A weighted bilinear neural collaborative filtering approach for drug repositioning
Abstract Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug–disease associations. Similar to traditional latent fa...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 2 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
10.03.2022
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug–disease associations. Similar to traditional latent factor models, which directly factorize drug–disease associations, they assume the neighbors are independent of each other in the network and thus tend to be ineffective to capture localized information. In this study, we propose a novel neighborhood and neighborhood interaction-based neural collaborative filtering approach (called DRWBNCF) to infer novel potential drugs for diseases. Specifically, we first construct three networks, including the known drug–disease association network, the drug–drug similarity and disease–disease similarity networks (using the nearest neighbors). To take the advantage of localized information in the three networks, we then design an integration component by proposing a new weighted bilinear graph convolution operation to integrate the information of the known drug–disease association, the drug’s and disease’s neighborhood and neighborhood interactions into a unified representation. Lastly, we introduce a prediction component, which utilizes the multi-layer perceptron optimized by the α-balanced focal loss function and graph regularization to model the complex drug–disease associations. Benchmarking comparisons on three datasets verified the effectiveness of DRWBNCF for drug repositioning. Importantly, the unknown drug–disease associations predicted by DRWBNCF were validated against clinical trials and three authoritative databases and we listed several new DRWBNCF-predicted potential drugs for breast cancer (e.g. valrubicin and teniposide) and small cell lung cancer (e.g. valrubicin and cytarabine). |
---|---|
AbstractList | Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug–disease associations. Similar to traditional latent factor models, which directly factorize drug–disease associations, they assume the neighbors are independent of each other in the network and thus tend to be ineffective to capture localized information. In this study, we propose a novel neighborhood and neighborhood interaction-based neural collaborative filtering approach (called DRWBNCF) to infer novel potential drugs for diseases. Specifically, we first construct three networks, including the known drug–disease association network, the drug–drug similarity and disease–disease similarity networks (using the nearest neighbors). To take the advantage of localized information in the three networks, we then design an integration component by proposing a new weighted bilinear graph convolution operation to integrate the information of the known drug–disease association, the drug’s and disease’s neighborhood and neighborhood interactions into a unified representation. Lastly, we introduce a prediction component, which utilizes the multi-layer perceptron optimized by the α-balanced focal loss function and graph regularization to model the complex drug–disease associations. Benchmarking comparisons on three datasets verified the effectiveness of DRWBNCF for drug repositioning. Importantly, the unknown drug–disease associations predicted by DRWBNCF were validated against clinical trials and three authoritative databases and we listed several new DRWBNCF-predicted potential drugs for breast cancer (e.g. valrubicin and teniposide) and small cell lung cancer (e.g. valrubicin and cytarabine). Abstract Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug–disease associations. Similar to traditional latent factor models, which directly factorize drug–disease associations, they assume the neighbors are independent of each other in the network and thus tend to be ineffective to capture localized information. In this study, we propose a novel neighborhood and neighborhood interaction-based neural collaborative filtering approach (called DRWBNCF) to infer novel potential drugs for diseases. Specifically, we first construct three networks, including the known drug–disease association network, the drug–drug similarity and disease–disease similarity networks (using the nearest neighbors). To take the advantage of localized information in the three networks, we then design an integration component by proposing a new weighted bilinear graph convolution operation to integrate the information of the known drug–disease association, the drug’s and disease’s neighborhood and neighborhood interactions into a unified representation. Lastly, we introduce a prediction component, which utilizes the multi-layer perceptron optimized by the α-balanced focal loss function and graph regularization to model the complex drug–disease associations. Benchmarking comparisons on three datasets verified the effectiveness of DRWBNCF for drug repositioning. Importantly, the unknown drug–disease associations predicted by DRWBNCF were validated against clinical trials and three authoritative databases and we listed several new DRWBNCF-predicted potential drugs for breast cancer (e.g. valrubicin and teniposide) and small cell lung cancer (e.g. valrubicin and cytarabine). Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug-disease associations. Similar to traditional latent factor models, which directly factorize drug-disease associations, they assume the neighbors are independent of each other in the network and thus tend to be ineffective to capture localized information. In this study, we propose a novel neighborhood and neighborhood interaction-based neural collaborative filtering approach (called DRWBNCF) to infer novel potential drugs for diseases. Specifically, we first construct three networks, including the known drug-disease association network, the drug-drug similarity and disease-disease similarity networks (using the nearest neighbors). To take the advantage of localized information in the three networks, we then design an integration component by proposing a new weighted bilinear graph convolution operation to integrate the information of the known drug-disease association, the drug's and disease's neighborhood and neighborhood interactions into a unified representation. Lastly, we introduce a prediction component, which utilizes the multi-layer perceptron optimized by the α-balanced focal loss function and graph regularization to model the complex drug-disease associations. Benchmarking comparisons on three datasets verified the effectiveness of DRWBNCF for drug repositioning. Importantly, the unknown drug-disease associations predicted by DRWBNCF were validated against clinical trials and three authoritative databases and we listed several new DRWBNCF-predicted potential drugs for breast cancer (e.g. valrubicin and teniposide) and small cell lung cancer (e.g. valrubicin and cytarabine).Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug-disease associations. Similar to traditional latent factor models, which directly factorize drug-disease associations, they assume the neighbors are independent of each other in the network and thus tend to be ineffective to capture localized information. In this study, we propose a novel neighborhood and neighborhood interaction-based neural collaborative filtering approach (called DRWBNCF) to infer novel potential drugs for diseases. Specifically, we first construct three networks, including the known drug-disease association network, the drug-drug similarity and disease-disease similarity networks (using the nearest neighbors). To take the advantage of localized information in the three networks, we then design an integration component by proposing a new weighted bilinear graph convolution operation to integrate the information of the known drug-disease association, the drug's and disease's neighborhood and neighborhood interactions into a unified representation. Lastly, we introduce a prediction component, which utilizes the multi-layer perceptron optimized by the α-balanced focal loss function and graph regularization to model the complex drug-disease associations. Benchmarking comparisons on three datasets verified the effectiveness of DRWBNCF for drug repositioning. Importantly, the unknown drug-disease associations predicted by DRWBNCF were validated against clinical trials and three authoritative databases and we listed several new DRWBNCF-predicted potential drugs for breast cancer (e.g. valrubicin and teniposide) and small cell lung cancer (e.g. valrubicin and cytarabine). |
