A weighted bilinear neural collaborative filtering approach for drug repositioning

Abstract Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug–disease associations. Similar to traditional latent fa...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 2
Main Authors Meng, Yajie, Lu, Changcheng, Jin, Min, Xu, Junlin, Zeng, Xiangxiang, Yang, Jialiang
Format Journal Article
LanguageEnglish
Published England Oxford University Press 10.03.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug–disease associations. Similar to traditional latent factor models, which directly factorize drug–disease associations, they assume the neighbors are independent of each other in the network and thus tend to be ineffective to capture localized information. In this study, we propose a novel neighborhood and neighborhood interaction-based neural collaborative filtering approach (called DRWBNCF) to infer novel potential drugs for diseases. Specifically, we first construct three networks, including the known drug–disease association network, the drug–drug similarity and disease–disease similarity networks (using the nearest neighbors). To take the advantage of localized information in the three networks, we then design an integration component by proposing a new weighted bilinear graph convolution operation to integrate the information of the known drug–disease association, the drug’s and disease’s neighborhood and neighborhood interactions into a unified representation. Lastly, we introduce a prediction component, which utilizes the multi-layer perceptron optimized by the α-balanced focal loss function and graph regularization to model the complex drug–disease associations. Benchmarking comparisons on three datasets verified the effectiveness of DRWBNCF for drug repositioning. Importantly, the unknown drug–disease associations predicted by DRWBNCF were validated against clinical trials and three authoritative databases and we listed several new DRWBNCF-predicted potential drugs for breast cancer (e.g. valrubicin and teniposide) and small cell lung cancer (e.g. valrubicin and cytarabine).
AbstractList Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug–disease associations. Similar to traditional latent factor models, which directly factorize drug–disease associations, they assume the neighbors are independent of each other in the network and thus tend to be ineffective to capture localized information. In this study, we propose a novel neighborhood and neighborhood interaction-based neural collaborative filtering approach (called DRWBNCF) to infer novel potential drugs for diseases. Specifically, we first construct three networks, including the known drug–disease association network, the drug–drug similarity and disease–disease similarity networks (using the nearest neighbors). To take the advantage of localized information in the three networks, we then design an integration component by proposing a new weighted bilinear graph convolution operation to integrate the information of the known drug–disease association, the drug’s and disease’s neighborhood and neighborhood interactions into a unified representation. Lastly, we introduce a prediction component, which utilizes the multi-layer perceptron optimized by the α-balanced focal loss function and graph regularization to model the complex drug–disease associations. Benchmarking comparisons on three datasets verified the effectiveness of DRWBNCF for drug repositioning. Importantly, the unknown drug–disease associations predicted by DRWBNCF were validated against clinical trials and three authoritative databases and we listed several new DRWBNCF-predicted potential drugs for breast cancer (e.g. valrubicin and teniposide) and small cell lung cancer (e.g. valrubicin and cytarabine).
Abstract Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug–disease associations. Similar to traditional latent factor models, which directly factorize drug–disease associations, they assume the neighbors are independent of each other in the network and thus tend to be ineffective to capture localized information. In this study, we propose a novel neighborhood and neighborhood interaction-based neural collaborative filtering approach (called DRWBNCF) to infer novel potential drugs for diseases. Specifically, we first construct three networks, including the known drug–disease association network, the drug–drug similarity and disease–disease similarity networks (using the nearest neighbors). To take the advantage of localized information in the three networks, we then design an integration component by proposing a new weighted bilinear graph convolution operation to integrate the information of the known drug–disease association, the drug’s and disease’s neighborhood and neighborhood interactions into a unified representation. Lastly, we introduce a prediction component, which utilizes the multi-layer perceptron optimized by the α-balanced focal loss function and graph regularization to model the complex drug–disease associations. Benchmarking comparisons on three datasets verified the effectiveness of DRWBNCF for drug repositioning. Importantly, the unknown drug–disease associations predicted by DRWBNCF were validated against clinical trials and three authoritative databases and we listed several new DRWBNCF-predicted potential drugs for breast cancer (e.g. valrubicin and teniposide) and small cell lung cancer (e.g. valrubicin and cytarabine).
Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug-disease associations. Similar to traditional latent factor models, which directly factorize drug-disease associations, they assume the neighbors are independent of each other in the network and thus tend to be ineffective to capture localized information. In this study, we propose a novel neighborhood and neighborhood interaction-based neural collaborative filtering approach (called DRWBNCF) to infer novel potential drugs for diseases. Specifically, we first construct three networks, including the known drug-disease association network, the drug-drug similarity and disease-disease similarity networks (using the nearest neighbors). To take the advantage of localized information in the three networks, we then design an integration component by proposing a new weighted bilinear graph convolution operation to integrate the information of the known drug-disease association, the drug's and disease's neighborhood and neighborhood interactions into a unified representation. Lastly, we introduce a prediction component, which utilizes the multi-layer perceptron optimized by the α-balanced focal loss function and graph regularization to model the complex drug-disease associations. Benchmarking comparisons on three datasets verified the effectiveness of DRWBNCF for drug repositioning. Importantly, the unknown drug-disease associations predicted by DRWBNCF were validated against clinical trials and three authoritative databases and we listed several new DRWBNCF-predicted potential drugs for breast cancer (e.g. valrubicin and teniposide) and small cell lung cancer (e.g. valrubicin and cytarabine).Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug-disease associations. Similar to traditional latent factor models, which directly factorize drug-disease associations, they assume the neighbors are independent of each other in the network and thus tend to be ineffective to capture localized information. In this study, we propose a novel neighborhood and neighborhood interaction-based neural collaborative filtering approach (called DRWBNCF) to infer novel potential drugs for diseases. Specifically, we first construct three networks, including the known drug-disease association network, the drug-drug similarity and disease-disease similarity networks (using the nearest neighbors). To take the advantage of localized information in the three networks, we then design an integration component by proposing a new weighted bilinear graph convolution operation to integrate the information of the known drug-disease association, the drug's and disease's neighborhood and neighborhood interactions into a unified representation. Lastly, we introduce a prediction component, which utilizes the multi-layer perceptron optimized by the α-balanced focal loss function and graph regularization to model the complex drug-disease associations. Benchmarking comparisons on three datasets verified the effectiveness of DRWBNCF for drug repositioning. Importantly, the unknown drug-disease associations predicted by DRWBNCF were validated against clinical trials and three authoritative databases and we listed several new DRWBNCF-predicted potential drugs for breast cancer (e.g. valrubicin and teniposide) and small cell lung cancer (e.g. valrubicin and cytarabine).
Author Jin, Min
Zeng, Xiangxiang
Xu, Junlin
Meng, Yajie
Lu, Changcheng
Yang, Jialiang
Author_xml – sequence: 1
  givenname: Yajie
  orcidid: 0000-0002-2384-1158
  surname: Meng
  fullname: Meng, Yajie
  email: myj@hnu.edu.cn
– sequence: 2
  givenname: Changcheng
  orcidid: 0000-0001-9263-8463
  surname: Lu
  fullname: Lu, Changcheng
  email: thewall9@hnu.edu.cn
– sequence: 3
  givenname: Min
  surname: Jin
  fullname: Jin, Min
  email: jinmin@hnu.edu.cn
– sequence: 4
  givenname: Junlin
  surname: Xu
  fullname: Xu, Junlin
  email: xjl@hnu.edu.cn
– sequence: 5
  givenname: Xiangxiang
  surname: Zeng
  fullname: Zeng, Xiangxiang
  email: xzeng@foxmail.com
– sequence: 6
  givenname: Jialiang
  surname: Yang
  fullname: Yang, Jialiang
  email: yangjl@geneis.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35039838$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LJDEQxcOi-H3auwQEEZZe853MUUR3BUGQ9RySdPUY6em0Sfcu-9-bYcaLiKcqqF89XtU7RDtDGgCh75T8pGTBL330l947Lw39hg6o0LoRRIqdda90I4Xi--iwlBdCGNGG7qF9LglfGG4O0OMV_gdx-TxBi33s4wAu4wHm7HocUt87n7Kb4l_AXewnyHFYYjeOObnwjLuUcZvnJc4wphKnmIY6P0a7nesLnGzrEXq6vflz_bu5f_h1d3113wSmzdQYtZCBehL0QnIqWqGNk4Ir3TrhgIVOdYKCYUC91BJaRT3rGOWiU0wZI_gRutjoVjevM5TJrmIJUD0PkOZimWKU0Eqqip59QF_SnIfqrlKCKG2kXAuebqnZr6C1Y44rl__b929VgG6AkFMpGTob4uTWZ0_Zxd5SYteJ2JqI3SZSd3582HmX_Zw-39BpHr8E3wCptZng
CitedBy_id crossref_primary_10_1093_bioinformatics_btad748
crossref_primary_10_1021_acs_jcim_2c01291
crossref_primary_10_3389_fphar_2023_1205144
crossref_primary_10_1016_j_jmgm_2024_108783
crossref_primary_10_1155_2022_2279044
crossref_primary_10_3934_mbe_2023471
crossref_primary_10_3389_fonc_2022_832567
crossref_primary_10_1093_bib_bbad431
crossref_primary_10_1186_s12859_023_05479_7
crossref_primary_10_3389_fphar_2024_1337764
crossref_primary_10_1111_jcmm_17412
crossref_primary_10_1109_JBHI_2023_3272154
crossref_primary_10_3389_fphar_2024_1354540
crossref_primary_10_1007_s13755_024_00326_2
crossref_primary_10_1016_j_crchbi_2023_100042
crossref_primary_10_1016_j_asoc_2024_111763
crossref_primary_10_1093_bib_bbad306
crossref_primary_10_1186_s12885_023_11806_1
crossref_primary_10_1016_j_compbiomed_2023_106873
crossref_primary_10_1093_bib_bbac457
crossref_primary_10_1016_j_artmed_2025_103090
crossref_primary_10_3389_fonc_2022_916379
crossref_primary_10_3389_fonc_2022_935694
crossref_primary_10_3389_fgene_2022_1017539
crossref_primary_10_1109_JBHI_2024_3390092
crossref_primary_10_1002_adtp_202400363
crossref_primary_10_1371_journal_pone_0296175
crossref_primary_10_1109_TCBB_2023_3292883
crossref_primary_10_1016_j_inffus_2024_102563
crossref_primary_10_1093_bib_bbae474
crossref_primary_10_7717_peerj_15624
crossref_primary_10_1007_s11227_024_05908_1
crossref_primary_10_1016_j_compbiomed_2024_109403
crossref_primary_10_2174_0115748936285493240307071916
crossref_primary_10_1093_bib_bbac531
crossref_primary_10_3389_fonc_2022_946531
crossref_primary_10_1007_s40747_024_01674_y
crossref_primary_10_1093_bioinformatics_btad357
crossref_primary_10_1109_JBHI_2024_3372527
crossref_primary_10_21105_joss_05973
crossref_primary_10_1038_s41598_023_48307_x
crossref_primary_10_1093_bib_bbac405
crossref_primary_10_2174_1566523223666230419101405
crossref_primary_10_3390_ijms24032244
crossref_primary_10_1109_TCBB_2023_3254163
crossref_primary_10_1109_TCBB_2023_3234331
crossref_primary_10_3389_fonc_2022_927426
crossref_primary_10_3390_electronics13193835
crossref_primary_10_1016_j_bsheal_2023_05_004
crossref_primary_10_1016_j_knosys_2023_111187
crossref_primary_10_1016_j_neucom_2022_09_063
crossref_primary_10_1093_bib_bbae340
crossref_primary_10_1016_j_knosys_2023_111329
crossref_primary_10_1099_jmm_0_001744
crossref_primary_10_1021_acs_jcim_4c02424
crossref_primary_10_1016_j_isci_2023_107663
crossref_primary_10_1109_JBHI_2023_3335275
crossref_primary_10_1186_s12859_024_05705_w
crossref_primary_10_1038_s41598_023_42465_8
crossref_primary_10_1007_s12539_024_00654_7
crossref_primary_10_1186_s12859_024_05893_5
crossref_primary_10_1016_j_csbj_2022_12_053
crossref_primary_10_1109_JBHI_2022_3194891
crossref_primary_10_3389_fmicb_2022_1062281
crossref_primary_10_3389_fonc_2022_982452
crossref_primary_10_2174_1574893618666230504143647
crossref_primary_10_1016_j_eswa_2023_121855
crossref_primary_10_1093_bib_bbae337
crossref_primary_10_1109_TCBB_2023_3274587
crossref_primary_10_1186_s13321_025_00962_0
crossref_primary_10_1093_bib_bbae650
crossref_primary_10_1186_s12859_024_06032_w
crossref_primary_10_3389_fphar_2022_1021329
crossref_primary_10_1109_JBHI_2024_3434439
crossref_primary_10_3389_fonc_2022_925079
crossref_primary_10_3389_fonc_2022_946552
crossref_primary_10_1021_acs_jcim_4c01589
crossref_primary_10_1109_TCBB_2023_3339189
crossref_primary_10_3389_fmicb_2022_1032623
crossref_primary_10_1093_bib_bbae172
crossref_primary_10_1093_bioinformatics_btac641
crossref_primary_10_3389_fonc_2024_1353446
crossref_primary_10_1016_j_compbiomed_2022_106127
crossref_primary_10_3389_fgene_2022_933009
crossref_primary_10_1007_s12672_025_02094_1
crossref_primary_10_1186_s12967_024_05938_6
crossref_primary_10_3389_fgene_2022_980437
crossref_primary_10_1016_j_ibmed_2024_100194
crossref_primary_10_3389_fonc_2022_905955
crossref_primary_10_3389_fonc_2022_904304
crossref_primary_10_3389_fonc_2022_906888
crossref_primary_10_3389_fonc_2022_939022
Cites_doi 10.1109/ACCESS.2020.2990533
10.1016/j.asoc.2021.107135
10.1093/bioinformatics/btaa109
10.1093/bioinformatics/btx545
10.1093/bib/bby061
10.1007/s11357-019-00106-x
10.1093/bioinformatics/btw228
10.1093/nar/gkj067
10.1021/ci025584y
10.1016/j.neucom.2018.01.085
10.1093/nar/gkaa997
10.1093/bib/bbaa267
10.1093/bioinformatics/btz418
10.1093/bioinformatics/btaa062
10.1021/ci0496797
10.1093/bib/bbz176
10.1093/nar/gki033
10.1016/j.ygeno.2019.05.021
10.1093/bib/bby002
10.1038/msb.2011.26
10.1093/bioinformatics/btz965
10.1093/bioinformatics/btw770
10.1038/nrd.2018.168
10.1093/bib/bbaa243
10.1093/bib/bbab319
10.1371/journal.pcbi.1007541
10.3389/fimmu.2020.603615
10.1016/j.omtn.2020.07.003
10.1093/nar/gkaa891
10.1093/bioinformatics/bty327
10.1093/bioinformatics/bty013
10.1093/bioinformatics/btz331
10.1038/s41568-020-0266-x
10.24963/ijcai.2020/202
10.1067/mcp.2001.115132
10.1056/NEJMp1500848
10.1186/s12859-018-2220-4
10.1016/j.jbi.2018.11.005
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbab581
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 35039838
10_1093_bib_bbab581
10.1093/bib/bbab581
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
AHGBF
CITATION
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
ROX
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c278t-8695c1b0c795314d478a54367da4ae2cf6f41e82e1b575ed61b2f2134f6268843
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 08:28:38 EDT 2025
Mon Jun 30 09:11:35 EDT 2025
Wed Feb 19 02:25:54 EST 2025
Tue Jul 01 03:39:39 EDT 2025
Thu Apr 24 23:12:08 EDT 2025
Wed Apr 02 07:00:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords neighborhood interactions
disease
drug–disease association prediction
drug repositioning
drug
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c278t-8695c1b0c795314d478a54367da4ae2cf6f41e82e1b575ed61b2f2134f6268843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9263-8463
0000-0002-2384-1158
PMID 35039838
PQID 2640678554
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2621018846
proquest_journals_2640678554
pubmed_primary_35039838
crossref_citationtrail_10_1093_bib_bbab581
crossref_primary_10_1093_bib_bbab581
oup_primary_10_1093_bib_bbab581
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-10
PublicationDateYYYYMMDD 2022-03-10
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-10
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Fisher (2022031506303231700_ref2) 2006; 145
Feng (2022031506303231700_ref26) 2019
DiMasi (2022031506303231700_ref3) 2001; 69
Avram (2022031506303231700_ref43) 2021; 49
Luo (2022031506303231700_ref18) 2018; 34
Hamosh (2022031506303231700_ref30) 2005; 33
Glorot (2022031506303231700_ref39) 2010
Lu (2022031506303231700_ref9) 2018; 34
Avorn (2022031506303231700_ref4) 2015; 372
Zhang (2022031506303231700_ref23) 2020; 36
Vidal (2022031506303231700_ref33) 2005; 45
Ezzat (2022031506303231700_ref8) 2019; 20
Cai (2022031506303231700_ref40) 2021; 22
Xu (2022031506303231700_ref12) 2020; 8
Xu (2022031506303231700_ref17) 2020; 36
Zeng (2022031506303231700_ref24) 2019; 35
Rifaioglu (2022031506303231700_ref1) 2019; 20
Yang (2022031506303231700_ref6) 2020; 42
Tang (2022031506303231700_ref14) 2021; 11
Zhang (2022031506303231700_ref16) 2018; 287
Zhu (2022031506303231700_ref36)
Zhang (2022031506303231700_ref22) 2018; 19
Britt (2022031506303231700_ref44) 2020; 20
Liu (2022031506303231700_ref7) 2020; 21
Xiao (2022031506303231700_ref11) 2018; 34
Yang (2022031506303231700_ref21) 2021; 22
Yang (2022031506303231700_ref20) 2019; 15
Pushpakom (2022031506303231700_ref5) 2019; 18
Yang (2022031506303231700_ref19) 2019; 35
Kipf (2022031506303231700_ref35)
Zhang (2022031506303231700_ref15) 2018; 88
Yu (2022031506303231700_ref25) 2021; 22
Luo (2022031506303231700_ref27) 2021; 22
Lin (2022031506303231700_ref37) 2017
Liang (2022031506303231700_ref32) 2017; 33
Steinbeck (2022031506303231700_ref34) 2003; 43
Gottlieb (2022031506303231700_ref28) 2011; 7
Luo (2022031506303231700_ref31) 2016; 32
Chen (2022031506303231700_ref10) 2020; 112
Meng (2022031506303231700_ref13) 2021; 103
Wishart (2022031506303231700_ref29) 2006; 34
Davis (2022031506303231700_ref42) 2021; 49
Kingma (2022031506303231700_ref38)
Li (2022031506303231700_ref41) 2020; 36
References_xml – start-page: 249
  volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
  year: 2010
  ident: 2022031506303231700_ref39
– volume: 8
  start-page: 80728
  year: 2020
  ident: 2022031506303231700_ref12
  article-title: LRMCMDA: predicting miRNA-disease association by integrating low-rank matrix completion with miRNA and disease similarity information
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990533
– volume: 103
  year: 2021
  ident: 2022031506303231700_ref13
  article-title: Drug repositioning based on similarity constrained probabilistic matrix factorization: COVID-19 as a case study
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107135
– volume: 36
  start-page: 3139
  year: 2020
  ident: 2022031506303231700_ref17
  article-title: CMF-Impute: an accurate imputation tool for single-cell RNA-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa109
– volume: 34
  start-page: 239
  year: 2018
  ident: 2022031506303231700_ref11
  article-title: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx545
– volume: 20
  start-page: 1878
  year: 2019
  ident: 2022031506303231700_ref1
  article-title: Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby061
– volume: 42
  start-page: 353
  year: 2020
  ident: 2022031506303231700_ref6
  article-title: Human geroprotector discovery by targeting the converging subnetworks of aging and age-related diseases
  publication-title: Geroscience
  doi: 10.1007/s11357-019-00106-x
– volume: 32
  start-page: 2664
  year: 2016
  ident: 2022031506303231700_ref31
  article-title: Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw228
– volume: 34
  start-page: D668
  year: 2006
  ident: 2022031506303231700_ref29
  article-title: DrugBank: a comprehensive resource for in silico drug discovery and exploration
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj067
– volume: 43
  start-page: 493
  year: 2003
  ident: 2022031506303231700_ref34
  article-title: The Chemistry Development Kit (CDK): an open-source Java library for chemo-and bioinformatics
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci025584y
– volume: 287
  start-page: 154
  year: 2018
  ident: 2022031506303231700_ref16
  article-title: Feature-derived graph regularized matrix factorization for predicting drug side effects
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.085
– volume: 49
  start-page: D1160
  year: 2021
  ident: 2022031506303231700_ref43
  article-title: DrugCentral 2021 supports drug discovery and repositioning
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa997
– volume: 22
  year: 2021
  ident: 2022031506303231700_ref21
  article-title: Computational drug repositioning based on multi-similarities bilinear matrix factorization
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa267
– volume: 35
  start-page: 5191
  year: 2019
  ident: 2022031506303231700_ref24
  article-title: deepDR: a network-based deep learning approach to in silico drug repositioning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz418
– volume: 36
  start-page: 2839
  year: 2020
  ident: 2022031506303231700_ref23
  article-title: DRIMC: an improved drug repositioning approach using Bayesian inductive matrix completion
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa062
– volume: 45
  start-page: 386
  year: 2005
  ident: 2022031506303231700_ref33
  article-title: LINGO, an efficient holographic text based method to calculate biophysical properties and intermolecular similarities
  publication-title: J Chem Inf Model
  doi: 10.1021/ci0496797
– volume: 22
  start-page: 1604
  year: 2021
  ident: 2022031506303231700_ref27
  article-title: Biomedical data and computational models for drug repositioning: a comprehensive review
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz176
– volume: 33
  start-page: D514
  year: 2005
  ident: 2022031506303231700_ref30
  article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki033
– volume: 145
  start-page: 793
  year: 2006
  ident: 2022031506303231700_ref2
  article-title: Alterations in processes and priorities needed for new drug development
  publication-title: Am Coll Phys
– volume: 112
  start-page: 809
  year: 2020
  ident: 2022031506303231700_ref10
  article-title: Potential miRNA-disease association prediction based on kernelized Bayesian matrix factorization
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.05.021
– ident: 2022031506303231700_ref38
  article-title: Adam: A method for stochastic optimization
– volume: 20
  start-page: 1337
  year: 2019
  ident: 2022031506303231700_ref8
  article-title: Computational prediction of drug–target interactions using chemogenomic approaches: an empirical survey
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby002
– volume: 7
  start-page: 496
  year: 2011
  ident: 2022031506303231700_ref28
  article-title: PREDICT: a method for inferring novel drug indications with application to personalized medicine
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.26
– volume: 36
  start-page: 2538
  year: 2020
  ident: 2022031506303231700_ref41
  article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz965
– volume: 33
  start-page: 1187
  year: 2017
  ident: 2022031506303231700_ref32
  article-title: LRSSL: predict and interpret drug–disease associations based on data integration using sparse subspace learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw770
– ident: 2022031506303231700_ref35
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 18
  start-page: 41
  year: 2019
  ident: 2022031506303231700_ref5
  article-title: Drug repurposing: progress, challenges and recommendations
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2018.168
– volume: 22
  year: 2021
  ident: 2022031506303231700_ref25
  article-title: Predicting drug–disease associations through layer attention graph convolutional network
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa243
– volume: 22
  issue: 6
  year: 2021
  ident: 2022031506303231700_ref40
  article-title: Drug repositioning based on the heterogeneous information fusion graph convolutional network[J]
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab319
– volume: 15
  year: 2019
  ident: 2022031506303231700_ref20
  article-title: Overlap matrix completion for predicting drug-associated indications
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007541
– volume: 11
  start-page: 3824
  year: 2021
  ident: 2022031506303231700_ref14
  article-title: Indicator regularized non-negative matrix factorization method-based drug repurposing for COVID-19
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.603615
– volume-title: Applied Sciences: School of Computing Science
  year: 2019
  ident: 2022031506303231700_ref26
  article-title: PADME: A deep learning-based framework for drug-target interaction prediction[D]
– volume: 21
  start-page: 676
  year: 2020
  ident: 2022031506303231700_ref7
  article-title: An improved anticancer drug-response prediction based on an ensemble method integrating matrix completion and ridge regression
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2020.07.003
– volume: 49
  start-page: D1138
  year: 2021
  ident: 2022031506303231700_ref42
  article-title: Comparative toxicogenomics database (CTD): update 2021
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa891
– volume: 34
  start-page: 3357
  year: 2018
  ident: 2022031506303231700_ref9
  article-title: Prediction of lncRNA–disease associations based on inductive matrix completion
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty327
– volume: 34
  start-page: 1904
  year: 2018
  ident: 2022031506303231700_ref18
  article-title: Computational drug repositioning using low-rank matrix approximation and randomized algorithms
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty013
– volume: 35
  start-page: i455
  year: 2019
  ident: 2022031506303231700_ref19
  article-title: Drug repositioning based on bounded nuclear norm regularization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz331
– volume: 20
  start-page: 417
  year: 2020
  ident: 2022031506303231700_ref44
  article-title: Key steps for effective breast cancer prevention
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-020-0266-x
– ident: 2022031506303231700_ref36
  article-title: Bilinear graph neural network with neighbor interactions
  doi: 10.24963/ijcai.2020/202
– volume: 69
  start-page: 286
  year: 2001
  ident: 2022031506303231700_ref3
  article-title: New drug development in the United States from 1963 to 1999
  publication-title: Clin Pharmacol Ther
  doi: 10.1067/mcp.2001.115132
– volume: 372
  start-page: 1877
  year: 2015
  ident: 2022031506303231700_ref4
  article-title: The $2.6 billion pill–methodologic and policy considerations
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1500848
– volume: 19
  start-page: 1
  year: 2018
  ident: 2022031506303231700_ref22
  article-title: Predicting drug-disease associations by using similarity constrained matrix factorization
  publication-title: BMC bioinformatics
  doi: 10.1186/s12859-018-2220-4
– volume: 88
  start-page: 90
  year: 2018
  ident: 2022031506303231700_ref15
  article-title: Manifold regularized matrix factorization for drug-drug interaction prediction
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2018.11.005
– start-page: 2980
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2017
  ident: 2022031506303231700_ref37
SSID ssj0020781
Score 2.5962477
Snippet Abstract Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on...
Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Breast cancer
Clinical trials
Collaboration
Computational Biology
Cytarabine
Databases, Factual
Disease
Drug Discovery
Drug Repositioning
Drugs
Filtration
Information processing
Lung cancer
Multilayer perceptrons
Multilayers
Neighborhoods
Networks
Neural Networks, Computer
Regularization
Similarity
Small cell lung carcinoma
Teniposide
Title A weighted bilinear neural collaborative filtering approach for drug repositioning
URI https://www.ncbi.nlm.nih.gov/pubmed/35039838
https://www.proquest.com/docview/2640678554
https://www.proquest.com/docview/2621018846
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kIHgR30arrtCTEJrsI7s5FrEUQQVpobewr0hBUulD8d87m6TBatFzZln4Zpf5NjPzDUIdkXKTcgHMjUdRyAyxoUwsC3muImGsFK7shXl4TAYjdj_m47pAdr4hhZ_Srp7ortZK87LDGsKvl8gfPo2bd5XXq6maiETo1d3rNrwfa9cCz1oz2y9OWcaW_h7arUkh7lVe3EdbrjhA29WYyM9D9NzDH-UfTGexr2Ut4HRiL0QJa7758d3hfOKT3xCN8EorHAMpxXa2fME-O1AVaMH3IzTq3w1vB2E9CyE0RMgFAAigxjoyAC6NmWVCKs5oIqxiyhGTJzmLnSQu1kDAnE1iTXKv1pbDi0VKRo9Rq5gW7hRh5oxkSiRWS8ZSpnUu4M2j_LgaIkwUBehmBVRmaqFwP6_iNasS1jQDVLMa1QB1GuO3Sh9js9kVIP63RXvljay-RvMM2JqPpkB5AnTdfIYL4LMaqnDTpbchXnUMeFSATiovNvtQHtFUUnn27_bnaIf4xoayUq-NWovZ0l0A3Vjoy_KwfQFq3tDz
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+weighted+bilinear+neural+collaborative+filtering+approach+for+drug+repositioning&rft.jtitle=Briefings+in+bioinformatics&rft.au=Meng%2C+Yajie&rft.au=Lu%2C+Changcheng&rft.au=Jin%2C+Min&rft.au=Xu%2C+Junlin&rft.date=2022-03-10&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=2&rft_id=info:doi/10.1093%2Fbib%2Fbbab581&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon