SNAPScapes: Using Geodemographic Segmentation to Classify the Food Access Landscape

Scholars are in agreement that the local food environment is shaped by a multitude of factors from socioeconomic characteristics to transportation options, as well as the availability and distance to various food establishments. Despite this, most place-based indicators of “food deserts”, including...

Full description

Saved in:
Bibliographic Details
Published inUrban science Vol. 2; no. 3; p. 71
Main Authors Major, Elizabeth, Delmelle, Elizabeth, Delmelle, Eric
Format Journal Article
LanguageEnglish
Published MDPI AG 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Scholars are in agreement that the local food environment is shaped by a multitude of factors from socioeconomic characteristics to transportation options, as well as the availability and distance to various food establishments. Despite this, most place-based indicators of “food deserts”, including those identified as so by the US Department of Agriculture (USDA), only include a limited number of factors in their designation. In this article, we adopt a geodemographic approach to classifying the food access landscape that takes a multivariate approach to describing the food access landscape. Our method combines socioeconomic indicators, distance measurements to Supplemental Nutrition Assistance Program (SNAP) participating stores, and neighborhood walkability using a k-means clustering approach and North Carolina as a case study. We identified seven distinct food access types: three rural and four urban. These classes were subsequently prioritized based on their defining characteristics and specific policy recommendations were identified. Overall, compared to the USDA’s food desert calculation, our approach identified a broader swath of high-needs areas and highlights neighborhoods that may be overlooked for intervention when using simple distance-based methods.
AbstractList Scholars are in agreement that the local food environment is shaped by a multitude of factors from socioeconomic characteristics to transportation options, as well as the availability and distance to various food establishments. Despite this, most place-based indicators of "food deserts", including those identified as so by the US Department of Agriculture (USDA), only include a limited number of factors in their designation. In this article, we adopt a geodemographic approach to classifying the food access landscape that takes a multivariate approach to describing the food access landscape. Our method combines socioeconomic indicators, distance measurements to Supplemental Nutrition Assistance Program (SNAP) participating stores, and neighborhood walkability using a k-means clustering approach and North Carolina as a case study. We identified seven distinct food access types: three rural and four urban. These classes were subsequently prioritized based on their defining characteristics and specific policy recommendations were identified. Overall, compared to the USDA's food desert calculation, our approach identified a broader swath of high-needs areas and highlights neighborhoods that may be overlooked for intervention when using simple distance-based methods.
Author Delmelle, Elizabeth
Delmelle, Eric
Major, Elizabeth
Author_xml – sequence: 1
  givenname: Elizabeth
  surname: Major
  fullname: Major, Elizabeth
– sequence: 2
  givenname: Elizabeth
  surname: Delmelle
  fullname: Delmelle, Elizabeth
– sequence: 3
  givenname: Eric
  orcidid: 0000-0002-5117-2238
  surname: Delmelle
  fullname: Delmelle, Eric
BookMark eNpd0M1OAjEUBeDGYCIia7d9gZH-zEw77ghRJCFqMrKe3GlvoQSmpB0XvL0gxhhX5-QsvsW5JYMudEjIPWcPUlZs8hlb6JLxgknGFL8iQ5FzmWld8MGffkPGKW0ZY4JppatySOr6dfpeGzhgeqSr5Ls1nWOwuA_rCIeNN7TG9R67HnofOtoHOttBSt4dab9B-hyCpVNjMCW6hM6ms3RHrh3sEo5_ckRWz08fs5ds-TZfzKbLzAil-8yUlTVSMFWA5YU0ZcmddkpzKcHlaJhShXGOyQorax20rea2Egal5ChzK0dkcXFtgG1ziH4P8dgE8M33EOK6gdh7s8MmtxXKE1XkRueqtTp3YHglCyiEQChP1uRimRhSiuh-Pc6a88XNv4vlF3HscrI
CitedBy_id crossref_primary_10_3390_ijerph17041263
crossref_primary_10_3390_urbansci3030075
crossref_primary_10_1016_j_annepidem_2021_10_002
crossref_primary_10_1080_00330124_2022_2103720
crossref_primary_10_1007_s44212_022_00021_1
crossref_primary_10_1186_s12942_019_0195_7
crossref_primary_10_1017_S1368980022002476
crossref_primary_10_3390_ijerph16061052
crossref_primary_10_3390_su16031136
crossref_primary_10_3389_fpubh_2020_00071
Cites_doi 10.1016/j.healthplace.2013.01.004
10.1080/19320248.2015.1004221
10.1111/0033-0124.00158
10.1016/j.apgeog.2017.03.018
10.1016/j.socscimed.2015.08.010
10.1016/j.apgeog.2014.07.017
10.1016/j.neuroimage.2009.06.014
10.1016/j.healthplace.2014.08.011
10.1007/s10109-010-0113-9
10.2105/AJPH.2010.192757
10.1016/j.jand.2017.11.004
10.1016/j.apgeog.2014.08.017
10.1007/s10708-016-9716-0
10.1016/j.apgeog.2013.11.002
10.1016/j.socscimed.2014.02.021
10.1016/j.apgeog.2014.06.012
10.1177/0739456X08317461
10.1007/s10460-014-9501-y
10.1016/j.apgeog.2014.03.007
10.1371/journal.pone.0013214
10.1016/j.apgeog.2014.12.002
10.1080/00045608.2015.1052335
10.1177/0038038506067507
10.1362/026725709X429728
10.2105/AJPH.2004.042150
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/urbansci2030071
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Sociology & Social History
EISSN 2413-8851
ExternalDocumentID oai_doaj_org_article_4d9e3f0354c847bd84fac1935a522ea6
10_3390_urbansci2030071
GroupedDBID AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
GROUPED_DOAJ
IAO
MODMG
M~E
OK1
PIMPY
ID FETCH-LOGICAL-c278t-c69dc32075ad153c661f8f78133af4ec0775cff039e9ddfabb81d92ce331e34d3
IEDL.DBID DOA
ISSN 2413-8851
IngestDate Tue Oct 22 15:11:43 EDT 2024
Fri Aug 23 02:58:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c278t-c69dc32075ad153c661f8f78133af4ec0775cff039e9ddfabb81d92ce331e34d3
ORCID 0000-0002-5117-2238
OpenAccessLink https://doaj.org/article/4d9e3f0354c847bd84fac1935a522ea6
ParticipantIDs doaj_primary_oai_doaj_org_article_4d9e3f0354c847bd84fac1935a522ea6
crossref_primary_10_3390_urbansci2030071
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Urban science
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref13
ref12
ref34
ref14
ref31
ref30
ref33
ref32
ref2
ref1
ref17
ref19
ref18
Sleight (ref22) 1997
Gallagher (ref5) 2011; 38
Zaki (ref35) 2014
Andrews (ref15) 2012; 10
LeClair (ref11) 2014; 31
ref23
ref26
ref25
ref20
ref21
Shannon (ref10) 2017; 82
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
Kaufman (ref16) 1999; 13
ref6
Harris (ref24) 2005
References_xml – ident: ref6
  doi: 10.1016/j.healthplace.2013.01.004
– ident: ref1
– ident: ref12
  doi: 10.1080/19320248.2015.1004221
– ident: ref21
  doi: 10.1111/0033-0124.00158
– ident: ref9
  doi: 10.1016/j.apgeog.2017.03.018
– ident: ref14
  doi: 10.1016/j.socscimed.2015.08.010
– ident: ref20
  doi: 10.1016/j.apgeog.2014.07.017
– ident: ref33
  doi: 10.1016/j.neuroimage.2009.06.014
– ident: ref3
  doi: 10.1016/j.healthplace.2014.08.011
– ident: ref26
  doi: 10.1007/s10109-010-0113-9
– ident: ref13
  doi: 10.2105/AJPH.2010.192757
– year: 1997
  ident: ref22
  contributor:
    fullname: Sleight
– ident: ref19
  doi: 10.1016/j.jand.2017.11.004
– year: 2014
  ident: ref35
  contributor:
    fullname: Zaki
– ident: ref34
– ident: ref28
  doi: 10.1016/j.apgeog.2014.08.017
– ident: ref30
– ident: ref4
– volume: 82
  start-page: 769
  year: 2017
  ident: ref10
  article-title: What Is the Relationship between Food Shopping and Daily Mobility? A Relational Approach to Analysis of Food Access
  publication-title: GeoJournal
  doi: 10.1007/s10708-016-9716-0
  contributor:
    fullname: Shannon
– ident: ref31
  doi: 10.1016/j.apgeog.2013.11.002
– ident: ref18
  doi: 10.1016/j.socscimed.2014.02.021
– ident: ref8
  doi: 10.1016/j.apgeog.2014.06.012
– ident: ref2
  doi: 10.1177/0739456X08317461
– volume: 10
  start-page: 1
  year: 2012
  ident: ref15
  article-title: What’s Behind the Rise in SNAP Participation?
  publication-title: Amber Waves
  contributor:
    fullname: Andrews
– volume: 31
  start-page: 537
  year: 2014
  ident: ref11
  article-title: Redefining the Food Desert: Combining GIS with Direct Observation to Measure Food Access
  publication-title: Agric. Hum. Values
  doi: 10.1007/s10460-014-9501-y
  contributor:
    fullname: LeClair
– volume: 38
  year: 2011
  ident: ref5
  article-title: USDA defines food deserts
  publication-title: Nutr. Dig.
  contributor:
    fullname: Gallagher
– ident: ref7
  doi: 10.1016/j.apgeog.2014.03.007
– volume: 13
  start-page: 19
  year: 1999
  ident: ref16
  article-title: Rural Poor Have Less Access to Supermarkets, Large Grocery Stores
  publication-title: Rural Dev. Perspect.
  contributor:
    fullname: Kaufman
– ident: ref27
  doi: 10.1371/journal.pone.0013214
– ident: ref29
  doi: 10.1016/j.apgeog.2014.12.002
– ident: ref32
  doi: 10.1080/00045608.2015.1052335
– ident: ref23
  doi: 10.1177/0038038506067507
– year: 2005
  ident: ref24
  contributor:
    fullname: Harris
– ident: ref25
  doi: 10.1362/026725709X429728
– ident: ref17
  doi: 10.2105/AJPH.2004.042150
SSID ssj0002087896
Score 2.172048
Snippet Scholars are in agreement that the local food environment is shaped by a multitude of factors from socioeconomic characteristics to transportation options, as...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 71
SubjectTerms food access
food insecurity
geodemographics
GIS
North Carolina
SNAP
Title SNAPScapes: Using Geodemographic Segmentation to Classify the Food Access Landscape
URI https://doaj.org/article/4d9e3f0354c847bd84fac1935a522ea6
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yL17Enzh_jBxEvJRtTdKm3jbZHKJjWAe7lfQlkQlbZW6H_fe-NHVML168lhLK99L3vkfyfY-Q6xAiN7daBGE75wGPdSvIQcmAQ8K5MEJGkdM7Pw-jwZg_TsRka9SXuxPm7YE9cE2uE8NsiwkOmEhzLblVgKxDKGQORnmz7bbYaqbey-M1Gcsk8l4-DPv65mqRY-6HaYi7uhW3f5ShLbf-sqz0D8h-xQdpx3_HIdkx8yNyvpGR0BvqBbTU-3msj0maDjuj1N1b-ryj5Yk_fTCFNjNvPj0Fmpq3WSUpmtNlQcvBl1O7pkj2aL8oNO2UYxLpk9P5upVOyLjfe70fBNVohADCWC4DiBINLMR6rzTmLMAqa6WNJXacynIDztgOLMKWmERrq_IceWkSgmGsbRjX7JTU5sXcnBEKrKUiJa3IgXP84xUDbpB4xU5yariok9tvpLIP74CRYefgQM1-gVonXYfk5jVnXV0-wIBmVUCzvwJ6_h-LXJA9ZDbSXwa7JLXlYmWukD0s8wbZ7faGo5dGuWG-APXxxRc
link.rule.ids 315,786,790,870,2115,27955,27956
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SNAPScapes%3A+Using+Geodemographic+Segmentation+to+Classify+the+Food+Access+Landscape&rft.jtitle=Urban+science&rft.au=Elizabeth+Major&rft.au=Elizabeth+C.+Delmelle&rft.au=Eric+Delmelle&rft.date=2018-09-01&rft.pub=MDPI+AG&rft.eissn=2413-8851&rft.volume=2&rft.issue=3&rft.spage=71&rft_id=info:doi/10.3390%2Furbansci2030071&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4d9e3f0354c847bd84fac1935a522ea6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2413-8851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2413-8851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2413-8851&client=summon