Author | Jin, Min Zeng, Xiangxiang Xu, Junlin Meng, Yajie Lu, Changcheng Yang, Jialiang |
Author_xml | – sequence: 1 givenname: Yajie orcidid: 0000-0002-2384-1158 surname: Meng fullname: Meng, Yajie email: myj@hnu.edu.cn – sequence: 2 givenname: Changcheng orcidid: 0000-0001-9263-8463 surname: Lu fullname: Lu, Changcheng email: thewall9@hnu.edu.cn – sequence: 3 givenname: Min surname: Jin fullname: Jin, Min email: jinmin@hnu.edu.cn – sequence: 4 givenname: Junlin surname: Xu fullname: Xu, Junlin email: xjl@hnu.edu.cn – sequence: 5 givenname: Xiangxiang surname: Zeng fullname: Zeng, Xiangxiang email: xzeng@foxmail.com – sequence: 6 givenname: Jialiang surname: Yang fullname: Yang, Jialiang email: yangjl@geneis.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35039838$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1LJDEQxcOi-H3auwQEEZZe853MUUR3BUGQ9RySdPUY6em0Sfcu-9-bYcaLiKcqqF89XtU7RDtDGgCh75T8pGTBL330l947Lw39hg6o0LoRRIqdda90I4Xi--iwlBdCGNGG7qF9LglfGG4O0OMV_gdx-TxBi33s4wAu4wHm7HocUt87n7Kb4l_AXewnyHFYYjeOObnwjLuUcZvnJc4wphKnmIY6P0a7nesLnGzrEXq6vflz_bu5f_h1d3113wSmzdQYtZCBehL0QnIqWqGNk4Ir3TrhgIVOdYKCYUC91BJaRT3rGOWiU0wZI_gRutjoVjevM5TJrmIJUD0PkOZimWKU0Eqqip59QF_SnIfqrlKCKG2kXAuebqnZr6C1Y44rl__b929VgG6AkFMpGTob4uTWZ0_Zxd5SYteJ2JqI3SZSd3582HmX_Zw-39BpHr8E3wCptZng |
CitedBy_id | crossref_primary_10_1093_bioinformatics_btad748 crossref_primary_10_1021_acs_jcim_2c01291 crossref_primary_10_3389_fphar_2023_1205144 crossref_primary_10_1016_j_jmgm_2024_108783 crossref_primary_10_1155_2022_2279044 crossref_primary_10_3934_mbe_2023471 crossref_primary_10_3389_fonc_2022_832567 crossref_primary_10_1093_bib_bbad431 crossref_primary_10_1186_s12859_023_05479_7 crossref_primary_10_3389_fphar_2024_1337764 crossref_primary_10_1111_jcmm_17412 crossref_primary_10_1109_JBHI_2023_3272154 crossref_primary_10_3389_fphar_2024_1354540 crossref_primary_10_1007_s13755_024_00326_2 crossref_primary_10_1016_j_crchbi_2023_100042 crossref_primary_10_1016_j_asoc_2024_111763 crossref_primary_10_1093_bib_bbad306 crossref_primary_10_1186_s12885_023_11806_1 crossref_primary_10_1016_j_compbiomed_2023_106873 crossref_primary_10_1093_bib_bbac457 crossref_primary_10_1016_j_artmed_2025_103090 crossref_primary_10_3389_fonc_2022_916379 crossref_primary_10_3389_fonc_2022_935694 crossref_primary_10_3389_fgene_2022_1017539 crossref_primary_10_1109_JBHI_2024_3390092 crossref_primary_10_1002_adtp_202400363 crossref_primary_10_1371_journal_pone_0296175 crossref_primary_10_1109_TCBB_2023_3292883 crossref_primary_10_1016_j_inffus_2024_102563 crossref_primary_10_1093_bib_bbae474 crossref_primary_10_7717_peerj_15624 crossref_primary_10_1007_s11227_024_05908_1 crossref_primary_10_1016_j_compbiomed_2024_109403 crossref_primary_10_2174_0115748936285493240307071916 crossref_primary_10_1093_bib_bbac531 crossref_primary_10_3389_fonc_2022_946531 crossref_primary_10_1007_s40747_024_01674_y crossref_primary_10_1093_bioinformatics_btad357 crossref_primary_10_1109_JBHI_2024_3372527 crossref_primary_10_21105_joss_05973 crossref_primary_10_1038_s41598_023_48307_x crossref_primary_10_1093_bib_bbac405 crossref_primary_10_2174_1566523223666230419101405 crossref_primary_10_3390_ijms24032244 crossref_primary_10_1109_TCBB_2023_3254163 crossref_primary_10_1109_TCBB_2023_3234331 crossref_primary_10_3389_fonc_2022_927426 crossref_primary_10_3390_electronics13193835 crossref_primary_10_1016_j_bsheal_2023_05_004 crossref_primary_10_1016_j_knosys_2023_111187 crossref_primary_10_1016_j_neucom_2022_09_063 crossref_primary_10_1093_bib_bbae340 crossref_primary_10_1016_j_knosys_2023_111329 crossref_primary_10_1099_jmm_0_001744 crossref_primary_10_1021_acs_jcim_4c02424 crossref_primary_10_1016_j_isci_2023_107663 crossref_primary_10_1109_JBHI_2023_3335275 crossref_primary_10_1186_s12859_024_05705_w crossref_primary_10_1038_s41598_023_42465_8 crossref_primary_10_1007_s12539_024_00654_7 crossref_primary_10_1186_s12859_024_05893_5 crossref_primary_10_1016_j_csbj_2022_12_053 crossref_primary_10_1109_JBHI_2022_3194891 crossref_primary_10_3389_fmicb_2022_1062281 crossref_primary_10_3389_fonc_2022_982452 crossref_primary_10_2174_1574893618666230504143647 crossref_primary_10_1016_j_eswa_2023_121855 crossref_primary_10_1093_bib_bbae337 crossref_primary_10_1109_TCBB_2023_3274587 crossref_primary_10_1186_s13321_025_00962_0 crossref_primary_10_1093_bib_bbae650 crossref_primary_10_1186_s12859_024_06032_w crossref_primary_10_3389_fphar_2022_1021329 crossref_primary_10_1109_JBHI_2024_3434439 crossref_primary_10_3389_fonc_2022_925079 crossref_primary_10_3389_fonc_2022_946552 crossref_primary_10_1021_acs_jcim_4c01589 crossref_primary_10_1109_TCBB_2023_3339189 crossref_primary_10_3389_fmicb_2022_1032623 crossref_primary_10_1093_bib_bbae172 crossref_primary_10_1093_bioinformatics_btac641 crossref_primary_10_3389_fonc_2024_1353446 crossref_primary_10_1016_j_compbiomed_2022_106127 crossref_primary_10_3389_fgene_2022_933009 crossref_primary_10_1007_s12672_025_02094_1 crossref_primary_10_1186_s12967_024_05938_6 crossref_primary_10_3389_fgene_2022_980437 crossref_primary_10_1016_j_ibmed_2024_100194 crossref_primary_10_3389_fonc_2022_905955 crossref_primary_10_3389_fonc_2022_904304 crossref_primary_10_3389_fonc_2022_906888 crossref_primary_10_3389_fonc_2022_939022 |
Cites_doi | 10.1109/ACCESS.2020.2990533 10.1016/j.asoc.2021.107135 10.1093/bioinformatics/btaa109 10.1093/bioinformatics/btx545 10.1093/bib/bby061 10.1007/s11357-019-00106-x 10.1093/bioinformatics/btw228 10.1093/nar/gkj067 10.1021/ci025584y 10.1016/j.neucom.2018.01.085 10.1093/nar/gkaa997 10.1093/bib/bbaa267 10.1093/bioinformatics/btz418 10.1093/bioinformatics/btaa062 10.1021/ci0496797 10.1093/bib/bbz176 10.1093/nar/gki033 10.1016/j.ygeno.2019.05.021 10.1093/bib/bby002 10.1038/msb.2011.26 10.1093/bioinformatics/btz965 10.1093/bioinformatics/btw770 10.1038/nrd.2018.168 10.1093/bib/bbaa243 10.1093/bib/bbab319 10.1371/journal.pcbi.1007541 10.3389/fimmu.2020.603615 10.1016/j.omtn.2020.07.003 10.1093/nar/gkaa891 10.1093/bioinformatics/bty327 10.1093/bioinformatics/bty013 10.1093/bioinformatics/btz331 10.1038/s41568-020-0266-x 10.24963/ijcai.2020/202 10.1067/mcp.2001.115132 10.1056/NEJMp1500848 10.1186/s12859-018-2220-4 10.1016/j.jbi.2018.11.005 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbab581 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 35039838 10_1093_bib_bbab581 10.1093/bib/bbab581 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX AHGBF CITATION ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF NPM ROX 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c278t-8695c1b0c795314d478a54367da4ae2cf6f41e82e1b575ed61b2f2134f6268843 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 08:28:38 EDT 2025 Mon Jun 30 09:11:35 EDT 2025 Wed Feb 19 02:25:54 EST 2025 Tue Jul 01 03:39:39 EDT 2025 Thu Apr 24 23:12:08 EDT 2025 Wed Apr 02 07:00:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | neighborhood interactions disease drug–disease association prediction drug repositioning drug |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c278t-8695c1b0c795314d478a54367da4ae2cf6f41e82e1b575ed61b2f2134f6268843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9263-8463 0000-0002-2384-1158 |
PMID | 35039838 |
PQID | 2640678554 |
PQPubID | 26846 |
ParticipantIDs | proquest_miscellaneous_2621018846 proquest_journals_2640678554 pubmed_primary_35039838 crossref_citationtrail_10_1093_bib_bbab581 crossref_primary_10_1093_bib_bbab581 oup_primary_10_1093_bib_bbab581 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-10 |
PublicationDateYYYYMMDD | 2022-03-10 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2022 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Fisher (2022031506303231700_ref2) 2006; 145 Feng (2022031506303231700_ref26) 2019 DiMasi (2022031506303231700_ref3) 2001; 69 Avram (2022031506303231700_ref43) 2021; 49 Luo (2022031506303231700_ref18) 2018; 34 Hamosh (2022031506303231700_ref30) 2005; 33 Glorot (2022031506303231700_ref39) 2010 Lu (2022031506303231700_ref9) 2018; 34 Avorn (2022031506303231700_ref4) 2015; 372 Zhang (2022031506303231700_ref23) 2020; 36 Vidal (2022031506303231700_ref33) 2005; 45 Ezzat (2022031506303231700_ref8) 2019; 20 Cai (2022031506303231700_ref40) 2021; 22 Xu (2022031506303231700_ref12) 2020; 8 Xu (2022031506303231700_ref17) 2020; 36 Zeng (2022031506303231700_ref24) 2019; 35 Rifaioglu (2022031506303231700_ref1) 2019; 20 Yang (2022031506303231700_ref6) 2020; 42 Tang (2022031506303231700_ref14) 2021; 11 Zhang (2022031506303231700_ref16) 2018; 287 Zhu (2022031506303231700_ref36) Zhang (2022031506303231700_ref22) 2018; 19 Britt (2022031506303231700_ref44) 2020; 20 Liu (2022031506303231700_ref7) 2020; 21 Xiao (2022031506303231700_ref11) 2018; 34 Yang (2022031506303231700_ref21) 2021; 22 Yang (2022031506303231700_ref20) 2019; 15 Pushpakom (2022031506303231700_ref5) 2019; 18 Yang (2022031506303231700_ref19) 2019; 35 Kipf (2022031506303231700_ref35) Zhang (2022031506303231700_ref15) 2018; 88 Yu (2022031506303231700_ref25) 2021; 22 Luo (2022031506303231700_ref27) 2021; 22 Lin (2022031506303231700_ref37) 2017 Liang (2022031506303231700_ref32) 2017; 33 Steinbeck (2022031506303231700_ref34) 2003; 43 Gottlieb (2022031506303231700_ref28) 2011; 7 Luo (2022031506303231700_ref31) 2016; 32 Chen (2022031506303231700_ref10) 2020; 112 Meng (2022031506303231700_ref13) 2021; 103 Wishart (2022031506303231700_ref29) 2006; 34 Davis (2022031506303231700_ref42) 2021; 49 Kingma (2022031506303231700_ref38) Li (2022031506303231700_ref41) 2020; 36 |
References_xml | – start-page: 249 volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics year: 2010 ident: 2022031506303231700_ref39 – volume: 8 start-page: 80728 year: 2020 ident: 2022031506303231700_ref12 article-title: LRMCMDA: predicting miRNA-disease association by integrating low-rank matrix completion with miRNA and disease similarity information publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990533 – volume: 103 year: 2021 ident: 2022031506303231700_ref13 article-title: Drug repositioning based on similarity constrained probabilistic matrix factorization: COVID-19 as a case study publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107135 – volume: 36 start-page: 3139 year: 2020 ident: 2022031506303231700_ref17 article-title: CMF-Impute: an accurate imputation tool for single-cell RNA-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa109 – volume: 34 start-page: 239 year: 2018 ident: 2022031506303231700_ref11 article-title: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx545 – volume: 20 start-page: 1878 year: 2019 ident: 2022031506303231700_ref1 article-title: Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases publication-title: Brief Bioinform doi: 10.1093/bib/bby061 – volume: 42 start-page: 353 year: 2020 ident: 2022031506303231700_ref6 article-title: Human geroprotector discovery by targeting the converging subnetworks of aging and age-related diseases publication-title: Geroscience doi: 10.1007/s11357-019-00106-x – volume: 32 start-page: 2664 year: 2016 ident: 2022031506303231700_ref31 article-title: Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw228 – volume: 34 start-page: D668 year: 2006 ident: 2022031506303231700_ref29 article-title: DrugBank: a comprehensive resource for in silico drug discovery and exploration publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj067 – volume: 43 start-page: 493 year: 2003 ident: 2022031506303231700_ref34 article-title: The Chemistry Development Kit (CDK): an open-source Java library for chemo-and bioinformatics publication-title: J Chem Inf Comput Sci doi: 10.1021/ci025584y – volume: 287 start-page: 154 year: 2018 ident: 2022031506303231700_ref16 article-title: Feature-derived graph regularized matrix factorization for predicting drug side effects publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.085 – volume: 49 start-page: D1160 year: 2021 ident: 2022031506303231700_ref43 article-title: DrugCentral 2021 supports drug discovery and repositioning publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa997 – volume: 22 year: 2021 ident: 2022031506303231700_ref21 article-title: Computational drug repositioning based on multi-similarities bilinear matrix factorization publication-title: Brief Bioinform doi: 10.1093/bib/bbaa267 – volume: 35 start-page: 5191 year: 2019 ident: 2022031506303231700_ref24 article-title: deepDR: a network-based deep learning approach to in silico drug repositioning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz418 – volume: 36 start-page: 2839 year: 2020 ident: 2022031506303231700_ref23 article-title: DRIMC: an improved drug repositioning approach using Bayesian inductive matrix completion publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa062 – volume: 45 start-page: 386 year: 2005 ident: 2022031506303231700_ref33 article-title: LINGO, an efficient holographic text based method to calculate biophysical properties and intermolecular similarities publication-title: J Chem Inf Model doi: 10.1021/ci0496797 – volume: 22 start-page: 1604 year: 2021 ident: 2022031506303231700_ref27 article-title: Biomedical data and computational models for drug repositioning: a comprehensive review publication-title: Brief Bioinform doi: 10.1093/bib/bbz176 – volume: 33 start-page: D514 year: 2005 ident: 2022031506303231700_ref30 article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders publication-title: Nucleic Acids Res doi: 10.1093/nar/gki033 – volume: 145 start-page: 793 year: 2006 ident: 2022031506303231700_ref2 article-title: Alterations in processes and priorities needed for new drug development publication-title: Am Coll Phys – volume: 112 start-page: 809 year: 2020 ident: 2022031506303231700_ref10 article-title: Potential miRNA-disease association prediction based on kernelized Bayesian matrix factorization publication-title: Genomics doi: 10.1016/j.ygeno.2019.05.021 – ident: 2022031506303231700_ref38 article-title: Adam: A method for stochastic optimization – volume: 20 start-page: 1337 year: 2019 ident: 2022031506303231700_ref8 article-title: Computational prediction of drug–target interactions using chemogenomic approaches: an empirical survey publication-title: Brief Bioinform doi: 10.1093/bib/bby002 – volume: 7 start-page: 496 year: 2011 ident: 2022031506303231700_ref28 article-title: PREDICT: a method for inferring novel drug indications with application to personalized medicine publication-title: Mol Syst Biol doi: 10.1038/msb.2011.26 – volume: 36 start-page: 2538 year: 2020 ident: 2022031506303231700_ref41 article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz965 – volume: 33 start-page: 1187 year: 2017 ident: 2022031506303231700_ref32 article-title: LRSSL: predict and interpret drug–disease associations based on data integration using sparse subspace learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw770 – ident: 2022031506303231700_ref35 article-title: Semi-supervised classification with graph convolutional networks – volume: 18 start-page: 41 year: 2019 ident: 2022031506303231700_ref5 article-title: Drug repurposing: progress, challenges and recommendations publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2018.168 – volume: 22 year: 2021 ident: 2022031506303231700_ref25 article-title: Predicting drug–disease associations through layer attention graph convolutional network publication-title: Brief Bioinform doi: 10.1093/bib/bbaa243 – volume: 22 issue: 6 year: 2021 ident: 2022031506303231700_ref40 article-title: Drug repositioning based on the heterogeneous information fusion graph convolutional network[J] publication-title: Brief Bioinform doi: 10.1093/bib/bbab319 – volume: 15 year: 2019 ident: 2022031506303231700_ref20 article-title: Overlap matrix completion for predicting drug-associated indications publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007541 – volume: 11 start-page: 3824 year: 2021 ident: 2022031506303231700_ref14 article-title: Indicator regularized non-negative matrix factorization method-based drug repurposing for COVID-19 publication-title: Front Immunol doi: 10.3389/fimmu.2020.603615 – volume-title: Applied Sciences: School of Computing Science year: 2019 ident: 2022031506303231700_ref26 article-title: PADME: A deep learning-based framework for drug-target interaction prediction[D] – volume: 21 start-page: 676 year: 2020 ident: 2022031506303231700_ref7 article-title: An improved anticancer drug-response prediction based on an ensemble method integrating matrix completion and ridge regression publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2020.07.003 – volume: 49 start-page: D1138 year: 2021 ident: 2022031506303231700_ref42 article-title: Comparative toxicogenomics database (CTD): update 2021 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa891 – volume: 34 start-page: 3357 year: 2018 ident: 2022031506303231700_ref9 article-title: Prediction of lncRNA–disease associations based on inductive matrix completion publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty327 – volume: 34 start-page: 1904 year: 2018 ident: 2022031506303231700_ref18 article-title: Computational drug repositioning using low-rank matrix approximation and randomized algorithms publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty013 – volume: 35 start-page: i455 year: 2019 ident: 2022031506303231700_ref19 article-title: Drug repositioning based on bounded nuclear norm regularization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz331 – volume: 20 start-page: 417 year: 2020 ident: 2022031506303231700_ref44 article-title: Key steps for effective breast cancer prevention publication-title: Nat Rev Cancer doi: 10.1038/s41568-020-0266-x – ident: 2022031506303231700_ref36 article-title: Bilinear graph neural network with neighbor interactions doi: 10.24963/ijcai.2020/202 – volume: 69 start-page: 286 year: 2001 ident: 2022031506303231700_ref3 article-title: New drug development in the United States from 1963 to 1999 publication-title: Clin Pharmacol Ther doi: 10.1067/mcp.2001.115132 – volume: 372 start-page: 1877 year: 2015 ident: 2022031506303231700_ref4 article-title: The $2.6 billion pill–methodologic and policy considerations publication-title: N Engl J Med doi: 10.1056/NEJMp1500848 – volume: 19 start-page: 1 year: 2018 ident: 2022031506303231700_ref22 article-title: Predicting drug-disease associations by using similarity constrained matrix factorization publication-title: BMC bioinformatics doi: 10.1186/s12859-018-2220-4 – volume: 88 start-page: 90 year: 2018 ident: 2022031506303231700_ref15 article-title: Manifold regularized matrix factorization for drug-drug interaction prediction publication-title: J Biomed Inform doi: 10.1016/j.jbi.2018.11.005 – start-page: 2980 volume-title: Proceedings of the IEEE International Conference on Computer Vision year: 2017 ident: 2022031506303231700_ref37 |
SSID | ssj0020781 |
Score | 2.5962477 |
Snippet | Abstract
Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on... Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Algorithms Breast cancer Clinical trials Collaboration Computational Biology Cytarabine Databases, Factual Disease Drug Discovery Drug Repositioning Drugs Filtration Information processing Lung cancer Multilayer perceptrons Multilayers Neighborhoods Networks Neural Networks, Computer Regularization Similarity Small cell lung carcinoma Teniposide |
Title | A weighted bilinear neural collaborative filtering approach for drug repositioning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35039838 https://www.proquest.com/docview/2640678554 https://www.proquest.com/docview/2621018846 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kIHgR30arrtCTEJrsI7s5FrEUQQVpobewr0hBUulD8d87m6TBatFzZln4Zpf5NjPzDUIdkXKTcgHMjUdRyAyxoUwsC3muImGsFK7shXl4TAYjdj_m47pAdr4hhZ_Srp7ortZK87LDGsKvl8gfPo2bd5XXq6maiETo1d3rNrwfa9cCz1oz2y9OWcaW_h7arUkh7lVe3EdbrjhA29WYyM9D9NzDH-UfTGexr2Ut4HRiL0QJa7758d3hfOKT3xCN8EorHAMpxXa2fME-O1AVaMH3IzTq3w1vB2E9CyE0RMgFAAigxjoyAC6NmWVCKs5oIqxiyhGTJzmLnSQu1kDAnE1iTXKv1pbDi0VKRo9Rq5gW7hRh5oxkSiRWS8ZSpnUu4M2j_LgaIkwUBehmBVRmaqFwP6_iNasS1jQDVLMa1QB1GuO3Sh9js9kVIP63RXvljay-RvMM2JqPpkB5AnTdfIYL4LMaqnDTpbchXnUMeFSATiovNvtQHtFUUnn27_bnaIf4xoayUq-NWovZ0l0A3Vjoy_KwfQFq3tDz |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+weighted+bilinear+neural+collaborative+filtering+approach+for+drug+repositioning&rft.jtitle=Briefings+in+bioinformatics&rft.au=Meng%2C+Yajie&rft.au=Lu%2C+Changcheng&rft.au=Jin%2C+Min&rft.au=Xu%2C+Junlin&rft.date=2022-03-10&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=2&rft_id=info:doi/10.1093%2Fbib%2Fbbab581&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |