Reusable radiochromic hackmanite with gamma exposure memory

Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustain...

Full description

Saved in:
Bibliographic Details
Published inMaterials horizons Vol. 9; no. 11; pp. 2773 - 2784
Main Authors Vuori, Sami, Colinet, Pauline, Lehtiö, Juha-Pekka, Lemiere, Arnaud, Norrbo, Isabella, Granström, Micael, Konu, Jari, Ågren, Göran, Laukkanen, Pekka, Petit, Laeticia, Airaksinen, Anu J, van Goethem, Ludo, Le Bahers, Tangui, Lastusaari, Mika
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 31.10.2022
the Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na 8 Al 6 Si 6 O 24 (Cl,S) 2 . This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films. Hackmanites are reusable and non-toxic materials for radiochromic films. They show a unique "gamma memory" function where the width of the reflectance spectrum changes permanently, but the ability to change color reversibly remains fully functional.
AbstractList Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na8Al6Si6O24(Cl,S)2. This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films.Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na8Al6Si6O24(Cl,S)2. This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films.
Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na8Al6Si6O24(Cl,S)2. This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films.
Hackmanites are reusable and non-toxic materials for radiochromic films. They show a unique “gamma memory” function where the width of the reflectance spectrum changes permanently, but the ability to change color reversibly remains fully functional.
Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na 8 Al 6 Si 6 O 24 (Cl,S) 2 . This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films. Hackmanites are reusable and non-toxic materials for radiochromic films. They show a unique "gamma memory" function where the width of the reflectance spectrum changes permanently, but the ability to change color reversibly remains fully functional.
Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na 8 Al 6 Si 6 O 24 (Cl,S) 2 . This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films.
Author Lastusaari, Mika
Vuori, Sami
Granström, Micael
Airaksinen, Anu J
Konu, Jari
Colinet, Pauline
Petit, Laeticia
Norrbo, Isabella
Laukkanen, Pekka
Lehtiö, Juha-Pekka
Lemiere, Arnaud
Ågren, Göran
van Goethem, Ludo
Le Bahers, Tangui
AuthorAffiliation Université Lyon 1
FOI
University of Turku Graduate School (UTUGS)
University of Lyon
Laboratoire de Chimie
University of Turku
Doctoral Programme in Physical and Chemical Sciences (PCS)
Department of Chemistry
UMR 5182
Tampere University
CNRS
Turku PET Centre
Department of Physics and Astronomy
Photonics Laboratory
University of Jyväskylä
Mineralogical Society of Antwerp
Swedish Defence Research Agency
ENS de Lyon
AuthorAffiliation_xml – name: Turku PET Centre
– name: Department of Chemistry
– name: Swedish Defence Research Agency
– name: Photonics Laboratory
– name: University of Turku
– name: CNRS
– name: University of Turku Graduate School (UTUGS)
– name: ENS de Lyon
– name: University of Jyväskylä
– name: Université Lyon 1
– name: Doctoral Programme in Physical and Chemical Sciences (PCS)
– name: Department of Physics and Astronomy
– name: Mineralogical Society of Antwerp
– name: University of Lyon
– name: Laboratoire de Chimie
– name: Tampere University
– name: FOI
– name: UMR 5182
Author_xml – sequence: 1
  givenname: Sami
  surname: Vuori
  fullname: Vuori, Sami
– sequence: 2
  givenname: Pauline
  surname: Colinet
  fullname: Colinet, Pauline
– sequence: 3
  givenname: Juha-Pekka
  surname: Lehtiö
  fullname: Lehtiö, Juha-Pekka
– sequence: 4
  givenname: Arnaud
  surname: Lemiere
  fullname: Lemiere, Arnaud
– sequence: 5
  givenname: Isabella
  surname: Norrbo
  fullname: Norrbo, Isabella
– sequence: 6
  givenname: Micael
  surname: Granström
  fullname: Granström, Micael
– sequence: 7
  givenname: Jari
  surname: Konu
  fullname: Konu, Jari
– sequence: 8
  givenname: Göran
  surname: Ågren
  fullname: Ågren, Göran
– sequence: 9
  givenname: Pekka
  surname: Laukkanen
  fullname: Laukkanen, Pekka
– sequence: 10
  givenname: Laeticia
  surname: Petit
  fullname: Petit, Laeticia
– sequence: 11
  givenname: Anu J
  surname: Airaksinen
  fullname: Airaksinen, Anu J
– sequence: 12
  givenname: Ludo
  surname: van Goethem
  fullname: van Goethem, Ludo
– sequence: 13
  givenname: Tangui
  surname: Le Bahers
  fullname: Le Bahers, Tangui
– sequence: 14
  givenname: Mika
  surname: Lastusaari
  fullname: Lastusaari, Mika
BackLink https://hal.science/hal-03821163$$DView record in HAL
BookMark eNpt0d1P2zAQAHALFQnW8cI7UiReNqSOOzsfjnhCHdChIiS0PUcXxyHu4rizEzb-ewJFnVTxdNb5d6fz-RObdK7TjB0jfEMQ-XnFbQOQ5GK1xw45JDhLRZJMtuc4O2BHIawAAEWcgIRDdvGgh0BlqyNPlXGq8c4aFTWkflvqTK-jv6ZvokeyliL9b-3C4HVktXX--TPbr6kN-ug9Ttmv66uf88VseX_zY365nCmeyX4m46wqyzIHXXKSRPU4VaZVFadS1jFWQGmKsk7rhOeCp_l4AYi5QORYQ5yIKfu66dtQW6y9seSfC0emWFwui9ccCMkRU_GEo_2ysWvv_gw69IU1Qem2pU67IRQ8QxSQScxGerpDV27w3fiSUQngScZjGNXZRinvQvC63k6AULyuvfjO7xZva78dMexgZXrqjet6T6b9uORkU-KD2rb-_5PiBYqrjU8
CitedBy_id crossref_primary_10_1002_advs_202305378
crossref_primary_10_1002_adfm_202303398
crossref_primary_10_1016_j_cej_2024_153069
crossref_primary_10_1039_D4TC05351F
crossref_primary_10_1039_D2TC04312B
crossref_primary_10_1021_acs_accounts_4c00624
crossref_primary_10_3390_min13050663
crossref_primary_10_1002_smll_202206782
crossref_primary_10_1002_adfm_202406186
crossref_primary_10_1016_j_optmat_2024_115826
crossref_primary_10_1039_D3TC00116D
crossref_primary_10_1002_rpm_20240004
Cites_doi 10.1038/s41598-019-41705-0
10.1002/mp.13798
10.18434/T48G6X
10.1007/s12665-021-09944-5
10.1002/pssa.200925002
10.1080/00031305.1994.10476030
10.1021/ic010822c
10.1002/mp.14497
10.1063/1.4996022
10.1073/pnas.2202487119
10.1093/petrology/43.4.725
10.1016/0021-9517(74)90261-9
10.1097/00004032-200408000-00001
10.1016/j.lithos.2013.04.016
10.1002/adom.202170083
10.4103/0971-6203.54846
10.3390/app11219906
10.1063/1.1356016
10.1039/C8MH00308D
10.1016/j.ejmp.2014.07.002
10.1289/ehp.1408855
10.1016/j.ejmp.2016.02.008
10.1016/j.radphyschem.2020.109217
10.1016/j.jeurceramsoc.2016.04.017
10.1016/j.radphyschem.2022.110338
10.3390/en7084757
10.1021/acs.jpcc.0c00615
10.1039/a704920j
10.1007/s00269-009-0309-z
10.1021/acsami.6b01959
10.1016/j.ejmp.2010.10.001
10.1201/9781351005388-5
10.1002/(SICI)1097-458X(199912)37:133.0.CO;2-V
10.1021/acs.inorgchem.6b02323
10.1021/la026137f
10.1063/1.478522
10.1063/5.0043628
10.1016/S0927-796X(03)00034-2
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
1XC
DOI 10.1039/d2mh00593j
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-6355
EndPage 2784
ExternalDocumentID oai_HAL_hal_03821163v1
10_1039_D2MH00593J
d2mh00593j
GroupedDBID 0R~
4.4
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFOGI
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
H13
HZ~
H~N
J3I
O-G
O9-
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABPDG
ABXOH
AEFDR
AENGV
AETIL
AFLYV
AFRZK
AGEGJ
AHGCF
AKBGW
AKMSF
APEMP
CITATION
GGIMP
RAOCF
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
1XC
ID FETCH-LOGICAL-c278t-847dbbb90eb2a8aaf6357ecd4688f41d0a6618f6f5293269d46011931121f0453
ISSN 2051-6347
2051-6355
IngestDate Fri May 09 12:20:20 EDT 2025
Fri Jul 11 07:52:11 EDT 2025
Mon Jun 30 03:05:25 EDT 2025
Tue Jul 01 01:36:17 EDT 2025
Thu Apr 24 23:04:33 EDT 2025
Tue Nov 01 14:42:37 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c278t-847dbbb90eb2a8aaf6357ecd4688f41d0a6618f6f5293269d46011931121f0453
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d2mh00593j
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4563-7403
0000-0002-7408-8995
0000-0002-7464-8411
0000-0002-5943-3105
0000-0002-0852-3143
0000-0003-2166-081X
0000-0003-1872-0391
PQID 2730257240
PQPubID 2047518
PageCount 12
ParticipantIDs proquest_journals_2730257240
crossref_primary_10_1039_D2MH00593J
rsc_primary_d2mh00593j
hal_primary_oai_HAL_hal_03821163v1
proquest_miscellaneous_2711307817
crossref_citationtrail_10_1039_D2MH00593J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-31
PublicationDateYYYYMMDD 2022-10-31
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-31
  day: 31
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Materials horizons
PublicationYear 2022
Publisher Royal Society of Chemistry
the Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: the Royal Society of Chemistry
References Devic (D2MH00593J/cit11/1) 2016; 32
Feng (D2MH00593J/cit51/1) 2018; 89
Casolaro (D2MH00593J/cit47/1) 2019; 9
Newton (D2MH00593J/cit14/1) 2021; 11
Colinet (D2MH00593J/cit31/1) 2022; 119
Malczewski (D2MH00593J/cit43/1) 2021; 80
Santos (D2MH00593J/cit10/1) 2021; 179
Butson (D2MH00593J/cit7/1) 2003; 41
Chu (D2MH00593J/cit41/1)
Cruz-Zaragoza (D2MH00593J/cit23/1) 2009; 206
Nelson (D2MH00593J/cit40/1) 2015; 123
Curutchet (D2MH00593J/cit4/1) 2017; 56
Faryad (D2MH00593J/cit44/1) 2002; 43
Colinet (D2MH00593J/cit20/1) 2020; 124
Zhilinskaya (D2MH00593J/cit28/1) 2003; 19
Adamo (D2MH00593J/cit17/1) 1999; 110
Vuori (D2MH00593J/cit5/1) 2021; 9
Peterson (D2MH00593J/cit33/1) 1983; 21
Abe (D2MH00593J/cit50/1) 2021; 92
Abdel Rahim (D2MH00593J/cit8/1) 1985; 25
McCay (D2MH00593J/cit42/1) 2014; 7
Mossahebi (D2MH00593J/cit46/1) 2021
Norrbo (D2MH00593J/cit22/1) 2016; 8
Lee (D2MH00593J/cit2/1) 1936; 21
Pukelsheim (D2MH00593J/cit32/1) 1994; 48
Stueber (D2MH00593J/cit21/1) 2001; 114
Medved (D2MH00593J/cit1/1) 1954; 39
Rice (D2MH00593J/cit49/1)
Schreiner (D2MH00593J/cit37/1) 2009; 34
Cano (D2MH00593J/cit26/1) 2010; 37
Wieckowski (D2MH00593J/cit29/1) 1999; 37
Niroomand-Rad (D2MH00593J/cit12/1) 2020; 47
Derouane (D2MH00593J/cit27/1) 1974; 3
Berger (D2MH00593J/cit35/1) 2010
Abhinay (D2MH00593J/cit16/1) 2016; 36
Pigmente (D2MH00593J/cit48/1) 2012
Lacroix (D2MH00593J/cit39/1) 2005
US Office of Environment Health Safety and Security (D2MH00593J/cit36/1)
Reinen (D2MH00593J/cit25/1) 1999; 28
Zaman (D2MH00593J/cit38/1) 2014; 30
Rogalev (D2MH00593J/cit34/1) 2002
Dovesi (D2MH00593J/cit18/1) 2018; 8
Fukuda (D2MH00593J/cit24/1) 1961; 39
Norrbo (D2MH00593J/cit3/1) 2018; 5
Rabaeh (D2MH00593J/cit15/1) 2022; 199
Gobeltz-Hautecoeur (D2MH00593J/cit30/1) 2002; 41
Devic (D2MH00593J/cit9/1) 2011; 27
Faryad (D2MH00593J/cit45/1) 2013; 175–176
Collins (D2MH00593J/cit13/1) 2019; 46
Frame (D2MH00593J/cit6/1) 2004; 87
References_xml – issn: 2021
  end-page: p 61-74
  publication-title: Radiation Therapy Dosimetry: A Practical Handbook
  doi: Mossahebi Hoshyar Khan Darafsheh
– issn: 2012
  end-page: p 1-4
  doi: Pigmente
– issn: 2002
  volume-title: Chemical Applications of Synchrotron Radiation
  end-page: p 707-760
  publication-title: Advanced Series in Physical Chemistry
  doi: Rogalev Goulon
– issn: 2005
  publication-title: Irradiation of foods
  doi: Lacroix
– doi: Rice
– issn: 2016
  publication-title: Gaussian 16, Revision C.01
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery, Jr. Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox
– doi: Chu Ekström Firestone
– doi: US Office of Environment Health Safety and Security
– volume: 9
  start-page: 1
  year: 2019
  ident: D2MH00593J/cit47/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41705-0
– volume: 46
  start-page: 5758
  year: 2019
  ident: D2MH00593J/cit13/1
  publication-title: Med. Phys.
  doi: 10.1002/mp.13798
– volume: 21
  start-page: 549
  year: 1983
  ident: D2MH00593J/cit33/1
  publication-title: Can. Mineral.
– year: 2010
  ident: D2MH00593J/cit35/1
  publication-title: NIST Stand. Ref. Database 8 (XGAM)
  doi: 10.18434/T48G6X
– volume: 80
  start-page: 1
  year: 2021
  ident: D2MH00593J/cit43/1
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-021-09944-5
– volume: 39
  start-page: 158
  year: 1961
  ident: D2MH00593J/cit24/1
  publication-title: Bull. Inst. Chem. Res. Kyoto Univ.
– volume: 206
  start-page: 1425
  year: 2009
  ident: D2MH00593J/cit23/1
  publication-title: Phys. Status Solidi Appl. Mater. Sci.
  doi: 10.1002/pssa.200925002
– volume: 48
  start-page: 88
  year: 1994
  ident: D2MH00593J/cit32/1
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1994.10476030
– volume: 41
  start-page: 2848
  year: 2002
  ident: D2MH00593J/cit30/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic010822c
– volume: 47
  start-page: 5986
  year: 2020
  ident: D2MH00593J/cit12/1
  publication-title: Med. Phys.
  doi: 10.1002/mp.14497
– volume: 89
  start-page: 043511
  year: 2018
  ident: D2MH00593J/cit51/1
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4996022
– volume: 119
  start-page: 1
  year: 2022
  ident: D2MH00593J/cit31/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2202487119
– volume: 43
  start-page: 725
  year: 2002
  ident: D2MH00593J/cit44/1
  publication-title: J. Petrol.
  doi: 10.1093/petrology/43.4.725
– volume: 3
  start-page: 169
  year: 1974
  ident: D2MH00593J/cit27/1
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(74)90261-9
– ident: D2MH00593J/cit36/1
– volume: 87
  start-page: 111
  year: 2004
  ident: D2MH00593J/cit6/1
  publication-title: Health Phys.
  doi: 10.1097/00004032-200408000-00001
– volume: 175–176
  start-page: 302
  year: 2013
  ident: D2MH00593J/cit45/1
  publication-title: Lithos
  doi: 10.1016/j.lithos.2013.04.016
– volume: 9
  start-page: 2170083
  year: 2021
  ident: D2MH00593J/cit5/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202170083
– ident: D2MH00593J/cit49/1
– volume: 34
  start-page: 133
  year: 2009
  ident: D2MH00593J/cit37/1
  publication-title: J. Med. Phys.
  doi: 10.4103/0971-6203.54846
– volume-title: Irradiation of foods
  year: 2005
  ident: D2MH00593J/cit39/1
– volume: 11
  start-page: 9906
  year: 2021
  ident: D2MH00593J/cit14/1
  publication-title: Appl. Sci.
  doi: 10.3390/app11219906
– volume: 25
  start-page: 767
  year: 1985
  ident: D2MH00593J/cit8/1
  publication-title: Radiat. Phys. Chem.
– volume: 114
  start-page: 9236
  year: 2001
  ident: D2MH00593J/cit21/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1356016
– volume: 5
  start-page: 569
  year: 2018
  ident: D2MH00593J/cit3/1
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH00308D
– volume: 30
  start-page: 980
  year: 2014
  ident: D2MH00593J/cit38/1
  publication-title: Phys. Medica
  doi: 10.1016/j.ejmp.2014.07.002
– volume: 123
  start-page: 689
  year: 2015
  ident: D2MH00593J/cit40/1
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1408855
– volume: 39
  start-page: 615
  year: 1954
  ident: D2MH00593J/cit1/1
  publication-title: Am. Mineral.
– volume: 32
  start-page: 541
  year: 2016
  ident: D2MH00593J/cit11/1
  publication-title: Phys. Medica
  doi: 10.1016/j.ejmp.2016.02.008
– volume: 179
  start-page: 109217
  year: 2021
  ident: D2MH00593J/cit10/1
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2020.109217
– ident: D2MH00593J/cit41/1
– volume: 36
  start-page: 3125
  year: 2016
  ident: D2MH00593J/cit16/1
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.04.017
– volume: 199
  start-page: 110338
  year: 2022
  ident: D2MH00593J/cit15/1
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2022.110338
– volume: 7
  start-page: 4757
  year: 2014
  ident: D2MH00593J/cit42/1
  publication-title: Energies
  doi: 10.3390/en7084757
– volume: 124
  start-page: 8949
  year: 2020
  ident: D2MH00593J/cit20/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c00615
– volume: 28
  start-page: 75
  year: 1999
  ident: D2MH00593J/cit25/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/a704920j
– volume: 37
  start-page: 57
  year: 2010
  ident: D2MH00593J/cit26/1
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/s00269-009-0309-z
– volume: 8
  start-page: 11592
  year: 2016
  ident: D2MH00593J/cit22/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01959
– start-page: 1
  year: 2012
  ident: D2MH00593J/cit48/1
– volume: 27
  start-page: 122
  year: 2011
  ident: D2MH00593J/cit9/1
  publication-title: Phys. Medica
  doi: 10.1016/j.ejmp.2010.10.001
– start-page: 61
  volume-title: Radiation Therapy Dosimetry: A Practical Handbook
  year: 2021
  ident: D2MH00593J/cit46/1
  doi: 10.1201/9781351005388-5
– volume: 37
  start-page: S150
  year: 1999
  ident: D2MH00593J/cit29/1
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/(SICI)1097-458X(199912)37:133.0.CO;2-V
– start-page: 707
  volume-title: Advanced Series in Physical Chemistry
  year: 2002
  ident: D2MH00593J/cit34/1
– volume: 8
  start-page: e1360
  year: 2018
  ident: D2MH00593J/cit18/1
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 56
  start-page: 414
  year: 2017
  ident: D2MH00593J/cit4/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b02323
– volume: 19
  start-page: 3596
  year: 2003
  ident: D2MH00593J/cit28/1
  publication-title: Langmuir
  doi: 10.1021/la026137f
– volume: 110
  start-page: 6158
  year: 1999
  ident: D2MH00593J/cit17/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478522
– volume: 21
  start-page: 764
  year: 1936
  ident: D2MH00593J/cit2/1
  publication-title: Am. Mineral.
– volume: 92
  start-page: 063301
  year: 2021
  ident: D2MH00593J/cit50/1
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/5.0043628
– volume: 41
  start-page: 61
  year: 2003
  ident: D2MH00593J/cit7/1
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/S0927-796X(03)00034-2
SSID ssj0001345080
Score 2.355653
Snippet Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based...
Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based...
Hackmanites are reusable and non-toxic materials for radiochromic films. They show a unique “gamma memory” function where the width of the reflectance spectrum...
SourceID hal
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2773
SubjectTerms Alpha particles
Alpha rays
Beta particles
Beta rays
Chemical Sciences
Exposure
Gamma rays
Lithium
Material chemistry
or physical chemistry
Position sensing
Positrons
Radiation
Radiochemistry
Theoretical and
Ultraviolet radiation
Title Reusable radiochromic hackmanite with gamma exposure memory
URI https://www.proquest.com/docview/2730257240
https://www.proquest.com/docview/2711307817
https://hal.science/hal-03821163
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6l6QUOiK0itCCzXFBkcGa8ilOgrdw2qSqaSr1Z4_G4DsFx5doc-ut5z-MtIofCxYo8o2Ti93nmrd8j5OME7R6LhXrsRKZuWgbX4VTkusCzMHRtLxJY4Dw_t_0r8_Tauh4MznpZS2URfhb3W-tK_keqcA_kilWy_yDZ9kvhBnwG-cIVJAzXB8n4hyzvqtKnnEfLTCQ5lhiPEy5WFauFVF7WG56mHKn8M_QGjlPMrd0I5s55oVY7TrJ8ed848LANV5mpSvRLni7bcAX2-VExDMwr7AXmZzIplhh6_2ario-E6xdyteLdhBSOYeVDhb9XRn2nA9ir3W6NMEGdWLk3mtzSKnek7lDXbWEUXnndZopT86_N2mDIdXpI537VWPC0O5KaMLw_vQwuDo-D2cn52eZoS43tT2dBApIzmAu2rM1-gym8S8FmoEOyOz1anMw6lxsDLFa99Np1NYS1zPvSrWNDRdlJMEG2Z33s5E1rmEoFWTwlT2rbQZsqIDwjA7l-Th73GCVfkK8NJLQ-JLQOEhpCQqsgoTWQ0BQkXpKr46PFd1-v-2PogjpuoYNiEYVh6BkypNzlPEZuQSki03bd2JxEBgfly43t2KKopXswgAx_DFTsSQyqPNsjw3W2lq-IRl0spZ2YFtIFyliENIy5wzxbeJzF1BmRT80jCURNHo89TH4FVRID84Lu8Y3Ih3buraJM2TrrPYqtmbBdlCNy0Dz4oH7v7gJQuEFRd0AVHZF37TBAD0NdfC2zEufAJoQ8VrDyPRBY-zsRTZNqAT9fP2QB--RRB_8DMizyUr4BLbQI39bo-gMYHYYh
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reusable+radiochromic+hackmanite+with+gamma+exposure+memory&rft.jtitle=Materials+horizons&rft.au=Vuori%2C+Sami&rft.au=Colinet%2C+Pauline&rft.au=Lehti%C3%B6%2C+Juha-Pekka&rft.au=Lemiere%2C+Arnaud&rft.date=2022-10-31&rft.pub=the+Royal+Society+of+Chemistry&rft.issn=2051-6347&rft_id=info:doi/10.1039%2FD2MH00593J&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03821163v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon