Wang (18767_CR93) 2014; 39 18767_CR70 CH Wan (18767_CR80) 2019 X Wang (18767_CR32) 2018 T Xu (18767_CR30) 2018 18767_CR18 V Nair (18767_CR66) 2010 RK Dey (18767_CR102) 2022 I Goodfellow (18767_CR2) 2020; 63 L Yu (18767_CR96) 2017 Y Hong (18767_CR4) 2019; 52 18767_CR24 D Feng (18767_CR3) 2020; 1333 18767_CR20 L Xu (18767_CR47) 2022; 12 B Tian (18767_CR100) 2019 M Rezaei (18767_CR62) 2020; 15 S Festag (18767_CR87) 2022; 129 A Borji (18767_CR58) 2019; 1 18767_CR99 H Wu (18767_CR28) 2019 18767_CR95 18767_CR94 Z Wang (18767_CR50) 2021; 54 18767_CR97 JY Zhu (18767_CR26) 2017; 2017 J Gui (18767_CR49) 2021; 14 Z Liu (18767_CR79) 2023; 4 18767_CR36 18767_CR44 18767_CR43 18767_CR46 18767_CR45 18767_CR40 S Lala (18767_CR16) 2018; 1 18767_CR41 L Mescheder (18767_CR61) 2018 S Ioffe (18767_CR68) 2015 A Aggarwal (18767_CR10) 2022; 1 18767_CR25 18767_CR27 18767_CR33 18767_CR34 18767_CR31 FY Wang (18767_CR90) 2004; 19 C Yang (18767_CR53) 2020; 8 J Yoo (18767_CR17) 2020; 2020 |
References_xml | – ident: 18767_CR44 – start-page: 37 volume-title: European conference on computer vision year: 2022 ident: 18767_CR14 – volume: 4 start-page: 588 issue: 4 year: 2017 ident: 18767_CR15 publication-title: IEEE/CAA J Autom Sin doi: 10.1109/JAS.2017.7510583 – volume: 0123456789 start-page: 2022 year: 2022 ident: 18767_CR19 publication-title: Sādhanā doi: 10.1007/s12046-022-01807-4 – ident: 18767_CR41 doi: 10.3389/fninf.2020.611666 – ident: 18767_CR73 – volume: 4 start-page: 148 issue: 2 year: 2023 ident: 18767_CR79 publication-title: Energy Built Environ doi: 10.1016/j.enbenv.2021.10.003 – ident: 18767_CR45 doi: 10.1007/s00371-021-02133-2 – start-page: 14531 volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition year: 2020 ident: 18767_CR38 – ident: 18767_CR43 doi: 10.18653/v1/2021.naacl-industry.30 – ident: 18767_CR76 – volume: 129 start-page: 104058 year: 2022 ident: 18767_CR87 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2022.104058 – ident: 18767_CR83 doi: 10.52842/conf.ecaade.2019.2.021 – ident: 18767_CR101 – ident: 18767_CR82 – ident: 18767_CR67 – ident: 18767_CR18 doi: 10.13140/RG.2.2.15043.73760 – start-page: 1060 volume-title: International conference on machine learning year: 2016 ident: 18767_CR77 – ident: 18767_CR70 – ident: 18767_CR65 doi: 10.1049/ipr2.12497 – volume-title: Proceedings of the European conference on computer vision (ECCV) workshops year: 2018 ident: 18767_CR32 – ident: 18767_CR99 – volume: 1 start-page: 41 issue: 179 year: 2019 ident: 18767_CR58 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2018.10.009 – volume: 1333 start-page: 316 issue: December year: 2020 ident: 18767_CR3 publication-title: Commun Comput Inf Sci doi: 10.1007/978-3-030-63823-8_37 – ident: 18767_CR33 – volume: 43 start-page: 4217 issue: 12 year: 2021 ident: 18767_CR39 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.2970919 – ident: 18767_CR36 – ident: 18767_CR71 – ident: 18767_CR103 doi: 10.1007/s11042-023-14653-1 – ident: 18767_CR59 – start-page: 7354 volume-title: International conference on machine learning year: 2019 ident: 18767_CR35 – start-page: 3481 volume-title: International conference on machine learning year: 2018 ident: 18767_CR61 – ident: 18767_CR75 doi: 10.1109/CVPR.2018.00917 – volume: 54 start-page: 1 issue: 2 year: 2021 ident: 18767_CR50 publication-title: ACM Comput Surv doi: 10.1145/3439723 – volume: 2017 start-page: 5967 year: 2017 ident: 18767_CR21 publication-title: Proceeding - 30th IEEE Conf Comput Vis Patt Recog doi: 10.1109/CVPR.2017.632 – volume: 1 start-page: 1 year: 2018 ident: 18767_CR16 publication-title: Poster High Perform Extrem Comput Conf – ident: 18767_CR84 – ident: 18767_CR89 doi: 10.1088/1742-6596/1187/4/042047 – volume: 16 start-page: 893 year: 2004 ident: 18767_CR91 publication-title: Control Decis – volume: 2019 start-page: 1 year: 2019 ident: 18767_CR37 publication-title: Int Conf Learn Represent, ICLR – ident: 18767_CR104 doi: 10.1007/978-3-642-33275-3_2 – ident: 18767_CR20 – start-page: 807 volume-title: Proceedings of the 27th international conference on machine learning (ICML-10) year: 2010 ident: 18767_CR66 – volume: 1 start-page: 2021 year: 2022 ident: 18767_CR10 publication-title: ACM Trans Intell Syst Technol doi: 10.1016/j.jjimei.2020.100004 – ident: 18767_CR56 – volume: 8 start-page: 836 issue: 10 year: 2021 ident: 18767_CR51 publication-title: International Research Journal of Engineering and Technology (IRJET) – volume: bioRxiv year: 2018 ident: 18767_CR98 publication-title: Can AI reproduce observed chemical diversity? – ident: 18767_CR31 – start-page: 1 volume-title: 2021 12th international conference on computing communication and networking technologies (ICCCNT) year: 2021 ident: 18767_CR12 – ident: 18767_CR63 – volume: 10 start-page: 11036 year: 2022 ident: 18767_CR64 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3141776 – ident: 18767_CR40 – volume: 3536 start-page: 14985 year: 2019 ident: 18767_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886814 – ident: 18767_CR78 doi: 10.1109/ICCV48922.2021.01174 – start-page: 448 volume-title: International conference on machine learning year: 2015 ident: 18767_CR68 – ident: 18767_CR25 – start-page: 214 volume-title: International conference on machine learning year: 2017 ident: 18767_CR29 – volume: 2017 start-page: 2242 year: 2017 ident: 18767_CR26 publication-title: Proc IEEE Int Conf Comput Vis doi: 10.1109/ICCV.2017.244 – volume: 14 start-page: 1 issue: 8 year: 2021 ident: 18767_CR49 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2021.3130191 – ident: 18767_CR86 – ident: 18767_CR8 doi: 10.5505/itujfa.2020.54037 – volume: 2020 start-page: 100 year: 2020 ident: 18767_CR17 publication-title: Int Conf ICT Converg doi: 10.1109/ICTC49870.2020.9289248 – ident: 18767_CR60 – ident: 18767_CR95 – volume: 15 start-page: 1847 issue: 11 year: 2020 ident: 18767_CR62 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-020-02254-4 – volume: 19 start-page: 485 year: 2004 ident: 18767_CR90 publication-title: Control Decis – volume: 52 start-page: 1 issue: 1 year: 2019 ident: 18767_CR4 publication-title: ACM Comput Surv doi: 10.1145/3301282 – volume: 64 start-page: 131 year: 2020 ident: 18767_CR5 publication-title: Inf Fusion doi: 10.1016/j.inffus.2020.06.014 – ident: 18767_CR54 – volume: 63 start-page: 139 issue: 11 year: 2020 ident: 18767_CR2 publication-title: Commun ACM doi: 10.1145/3422622 – volume: 14 start-page: 517 issue: 3 year: 2020 ident: 18767_CR85 publication-title: IEEE J Select Top Signal Process doi: 10.1109/JSTSP.2020.2987417 – ident: 18767_CR6 doi: 10.5121/csit.2022.120805 – start-page: 4681 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2017 ident: 18767_CR23 – volume: 92 start-page: 101969 year: 2021 ident: 18767_CR42 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2021.101969 – start-page: 2487 volume-title: Proceedings of the 27th ACM international conference on multimedia year: 2019 ident: 18767_CR28 doi: 10.1145/3343031.3350944 – volume: 39 start-page: 293 issue: 4 year: 2014 ident: 18767_CR93 publication-title: ACTA Autom Sin doi: 10.3724/SP.J.1004.2013.00293 – volume: 44 start-page: 281 issue: 2–3 year: 1953 ident: 18767_CR92 publication-title: Gan – volume: 12 start-page: 8085 issue: 16 year: 2022 ident: 18767_CR47 publication-title: Appl Sci doi: 10.3390/app12168085 – ident: 18767_CR94 – volume: 77 start-page: 11052 issue: 10 year: 2021 ident: 18767_CR13 publication-title: J Supercomput doi: 10.1007/s11227-021-04236-y – volume: 8 start-page: 174317 year: 2020 ident: 18767_CR53 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3026084 – ident: 18767_CR81 doi: 10.26615/978-954-452-072-4_056 – ident: 18767_CR27 – start-page: 270 volume-title: Proceedings of the 9th international conference GRID-2021, CEUR-WS year: 2021 ident: 18767_CR11 – ident: 18767_CR88 doi: 10.3390/a11100164 – ident: 18767_CR74 – ident: 18767_CR55 – start-page: 255 volume-title: International conference on computational intelligence in pattern recognition year: 2022 ident: 18767_CR102 – start-page: 496 volume-title: ICASSP 2019–2019 IEEE international conference on acoustics, speech and signal processing (ICASSP) year: 2019 ident: 18767_CR80 doi: 10.1109/ICASSP.2019.8682383 – volume-title: Proceedings of the AAAI conference on artificial intelligence year: 2017 ident: 18767_CR96 – ident: 18767_CR34 doi: 10.3389/fdata.2019.00003 – ident: 18767_CR46 – ident: 18767_CR69 – start-page: 1316 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2018 ident: 18767_CR30 – ident: 18767_CR72 – start-page: 444 volume-title: Database Systems for Advanced Applications: DASFAA 2019 international workshops: BDMS, BDQM, and GDMA, Chiang Mai, Thailand, April 22–25, 2019, proceedings 24 year: 2019 ident: 18767_CR100 – ident: 18767_CR1 doi: 10.1109/IPDPS.2019.00095 – volume: 41 start-page: 1947 issue: 8 year: 2019 ident: 18767_CR22 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2856256 – volume: 63 start-page: 139 issue: 11 year: 2020 ident: 18767_CR57 publication-title: Commun ACM doi: 10.1145/3422622 – ident: 18767_CR97 – ident: 18767_CR52 – ident: 18767_CR24 – ident: 18767_CR48 doi: 10.1109/TPAMI.2020.3015948 – ident: 18767_CR9 doi: 10.1145/3474838 |
SSID | ssj0016524 |
Score | 2.5312254 |
Snippet | The growing demand for applications based on Generative Adversarial Networks (GANs) has prompted substantial study and analysis in a variety of fields. GAN... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 88811 |
SubjectTerms | Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Deepfake Demand analysis Effectiveness Forensic sciences Generative adversarial networks Multimedia Multimedia Information Systems Neural networks Special Purpose and Application-Based Systems Taxonomy Visual fields |
Title | Generative adversarial networks (GANs): Introduction, Taxonomy, Variants, Limitations, and Applications |
URI | https://link.springer.com/article/10.1007/s11042-024-18767-y https://www.proquest.com/docview/3148683988 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDA4hYauPEjtnSqg9AdGpRmaI4dllQQKRI9N9jO0lbECAxRUrOUZS7833newGcK8oFo1JhotEC9gJfYSGZxLLFhQYkkse2HcP9iA4n3u3UnxZFYVmZ7V6GJO1OvSp2a5tSEm1TcFurMMOLTaj6xnfXUjxxw2XsgPquV5TH_Lzuqwla4cpvoVBrYfp7sFNAQxTmvNyHDZXWYLccu4AKLazB9loPwQN4yhtHm10LxWa6chYbmUJpnt-doYtBOMour9GNyUmXebNYB43jD1vO4KAHQ5_OMwfZYqf8BM9BcSpRuBbdPoRJvzfuDnExPQEnLgsWWGrkQhLpzjjzmXaCJWsJRX1lY5kzFWvX1CdMowHOXcVY4CVJQBUziE8mUnjkCCrpS6qOAREvFoQrIqSQnsu0AdPUxJX6PqeM-HVolz80SooPNRMunqNVU2TDhEgzIbJMiBZ1uFquec0ba_xJ3Sj5FBVKlkVEu3JUA7wgqINT8m71-Pe3nfyP_BS2XCs-JomlAZX527s601BkLppQDfudzshcB493vSZsdmm3aeXxE5pB2l4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADjwFiMCAHDiAasTVp0nKbJsYG204b4lY1TcYFFUSHxP49Tts9mACJa-tUVe3En2v7M8C5EYGSQhvKEC1Q7nuGKi011bVAISDRQZTRMfT6oj3k90_eU0GTY3thlvL31ym6J-5S9CS0jhtX0skqrHGMlG35XlM0ZxkD4bm8aIr5ed13xzNHk0sJ0MyvtHZgqwCEpJFrcBdWTFKG7emwBVLsvTJsLjAH7sFzThdtzyoS2ZnKaWQtiSR5VXdKLu4a_fTyhnRsJbrOKWIdMog-syYGhzxa-WScOiRrccr_2zkkSjRpLOS092HYuh0027SYmUBjV_oTqhGvsFi7o0B6EkNfLWvKCM9kGcyRiTAg9ZhEDBAErpHS53HsCyMtztOxVpwdQCl5TcwhEMYjxQLDlFaauxLdFkozV-P1QEjmVaA-_aBhXLyonWvxEs6pkK0SQlRCmCkhnFTgarbmLafT-FO6OtVTWGytNGQYwAmEdb5fAWequ_nt35929D_xM1hvD3rdsNvpPxzDhpuZki1jqUJp_P5hThCMjNVpZoVfgafVQw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEJ1oTYwe_Kgaq1X34EEjm7Ys7IK3plpbPxoPremNsOzWi8FGMLH_3t0FSjVq4hUGQphd5g0z7w3AqaQ-Z1RITBRawI7nSswFE1g0fa4AifBDI8fwMKC9kXM7dscLLH7T7V6UJDNOg1ZpitPGVEwaJfGtpWklKr7gltrODM-WYUVlKqZQ26GdeR2BuraTU2V-vu5rOCox5reyqIk23S3YyGEiamd-3YYlGVdhsxjBgPIdWYX1BT3BHXjORKT1FwyFetJyEur1heKs1ztBZzftQXJ-ifq6P11kwrEWGoYfhtpgoSdtH6eJhQzxKfubZ6EwFqi9UOnehVH3etjp4XySAo5s5s2wUCiGRMKe-MxlKiEWrMkldaWpa05kqNJUlzCFDHzflox5ThR5VDKN_kQkuEP2oBK_xnIfEHFCTnxJuODCsZkKZsqa2EId9ykjbg1axQsNovxB9bSLl6AUSNZOCJQTAuOEYFaDi_k100xk40_reuGnIN9wSUBUWkcV2PO8GliF78rTv9_t4H_mJ7D6eNUN7vuDu0NYs81K0r0tdaikb-_ySCGUlB-bRfgJxt7dig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+adversarial+networks+%28GANs%29%3A+Introduction%2C+Taxonomy%2C+Variants%2C+Limitations%2C+and+Applications&rft.jtitle=Multimedia+tools+and+applications&rft.au=Sharma%2C+Preeti&rft.au=Kumar%2C+Manoj&rft.au=Sharma%2C+Hitesh+Kumar&rft.au=Biju%2C+Soly+Mathew&rft.date=2024-12-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=83&rft.issue=41&rft.spage=88811&rft.epage=88858&rft_id=info:doi/10.1007%2Fs11042-024-18767-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_024_18767_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |