Post‐Transition State Bifurcation Controls Torsional Selectivity in Radical Addition of Allenes
Post‐transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond tor...
Saved in:
Published in | Chemistry : a European journal Vol. 30; no. 65; p. e202403316 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
21.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Post‐transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond torsion can precipitate PTSB, thereby significantly complicating the quantitative understanding of dynamic selectivity. In this work, we found that the radical addition of allenes is an elementary transformation that generally exhibits PTSB stereoselectivity, where a single radical addition transition state can lead to both
Z
‐ and
E
‐allylic radicals via the post‐transition state allylic single bond torsion. Interestingly, dynamic
Z
/
E
‐selectivity favors the
Z
‐allylic radicals, which contrasts the thermodynamic preference. Based on the dynamics study of twenty‐five radical additions of mono‐substituted allenes with diverse electronic and steric effects, we have identified that this dynamic stereoselectivity is synergistically controlled by the transition state structure and the differential trends within specific dimensions of the bifurcating reaction coordinates, which also holds true for di‐substituted allene substrates. This study refines the mechanism of radical addition of allenes and underscores the importance of the differential trend of the reaction coordinates in controlling dynamic selectivity, offering a deeper insight into PTSB selectivity factors. |
---|---|
AbstractList | Post-transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond torsion can precipitate PTSB, thereby significantly complicating the quantitative understanding of dynamic selectivity. In this work, we found that the radical addition of allenes is an elementary transformation that generally exhibits PTSB stereoselectivity, where a single radical addition transition state can lead to both Z- and E-allylic radicals via the post-transition state allylic single bond torsion. Interestingly, dynamic Z/E-selectivity favors the Z-allylic radicals, which contrasts the thermodynamic preference. Based on the dynamics study of twenty-five radical additions of mono-substituted allenes with diverse electronic and steric effects, we have identified that this dynamic stereoselectivity is synergistically controlled by the transition state structure and the differential trends within specific dimensions of the bifurcating reaction coordinates, which also holds true for di-substituted allene substrates. This study refines the mechanism of radical addition of allenes and underscores the importance of the differential trend of the reaction coordinates in controlling dynamic selectivity, offering a deeper insight into PTSB selectivity factors. Post-transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond torsion can precipitate PTSB, thereby significantly complicating the quantitative understanding of dynamic selectivity. In this work, we found that the radical addition of allenes is an elementary transformation that generally exhibits PTSB stereoselectivity, where a single radical addition transition state can lead to both Z- and E-allylic radicals via the post-transition state allylic single bond torsion. Interestingly, dynamic Z/E-selectivity favors the Z-allylic radicals, which contrasts the thermodynamic preference. Based on the dynamics study of twenty-five radical additions of mono-substituted allenes with diverse electronic and steric effects, we have identified that this dynamic stereoselectivity is synergistically controlled by the transition state structure and the differential trends within specific dimensions of the bifurcating reaction coordinates, which also holds true for di-substituted allene substrates. This study refines the mechanism of radical addition of allenes and underscores the importance of the differential trend of the reaction coordinates in controlling dynamic selectivity, offering a deeper insight into PTSB selectivity factors.Post-transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond torsion can precipitate PTSB, thereby significantly complicating the quantitative understanding of dynamic selectivity. In this work, we found that the radical addition of allenes is an elementary transformation that generally exhibits PTSB stereoselectivity, where a single radical addition transition state can lead to both Z- and E-allylic radicals via the post-transition state allylic single bond torsion. Interestingly, dynamic Z/E-selectivity favors the Z-allylic radicals, which contrasts the thermodynamic preference. Based on the dynamics study of twenty-five radical additions of mono-substituted allenes with diverse electronic and steric effects, we have identified that this dynamic stereoselectivity is synergistically controlled by the transition state structure and the differential trends within specific dimensions of the bifurcating reaction coordinates, which also holds true for di-substituted allene substrates. This study refines the mechanism of radical addition of allenes and underscores the importance of the differential trend of the reaction coordinates in controlling dynamic selectivity, offering a deeper insight into PTSB selectivity factors. Post‐transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond torsion can precipitate PTSB, thereby significantly complicating the quantitative understanding of dynamic selectivity. In this work, we found that the radical addition of allenes is an elementary transformation that generally exhibits PTSB stereoselectivity, where a single radical addition transition state can lead to both Z ‐ and E ‐allylic radicals via the post‐transition state allylic single bond torsion. Interestingly, dynamic Z / E ‐selectivity favors the Z ‐allylic radicals, which contrasts the thermodynamic preference. Based on the dynamics study of twenty‐five radical additions of mono‐substituted allenes with diverse electronic and steric effects, we have identified that this dynamic stereoselectivity is synergistically controlled by the transition state structure and the differential trends within specific dimensions of the bifurcating reaction coordinates, which also holds true for di‐substituted allene substrates. This study refines the mechanism of radical addition of allenes and underscores the importance of the differential trend of the reaction coordinates in controlling dynamic selectivity, offering a deeper insight into PTSB selectivity factors. |
Author | Wu, Rong‐Kai Zhang, Shuo‐Qing Hong, Xin |
Author_xml | – sequence: 1 givenname: Rong‐Kai surname: Wu fullname: Wu, Rong‐Kai organization: Center of Chemistry for Frontier Technologies Department of Chemistry State Key Laboratory of Clean Energy Utilization Zhejiang University 866 Yuhangtang Road Hangzhou, Zhejiang Province 310058 China – sequence: 2 givenname: Shuo‐Qing surname: Zhang fullname: Zhang, Shuo‐Qing organization: Center of Chemistry for Frontier Technologies Department of Chemistry State Key Laboratory of Clean Energy Utilization Zhejiang University 866 Yuhangtang Road Hangzhou, Zhejiang Province 310058 China – sequence: 3 givenname: Xin orcidid: 0000-0003-4717-2814 surname: Hong fullname: Hong, Xin organization: Center of Chemistry for Frontier Technologies Department of Chemistry State Key Laboratory of Clean Energy Utilization Zhejiang University 866 Yuhangtang Road Hangzhou, Zhejiang Province 310058 China, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang, Henan Province 453007 China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39262303$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtLAzEUhYNU7EO3LmXAjZupeU1msqzFFxQUW9dDmgemTCc1yQjd-RP8jf4SZ2ztQu7iwrkfB-45Q9CrXa0BOEdwjCDE1_JNr8cYYgoJQewIDFCGUUpylvXAAHKapywjvA-GIawghJwRcgL6hGOGCSQDIJ5diN-fXwsv6mCjdXUyjyLq5Maaxkvxq0xdHb2rQrJwPrSCqJK5rrSM9sPGbWLr5EUoK1t5otTOxJlkUlW61uEUHBtRBX223yPwene7mD6ks6f7x-lklkqcFzEVWGklcqLyAktEJdOF5Awjydt7xpaUGoOVEEZkiiFFmSmQ5jnkAnOmDCMjcLXz3Xj33ugQy7UNUleVqLVrQkkQJJTygpAWvfyHrlzj27c6qhtE23hG4GJPNcu1VuXG27Xw2_IvvBYY7wDpXQhemwOCYNm1U3btlId2yA8Yl4M0 |
Cites_doi | 10.1021/jacs.7b02966 10.1038/s41557-023-01410-y 10.1021/jacs.5b05971 10.1021/ja0606024 10.1021/ja00291a018 10.1021/ja208779k 10.1016/j.chempr.2018.10.019 10.1515/pac-2017-0104 10.1021/acs.chemrev.9b00312 10.1103/PhysRevB.37.785 10.1002/anie.202005265 10.1063/1.3382344 10.1063/1.472063 10.1039/c1cp22565k 10.1002/anie.200903293 10.1039/C4CC05743K 10.1063/1.1553978 10.1002/jcc.10013 10.1021/ja308295p 10.1063/1.468990 10.1021/jacs.8b12674 10.1038/nchem.1843 10.1039/b515623h 10.1021/jp810292n 10.1126/science.272.5267.1456 10.1063/1.464913 10.1002/jcc.21759 10.1063/1.481826 10.1021/ja00040a071 10.1021/jacs.1c05293 10.1002/ijch.202100071 10.1021/jacs.8b05804 10.1021/jacs.8b11080 10.1021/ar00072a001 10.1021/ol300817a 10.1021/ja00059a043 10.1021/acs.jpca.9b10410 10.1039/b508541a 10.1063/1.448450 10.1016/S0040-4039(02)02014-2 10.1063/1.474459 10.1021/acs.jpca.5b02834 10.1021/ja00128a024 10.1021/acs.jpca.2c08301 10.1021/ja0016809 10.1021/jacs.9b13449 10.1021/jacs.0c13401 10.1021/ja070686w 10.1021/acs.joc.8b03236 10.1021/jo502041f 10.1021/jacs.9b12227 10.1002/anie.200800918 10.1002/qua.24757 10.1021/acs.jctc.0c00172 10.1021/jacs.2c12871 10.1002/jcc.540090505 10.1021/jacs.7b01042 10.1039/C6SC03745C 10.1021/acscatal.8b04130 10.1039/C8OB00075A 10.1039/C4CP05078A 10.1021/acs.jpclett.2c02668 10.1021/jacs.7b13562 10.1021/jo034401j 10.1080/00268978400100781 10.1021/jacs.1c10760 10.1021/jacs.6b00017 10.1021/acscatal.1c01291 10.1021/ja802577v 10.1021/jacs.6b07328 10.1002/anie.201208777 10.1021/jacs.5b06656 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH. 2024 Wiley-VCH GmbH |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH. – notice: 2024 Wiley-VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202403316 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
ExternalDocumentID | 39262303 10_1002_chem_202403316 |
Genre | Journal Article |
GrantInformation_xml | – fundername: the State Key Laboratory of Physical Chemistry of Solid Surfaces grantid: 202210 – fundername: Fundamental Research Funds for the Central Universities grantid: 226-2023-00115 – fundername: the Leading Innovation Team grant from Department of Science and Technology of Zhejiang Province grantid: 2022R01005 – fundername: Fundamental Research Funds for the Central Universities grantid: 226-2022-00140 – fundername: the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study grantid: SN-ZJU-SIAS-006 – fundername: Fundamental Research Funds for the Central Universities grantid: 226-2022-00224 – fundername: National Natural Science Foundation of China grantid: 22271253 – fundername: CAS Youth Interdisciplinary Team grantid: JCTD-2021-11 – fundername: National Key R&D Program of China grantid: 2022YFA1504301 – fundername: National Natural Science Foundation of China grantid: 22122109 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AEUQT AFPWT NPM RGC RWI WRC 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c278t-a2deda73d782c14c6e8c9621c9c2756b44ff2daafa5d61d46f81e9709a296df63 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 02:15:36 EDT 2025 Fri Jul 25 12:11:32 EDT 2025 Wed Feb 19 02:02:58 EST 2025 Tue Jul 01 00:44:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 65 |
Keywords | Quasiclassic dynamics trajectory simulation Torsional selectivity Post-transition state bifurcation Quantitative structure-selectivity relationship Radical addition of allenes |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c278t-a2deda73d782c14c6e8c9621c9c2756b44ff2daafa5d61d46f81e9709a296df63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4717-2814 |
PMID | 39262303 |
PQID | 3131311462 |
PQPubID | 986340 |
ParticipantIDs | proquest_miscellaneous_3103449833 proquest_journals_3131311462 pubmed_primary_39262303 crossref_primary_10_1002_chem_202403316 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-21 |
PublicationDateYYYYMMDD | 2024-11-21 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_24_1 e_1_2_8_45_2 e_1_2_8_26_1 e_1_2_8_47_2 e_1_2_8_68_2 e_1_2_8_9_2 e_1_2_8_3_1 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_20_2 e_1_2_8_87_1 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_64_2 e_1_2_8_85_2 e_1_2_8_62_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_83_1 e_1_2_8_60_2 e_1_2_8_81_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_59_1 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_57_2 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_30_2 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_11_2 e_1_2_8_74_1 e_1_2_8_51_2 e_1_2_8_72_2 e_1_2_8_27_2 e_1_2_8_29_1 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_69_2 e_1_2_8_25_1 e_1_2_8_48_2 e_1_2_8_80_2 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_44_2 e_1_2_8_63_2 e_1_2_8_86_2 e_1_2_8_65_1 e_1_2_8_61_2 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_1 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_58_2 e_1_2_8_14_2 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_31_2 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_50_2 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_71_2 |
References_xml | – ident: e_1_2_8_11_2 doi: 10.1021/jacs.7b02966 – ident: e_1_2_8_70_1 – ident: e_1_2_8_69_2 doi: 10.1038/s41557-023-01410-y – ident: e_1_2_8_31_2 doi: 10.1021/jacs.5b05971 – ident: e_1_2_8_75_1 doi: 10.1021/ja0606024 – ident: e_1_2_8_84_1 – ident: e_1_2_8_37_1 – ident: e_1_2_8_52_1 doi: 10.1021/ja00291a018 – ident: e_1_2_8_66_1 doi: 10.1021/ja208779k – ident: e_1_2_8_36_2 doi: 10.1016/j.chempr.2018.10.019 – ident: e_1_2_8_40_1 doi: 10.1515/pac-2017-0104 – ident: e_1_2_8_73_1 doi: 10.1021/acs.chemrev.9b00312 – ident: e_1_2_8_67_1 – ident: e_1_2_8_80_2 doi: 10.1103/PhysRevB.37.785 – ident: e_1_2_8_59_1 – ident: e_1_2_8_14_2 doi: 10.1002/anie.202005265 – ident: e_1_2_8_82_1 doi: 10.1063/1.3382344 – ident: e_1_2_8_45_2 doi: 10.1063/1.472063 – ident: e_1_2_8_3_1 doi: 10.1039/c1cp22565k – ident: e_1_2_8_20_2 doi: 10.1002/anie.200903293 – ident: e_1_2_8_74_1 doi: 10.1039/C4CC05743K – ident: e_1_2_8_89_1 – ident: e_1_2_8_32_1 – ident: e_1_2_8_48_2 doi: 10.1063/1.1553978 – ident: e_1_2_8_72_2 doi: 10.1002/jcc.10013 – ident: e_1_2_8_4_1 – ident: e_1_2_8_33_2 doi: 10.1021/ja308295p – ident: e_1_2_8_71_2 doi: 10.1063/1.468990 – ident: e_1_2_8_13_2 doi: 10.1021/jacs.8b12674 – ident: e_1_2_8_55_1 doi: 10.1038/nchem.1843 – ident: e_1_2_8_86_2 doi: 10.1039/b515623h – ident: e_1_2_8_87_1 doi: 10.1021/jp810292n – ident: e_1_2_8_58_2 doi: 10.1126/science.272.5267.1456 – ident: e_1_2_8_81_2 doi: 10.1063/1.464913 – ident: e_1_2_8_83_1 doi: 10.1002/jcc.21759 – ident: e_1_2_8_47_2 doi: 10.1063/1.481826 – ident: e_1_2_8_57_2 doi: 10.1021/ja00040a071 – ident: e_1_2_8_16_2 doi: 10.1021/jacs.1c05293 – ident: e_1_2_8_18_1 – ident: e_1_2_8_25_1 doi: 10.1002/ijch.202100071 – ident: e_1_2_8_35_2 doi: 10.1021/jacs.8b05804 – ident: e_1_2_8_12_2 doi: 10.1021/jacs.8b11080 – ident: e_1_2_8_88_1 doi: 10.1021/ar00072a001 – ident: e_1_2_8_53_1 doi: 10.1021/ol300817a – ident: e_1_2_8_60_2 doi: 10.1021/ja00059a043 – ident: e_1_2_8_65_1 doi: 10.1021/acs.jpca.9b10410 – ident: e_1_2_8_29_1 – ident: e_1_2_8_85_2 doi: 10.1039/b508541a – ident: e_1_2_8_26_1 – ident: e_1_2_8_43_2 doi: 10.1063/1.448450 – ident: e_1_2_8_6_2 doi: 10.1016/S0040-4039(02)02014-2 – ident: e_1_2_8_46_2 doi: 10.1063/1.474459 – ident: e_1_2_8_62_2 doi: 10.1021/acs.jpca.5b02834 – ident: e_1_2_8_54_1 doi: 10.1021/ja00128a024 – ident: e_1_2_8_64_2 doi: 10.1021/acs.jpca.2c08301 – ident: e_1_2_8_61_2 doi: 10.1021/ja0016809 – ident: e_1_2_8_77_1 doi: 10.1021/jacs.9b13449 – ident: e_1_2_8_15_2 doi: 10.1021/jacs.0c13401 – ident: e_1_2_8_56_1 – ident: e_1_2_8_8_2 doi: 10.1021/ja070686w – ident: e_1_2_8_23_2 doi: 10.1021/acs.joc.8b03236 – ident: e_1_2_8_2_1 doi: 10.1021/jo502041f – ident: e_1_2_8_34_2 doi: 10.1021/jacs.9b12227 – ident: e_1_2_8_1_1 doi: 10.1002/anie.200800918 – ident: e_1_2_8_78_1 – ident: e_1_2_8_49_2 doi: 10.1002/qua.24757 – ident: e_1_2_8_50_2 doi: 10.1021/acs.jctc.0c00172 – ident: e_1_2_8_17_2 doi: 10.1021/jacs.2c12871 – ident: e_1_2_8_44_2 doi: 10.1002/jcc.540090505 – ident: e_1_2_8_68_2 doi: 10.1021/jacs.7b01042 – ident: e_1_2_8_39_2 doi: 10.1039/C6SC03745C – ident: e_1_2_8_38_2 doi: 10.1021/acscatal.8b04130 – ident: e_1_2_8_21_1 – ident: e_1_2_8_7_1 – ident: e_1_2_8_22_2 doi: 10.1039/C8OB00075A – ident: e_1_2_8_63_2 doi: 10.1039/C4CP05078A – ident: e_1_2_8_51_2 doi: 10.1021/acs.jpclett.2c02668 – ident: e_1_2_8_76_1 doi: 10.1021/jacs.7b13562 – ident: e_1_2_8_5_2 doi: 10.1021/jo034401j – ident: e_1_2_8_41_1 – ident: e_1_2_8_42_2 doi: 10.1080/00268978400100781 – ident: e_1_2_8_24_1 doi: 10.1021/jacs.1c10760 – ident: e_1_2_8_10_2 doi: 10.1021/jacs.6b00017 – ident: e_1_2_8_27_2 doi: 10.1021/acscatal.1c01291 – ident: e_1_2_8_19_2 doi: 10.1021/ja802577v – ident: e_1_2_8_28_2 doi: 10.1021/jacs.6b07328 – ident: e_1_2_8_30_2 doi: 10.1002/anie.201208777 – ident: e_1_2_8_9_2 doi: 10.1021/jacs.5b06656 – ident: e_1_2_8_79_1 |
SSID | ssj0009633 |
Score | 2.4613 |
Snippet | Post‐transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical... Post-transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | e202403316 |
SubjectTerms | Bifurcations Chemical bonds Radicals Reaction mechanisms Stereoselectivity Steric effects Substitutes |
Title | Post‐Transition State Bifurcation Controls Torsional Selectivity in Radical Addition of Allenes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39262303 https://www.proquest.com/docview/3131311462 https://www.proquest.com/docview/3103449833 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVbB1tfxr6brR0aDPYQ3FmSo9iPWWkpGxuspJA3I1tSZ9jsksYv_fW7Vx9OsrawjYAJliM7OsdXV1e6R4S8x2xHFC1IcitkktWARVUVMpGV5MxkhVQWA_pfv8nT8-zzYrJYyxO47JJVdVhf35pX8j-owjnAFbNk_wHZoVI4Ad8BXzgCwnD8K4xxp93E9TaNf_HRcxx_amy_9JE4TOjDlehX43m39PobYB1-OiOH7nfTjs-Un6mZad1E73GG-6uExYVRxSBuDDf26dFbUfz4oGjce79eu71IvqjmZlj6R98l32N36Zbt-oJFUAAPAQieYSaez2o-NMFocoaGarJpVcNsi2dPKPI20mAlqRA-x_KGCfeSsMBY1Am45UL4l5e_HKACtQ5FKtZd2bDAMBbdJw84jB_cWPtsrSsGVkdEBc-Uf9y-2S55GH--7azcMQJxnsj8CXkchhB05vnwlNwz7TPyaADoOSn_4AV1vKAbvKCRF3TgBd3gBW1aGnhBIy9oZ2ngxQtyfnI8PzpNwkYaSc2n-SpRXButpkKDO1izrJYmrwt4F-uiRvX_Ksus5VopqyZaMp1JmzNTTNNC8UJqK8VLstN2rdkjVEuNCkFywmwKFeV5VTNrGAYadJGpfEQ-xBYrL71eSumVsXmJzVwOzTwi-7FBy0DVq1Iw_EDvzUfk3VAMzYfTWKo1XY_XoExlkQsxIq88EMOtInCv7yx5Q3bXJN4nO6tlbw7Ar1xVbx1HfgM5xncL |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-Transition+State+Bifurcation+Controls+Torsional+Selectivity+in+Radical+Addition+of+Allenes&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Wu%2C+Rong-Kai&rft.au=Zhang%2C+Shuo-Qing&rft.au=Hong%2C+Xin&rft.date=2024-11-21&rft.eissn=1521-3765&rft.volume=30&rft.issue=65&rft.spage=e202403316&rft_id=info:doi/10.1002%2Fchem.202403316&rft_id=info%3Apmid%2F39262303&rft.externalDocID=39262303 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |