Post‐Transition State Bifurcation Controls Torsional Selectivity in Radical Addition of Allenes

Post‐transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond tor...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 30; no. 65; p. e202403316
Main Authors Wu, Rong‐Kai, Zhang, Shuo‐Qing, Hong, Xin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 21.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Post‐transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond torsion can precipitate PTSB, thereby significantly complicating the quantitative understanding of dynamic selectivity. In this work, we found that the radical addition of allenes is an elementary transformation that generally exhibits PTSB stereoselectivity, where a single radical addition transition state can lead to both Z ‐ and E ‐allylic radicals via the post‐transition state allylic single bond torsion. Interestingly, dynamic Z / E ‐selectivity favors the Z ‐allylic radicals, which contrasts the thermodynamic preference. Based on the dynamics study of twenty‐five radical additions of mono‐substituted allenes with diverse electronic and steric effects, we have identified that this dynamic stereoselectivity is synergistically controlled by the transition state structure and the differential trends within specific dimensions of the bifurcating reaction coordinates, which also holds true for di‐substituted allene substrates. This study refines the mechanism of radical addition of allenes and underscores the importance of the differential trend of the reaction coordinates in controlling dynamic selectivity, offering a deeper insight into PTSB selectivity factors.
AbstractList Post-transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond torsion can precipitate PTSB, thereby significantly complicating the quantitative understanding of dynamic selectivity. In this work, we found that the radical addition of allenes is an elementary transformation that generally exhibits PTSB stereoselectivity, where a single radical addition transition state can lead to both Z- and E-allylic radicals via the post-transition state allylic single bond torsion. Interestingly, dynamic Z/E-selectivity favors the Z-allylic radicals, which contrasts the thermodynamic preference. Based on the dynamics study of twenty-five radical additions of mono-substituted allenes with diverse electronic and steric effects, we have identified that this dynamic stereoselectivity is synergistically controlled by the transition state structure and the differential trends within specific dimensions of the bifurcating reaction coordinates, which also holds true for di-substituted allene substrates. This study refines the mechanism of radical addition of allenes and underscores the importance of the differential trend of the reaction coordinates in controlling dynamic selectivity, offering a deeper insight into PTSB selectivity factors.
Post-transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond torsion can precipitate PTSB, thereby significantly complicating the quantitative understanding of dynamic selectivity. In this work, we found that the radical addition of allenes is an elementary transformation that generally exhibits PTSB stereoselectivity, where a single radical addition transition state can lead to both Z- and E-allylic radicals via the post-transition state allylic single bond torsion. Interestingly, dynamic Z/E-selectivity favors the Z-allylic radicals, which contrasts the thermodynamic preference. Based on the dynamics study of twenty-five radical additions of mono-substituted allenes with diverse electronic and steric effects, we have identified that this dynamic stereoselectivity is synergistically controlled by the transition state structure and the differential trends within specific dimensions of the bifurcating reaction coordinates, which also holds true for di-substituted allene substrates. This study refines the mechanism of radical addition of allenes and underscores the importance of the differential trend of the reaction coordinates in controlling dynamic selectivity, offering a deeper insight into PTSB selectivity factors.Post-transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond torsion can precipitate PTSB, thereby significantly complicating the quantitative understanding of dynamic selectivity. In this work, we found that the radical addition of allenes is an elementary transformation that generally exhibits PTSB stereoselectivity, where a single radical addition transition state can lead to both Z- and E-allylic radicals via the post-transition state allylic single bond torsion. Interestingly, dynamic Z/E-selectivity favors the Z-allylic radicals, which contrasts the thermodynamic preference. Based on the dynamics study of twenty-five radical additions of mono-substituted allenes with diverse electronic and steric effects, we have identified that this dynamic stereoselectivity is synergistically controlled by the transition state structure and the differential trends within specific dimensions of the bifurcating reaction coordinates, which also holds true for di-substituted allene substrates. This study refines the mechanism of radical addition of allenes and underscores the importance of the differential trend of the reaction coordinates in controlling dynamic selectivity, offering a deeper insight into PTSB selectivity factors.
Post‐transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond torsion can precipitate PTSB, thereby significantly complicating the quantitative understanding of dynamic selectivity. In this work, we found that the radical addition of allenes is an elementary transformation that generally exhibits PTSB stereoselectivity, where a single radical addition transition state can lead to both Z ‐ and E ‐allylic radicals via the post‐transition state allylic single bond torsion. Interestingly, dynamic Z / E ‐selectivity favors the Z ‐allylic radicals, which contrasts the thermodynamic preference. Based on the dynamics study of twenty‐five radical additions of mono‐substituted allenes with diverse electronic and steric effects, we have identified that this dynamic stereoselectivity is synergistically controlled by the transition state structure and the differential trends within specific dimensions of the bifurcating reaction coordinates, which also holds true for di‐substituted allene substrates. This study refines the mechanism of radical addition of allenes and underscores the importance of the differential trend of the reaction coordinates in controlling dynamic selectivity, offering a deeper insight into PTSB selectivity factors.
Author Wu, Rong‐Kai
Zhang, Shuo‐Qing
Hong, Xin
Author_xml – sequence: 1
  givenname: Rong‐Kai
  surname: Wu
  fullname: Wu, Rong‐Kai
  organization: Center of Chemistry for Frontier Technologies Department of Chemistry State Key Laboratory of Clean Energy Utilization Zhejiang University 866 Yuhangtang Road Hangzhou, Zhejiang Province 310058 China
– sequence: 2
  givenname: Shuo‐Qing
  surname: Zhang
  fullname: Zhang, Shuo‐Qing
  organization: Center of Chemistry for Frontier Technologies Department of Chemistry State Key Laboratory of Clean Energy Utilization Zhejiang University 866 Yuhangtang Road Hangzhou, Zhejiang Province 310058 China
– sequence: 3
  givenname: Xin
  orcidid: 0000-0003-4717-2814
  surname: Hong
  fullname: Hong, Xin
  organization: Center of Chemistry for Frontier Technologies Department of Chemistry State Key Laboratory of Clean Energy Utilization Zhejiang University 866 Yuhangtang Road Hangzhou, Zhejiang Province 310058 China, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang, Henan Province 453007 China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39262303$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtLAzEUhYNU7EO3LmXAjZupeU1msqzFFxQUW9dDmgemTCc1yQjd-RP8jf4SZ2ztQu7iwrkfB-45Q9CrXa0BOEdwjCDE1_JNr8cYYgoJQewIDFCGUUpylvXAAHKapywjvA-GIawghJwRcgL6hGOGCSQDIJ5diN-fXwsv6mCjdXUyjyLq5Maaxkvxq0xdHb2rQrJwPrSCqJK5rrSM9sPGbWLr5EUoK1t5otTOxJlkUlW61uEUHBtRBX223yPwene7mD6ks6f7x-lklkqcFzEVWGklcqLyAktEJdOF5Awjydt7xpaUGoOVEEZkiiFFmSmQ5jnkAnOmDCMjcLXz3Xj33ugQy7UNUleVqLVrQkkQJJTygpAWvfyHrlzj27c6qhtE23hG4GJPNcu1VuXG27Xw2_IvvBYY7wDpXQhemwOCYNm1U3btlId2yA8Yl4M0
Cites_doi 10.1021/jacs.7b02966
10.1038/s41557-023-01410-y
10.1021/jacs.5b05971
10.1021/ja0606024
10.1021/ja00291a018
10.1021/ja208779k
10.1016/j.chempr.2018.10.019
10.1515/pac-2017-0104
10.1021/acs.chemrev.9b00312
10.1103/PhysRevB.37.785
10.1002/anie.202005265
10.1063/1.3382344
10.1063/1.472063
10.1039/c1cp22565k
10.1002/anie.200903293
10.1039/C4CC05743K
10.1063/1.1553978
10.1002/jcc.10013
10.1021/ja308295p
10.1063/1.468990
10.1021/jacs.8b12674
10.1038/nchem.1843
10.1039/b515623h
10.1021/jp810292n
10.1126/science.272.5267.1456
10.1063/1.464913
10.1002/jcc.21759
10.1063/1.481826
10.1021/ja00040a071
10.1021/jacs.1c05293
10.1002/ijch.202100071
10.1021/jacs.8b05804
10.1021/jacs.8b11080
10.1021/ar00072a001
10.1021/ol300817a
10.1021/ja00059a043
10.1021/acs.jpca.9b10410
10.1039/b508541a
10.1063/1.448450
10.1016/S0040-4039(02)02014-2
10.1063/1.474459
10.1021/acs.jpca.5b02834
10.1021/ja00128a024
10.1021/acs.jpca.2c08301
10.1021/ja0016809
10.1021/jacs.9b13449
10.1021/jacs.0c13401
10.1021/ja070686w
10.1021/acs.joc.8b03236
10.1021/jo502041f
10.1021/jacs.9b12227
10.1002/anie.200800918
10.1002/qua.24757
10.1021/acs.jctc.0c00172
10.1021/jacs.2c12871
10.1002/jcc.540090505
10.1021/jacs.7b01042
10.1039/C6SC03745C
10.1021/acscatal.8b04130
10.1039/C8OB00075A
10.1039/C4CP05078A
10.1021/acs.jpclett.2c02668
10.1021/jacs.7b13562
10.1021/jo034401j
10.1080/00268978400100781
10.1021/jacs.1c10760
10.1021/jacs.6b00017
10.1021/acscatal.1c01291
10.1021/ja802577v
10.1021/jacs.6b07328
10.1002/anie.201208777
10.1021/jacs.5b06656
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH.
2024 Wiley-VCH GmbH
Copyright_xml – notice: 2024 Wiley-VCH GmbH.
– notice: 2024 Wiley-VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202403316
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
ExternalDocumentID 39262303
10_1002_chem_202403316
Genre Journal Article
GrantInformation_xml – fundername: the State Key Laboratory of Physical Chemistry of Solid Surfaces
  grantid: 202210
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 226-2023-00115
– fundername: the Leading Innovation Team grant from Department of Science and Technology of Zhejiang Province
  grantid: 2022R01005
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 226-2022-00140
– fundername: the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study
  grantid: SN-ZJU-SIAS-006
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 226-2022-00224
– fundername: National Natural Science Foundation of China
  grantid: 22271253
– fundername: CAS Youth Interdisciplinary Team
  grantid: JCTD-2021-11
– fundername: National Key R&D Program of China
  grantid: 2022YFA1504301
– fundername: National Natural Science Foundation of China
  grantid: 22122109
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AEUQT
AFPWT
NPM
RGC
RWI
WRC
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c278t-a2deda73d782c14c6e8c9621c9c2756b44ff2daafa5d61d46f81e9709a296df63
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 02:15:36 EDT 2025
Fri Jul 25 12:11:32 EDT 2025
Wed Feb 19 02:02:58 EST 2025
Tue Jul 01 00:44:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 65
Keywords Quasiclassic dynamics trajectory simulation
Torsional selectivity
Post-transition state bifurcation
Quantitative structure-selectivity relationship
Radical addition of allenes
Language English
License 2024 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c278t-a2deda73d782c14c6e8c9621c9c2756b44ff2daafa5d61d46f81e9709a296df63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4717-2814
PMID 39262303
PQID 3131311462
PQPubID 986340
ParticipantIDs proquest_miscellaneous_3103449833
proquest_journals_3131311462
pubmed_primary_39262303
crossref_primary_10_1002_chem_202403316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-21
PublicationDateYYYYMMDD 2024-11-21
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-21
  day: 21
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_1
e_1_2_8_45_2
e_1_2_8_26_1
e_1_2_8_47_2
e_1_2_8_68_2
e_1_2_8_9_2
e_1_2_8_3_1
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_20_2
e_1_2_8_87_1
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_64_2
e_1_2_8_85_2
e_1_2_8_62_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_83_1
e_1_2_8_60_2
e_1_2_8_81_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_59_1
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_57_2
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_30_2
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_11_2
e_1_2_8_74_1
e_1_2_8_51_2
e_1_2_8_72_2
e_1_2_8_27_2
e_1_2_8_29_1
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_25_1
e_1_2_8_48_2
e_1_2_8_80_2
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_44_2
e_1_2_8_63_2
e_1_2_8_86_2
e_1_2_8_65_1
e_1_2_8_61_2
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_1
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_14_2
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_31_2
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_50_2
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_71_2
References_xml – ident: e_1_2_8_11_2
  doi: 10.1021/jacs.7b02966
– ident: e_1_2_8_70_1
– ident: e_1_2_8_69_2
  doi: 10.1038/s41557-023-01410-y
– ident: e_1_2_8_31_2
  doi: 10.1021/jacs.5b05971
– ident: e_1_2_8_75_1
  doi: 10.1021/ja0606024
– ident: e_1_2_8_84_1
– ident: e_1_2_8_37_1
– ident: e_1_2_8_52_1
  doi: 10.1021/ja00291a018
– ident: e_1_2_8_66_1
  doi: 10.1021/ja208779k
– ident: e_1_2_8_36_2
  doi: 10.1016/j.chempr.2018.10.019
– ident: e_1_2_8_40_1
  doi: 10.1515/pac-2017-0104
– ident: e_1_2_8_73_1
  doi: 10.1021/acs.chemrev.9b00312
– ident: e_1_2_8_67_1
– ident: e_1_2_8_80_2
  doi: 10.1103/PhysRevB.37.785
– ident: e_1_2_8_59_1
– ident: e_1_2_8_14_2
  doi: 10.1002/anie.202005265
– ident: e_1_2_8_82_1
  doi: 10.1063/1.3382344
– ident: e_1_2_8_45_2
  doi: 10.1063/1.472063
– ident: e_1_2_8_3_1
  doi: 10.1039/c1cp22565k
– ident: e_1_2_8_20_2
  doi: 10.1002/anie.200903293
– ident: e_1_2_8_74_1
  doi: 10.1039/C4CC05743K
– ident: e_1_2_8_89_1
– ident: e_1_2_8_32_1
– ident: e_1_2_8_48_2
  doi: 10.1063/1.1553978
– ident: e_1_2_8_72_2
  doi: 10.1002/jcc.10013
– ident: e_1_2_8_4_1
– ident: e_1_2_8_33_2
  doi: 10.1021/ja308295p
– ident: e_1_2_8_71_2
  doi: 10.1063/1.468990
– ident: e_1_2_8_13_2
  doi: 10.1021/jacs.8b12674
– ident: e_1_2_8_55_1
  doi: 10.1038/nchem.1843
– ident: e_1_2_8_86_2
  doi: 10.1039/b515623h
– ident: e_1_2_8_87_1
  doi: 10.1021/jp810292n
– ident: e_1_2_8_58_2
  doi: 10.1126/science.272.5267.1456
– ident: e_1_2_8_81_2
  doi: 10.1063/1.464913
– ident: e_1_2_8_83_1
  doi: 10.1002/jcc.21759
– ident: e_1_2_8_47_2
  doi: 10.1063/1.481826
– ident: e_1_2_8_57_2
  doi: 10.1021/ja00040a071
– ident: e_1_2_8_16_2
  doi: 10.1021/jacs.1c05293
– ident: e_1_2_8_18_1
– ident: e_1_2_8_25_1
  doi: 10.1002/ijch.202100071
– ident: e_1_2_8_35_2
  doi: 10.1021/jacs.8b05804
– ident: e_1_2_8_12_2
  doi: 10.1021/jacs.8b11080
– ident: e_1_2_8_88_1
  doi: 10.1021/ar00072a001
– ident: e_1_2_8_53_1
  doi: 10.1021/ol300817a
– ident: e_1_2_8_60_2
  doi: 10.1021/ja00059a043
– ident: e_1_2_8_65_1
  doi: 10.1021/acs.jpca.9b10410
– ident: e_1_2_8_29_1
– ident: e_1_2_8_85_2
  doi: 10.1039/b508541a
– ident: e_1_2_8_26_1
– ident: e_1_2_8_43_2
  doi: 10.1063/1.448450
– ident: e_1_2_8_6_2
  doi: 10.1016/S0040-4039(02)02014-2
– ident: e_1_2_8_46_2
  doi: 10.1063/1.474459
– ident: e_1_2_8_62_2
  doi: 10.1021/acs.jpca.5b02834
– ident: e_1_2_8_54_1
  doi: 10.1021/ja00128a024
– ident: e_1_2_8_64_2
  doi: 10.1021/acs.jpca.2c08301
– ident: e_1_2_8_61_2
  doi: 10.1021/ja0016809
– ident: e_1_2_8_77_1
  doi: 10.1021/jacs.9b13449
– ident: e_1_2_8_15_2
  doi: 10.1021/jacs.0c13401
– ident: e_1_2_8_56_1
– ident: e_1_2_8_8_2
  doi: 10.1021/ja070686w
– ident: e_1_2_8_23_2
  doi: 10.1021/acs.joc.8b03236
– ident: e_1_2_8_2_1
  doi: 10.1021/jo502041f
– ident: e_1_2_8_34_2
  doi: 10.1021/jacs.9b12227
– ident: e_1_2_8_1_1
  doi: 10.1002/anie.200800918
– ident: e_1_2_8_78_1
– ident: e_1_2_8_49_2
  doi: 10.1002/qua.24757
– ident: e_1_2_8_50_2
  doi: 10.1021/acs.jctc.0c00172
– ident: e_1_2_8_17_2
  doi: 10.1021/jacs.2c12871
– ident: e_1_2_8_44_2
  doi: 10.1002/jcc.540090505
– ident: e_1_2_8_68_2
  doi: 10.1021/jacs.7b01042
– ident: e_1_2_8_39_2
  doi: 10.1039/C6SC03745C
– ident: e_1_2_8_38_2
  doi: 10.1021/acscatal.8b04130
– ident: e_1_2_8_21_1
– ident: e_1_2_8_7_1
– ident: e_1_2_8_22_2
  doi: 10.1039/C8OB00075A
– ident: e_1_2_8_63_2
  doi: 10.1039/C4CP05078A
– ident: e_1_2_8_51_2
  doi: 10.1021/acs.jpclett.2c02668
– ident: e_1_2_8_76_1
  doi: 10.1021/jacs.7b13562
– ident: e_1_2_8_5_2
  doi: 10.1021/jo034401j
– ident: e_1_2_8_41_1
– ident: e_1_2_8_42_2
  doi: 10.1080/00268978400100781
– ident: e_1_2_8_24_1
  doi: 10.1021/jacs.1c10760
– ident: e_1_2_8_10_2
  doi: 10.1021/jacs.6b00017
– ident: e_1_2_8_27_2
  doi: 10.1021/acscatal.1c01291
– ident: e_1_2_8_19_2
  doi: 10.1021/ja802577v
– ident: e_1_2_8_28_2
  doi: 10.1021/jacs.6b07328
– ident: e_1_2_8_30_2
  doi: 10.1002/anie.201208777
– ident: e_1_2_8_9_2
  doi: 10.1021/jacs.5b06656
– ident: e_1_2_8_79_1
SSID ssj0009633
Score 2.4613
Snippet Post‐transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical...
Post-transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage e202403316
SubjectTerms Bifurcations
Chemical bonds
Radicals
Reaction mechanisms
Stereoselectivity
Steric effects
Substitutes
Title Post‐Transition State Bifurcation Controls Torsional Selectivity in Radical Addition of Allenes
URI https://www.ncbi.nlm.nih.gov/pubmed/39262303
https://www.proquest.com/docview/3131311462
https://www.proquest.com/docview/3103449833
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVbB1tfxr6brR0aDPYQ3FmSo9iPWWkpGxuspJA3I1tSZ9jsksYv_fW7Vx9OsrawjYAJliM7OsdXV1e6R4S8x2xHFC1IcitkktWARVUVMpGV5MxkhVQWA_pfv8nT8-zzYrJYyxO47JJVdVhf35pX8j-owjnAFbNk_wHZoVI4Ad8BXzgCwnD8K4xxp93E9TaNf_HRcxx_amy_9JE4TOjDlehX43m39PobYB1-OiOH7nfTjs-Un6mZad1E73GG-6uExYVRxSBuDDf26dFbUfz4oGjce79eu71IvqjmZlj6R98l32N36Zbt-oJFUAAPAQieYSaez2o-NMFocoaGarJpVcNsi2dPKPI20mAlqRA-x_KGCfeSsMBY1Am45UL4l5e_HKACtQ5FKtZd2bDAMBbdJw84jB_cWPtsrSsGVkdEBc-Uf9y-2S55GH--7azcMQJxnsj8CXkchhB05vnwlNwz7TPyaADoOSn_4AV1vKAbvKCRF3TgBd3gBW1aGnhBIy9oZ2ngxQtyfnI8PzpNwkYaSc2n-SpRXButpkKDO1izrJYmrwt4F-uiRvX_Ksus5VopqyZaMp1JmzNTTNNC8UJqK8VLstN2rdkjVEuNCkFywmwKFeV5VTNrGAYadJGpfEQ-xBYrL71eSumVsXmJzVwOzTwi-7FBy0DVq1Iw_EDvzUfk3VAMzYfTWKo1XY_XoExlkQsxIq88EMOtInCv7yx5Q3bXJN4nO6tlbw7Ar1xVbx1HfgM5xncL
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-Transition+State+Bifurcation+Controls+Torsional+Selectivity+in+Radical+Addition+of+Allenes&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Wu%2C+Rong-Kai&rft.au=Zhang%2C+Shuo-Qing&rft.au=Hong%2C+Xin&rft.date=2024-11-21&rft.eissn=1521-3765&rft.volume=30&rft.issue=65&rft.spage=e202403316&rft_id=info:doi/10.1002%2Fchem.202403316&rft_id=info%3Apmid%2F39262303&rft.externalDocID=39262303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon