Reusable radiochromic hackmanite with gamma exposure memory
Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustain...
Saved in:
Published in | Materials horizons Vol. 9; no. 11; pp. 2773 - 2784 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
31.10.2022
the Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Radiochromic films are used as position-sensitive dose meters in
e.g.
medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na
8
Al
6
Si
6
O
24
(Cl,S)
2
. This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films.
Hackmanites are reusable and non-toxic materials for radiochromic films. They show a unique "gamma memory" function where the width of the reflectance spectrum changes permanently, but the ability to change color reversibly remains fully functional. |
---|---|
AbstractList | Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na8Al6Si6O24(Cl,S)2. This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films.Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na8Al6Si6O24(Cl,S)2. This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films. Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na8Al6Si6O24(Cl,S)2. This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films. Hackmanites are reusable and non-toxic materials for radiochromic films. They show a unique “gamma memory” function where the width of the reflectance spectrum changes permanently, but the ability to change color reversibly remains fully functional. Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na 8 Al 6 Si 6 O 24 (Cl,S) 2 . This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films. Hackmanites are reusable and non-toxic materials for radiochromic films. They show a unique "gamma memory" function where the width of the reflectance spectrum changes permanently, but the ability to change color reversibly remains fully functional. Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na 8 Al 6 Si 6 O 24 (Cl,S) 2 . This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films. |
Author | Lastusaari, Mika Vuori, Sami Granström, Micael Airaksinen, Anu J Konu, Jari Colinet, Pauline Petit, Laeticia Norrbo, Isabella Laukkanen, Pekka Lehtiö, Juha-Pekka Lemiere, Arnaud Ågren, Göran van Goethem, Ludo Le Bahers, Tangui |
AuthorAffiliation | Université Lyon 1 FOI University of Turku Graduate School (UTUGS) University of Lyon Laboratoire de Chimie University of Turku Doctoral Programme in Physical and Chemical Sciences (PCS) Department of Chemistry UMR 5182 Tampere University CNRS Turku PET Centre Department of Physics and Astronomy Photonics Laboratory University of Jyväskylä Mineralogical Society of Antwerp Swedish Defence Research Agency ENS de Lyon |
AuthorAffiliation_xml | – name: Turku PET Centre – name: Department of Chemistry – name: Swedish Defence Research Agency – name: Photonics Laboratory – name: University of Turku – name: CNRS – name: University of Turku Graduate School (UTUGS) – name: ENS de Lyon – name: University of Jyväskylä – name: Université Lyon 1 – name: Doctoral Programme in Physical and Chemical Sciences (PCS) – name: Department of Physics and Astronomy – name: Mineralogical Society of Antwerp – name: University of Lyon – name: Laboratoire de Chimie – name: Tampere University – name: FOI – name: UMR 5182 |
Author_xml | – sequence: 1 givenname: Sami surname: Vuori fullname: Vuori, Sami – sequence: 2 givenname: Pauline surname: Colinet fullname: Colinet, Pauline – sequence: 3 givenname: Juha-Pekka surname: Lehtiö fullname: Lehtiö, Juha-Pekka – sequence: 4 givenname: Arnaud surname: Lemiere fullname: Lemiere, Arnaud – sequence: 5 givenname: Isabella surname: Norrbo fullname: Norrbo, Isabella – sequence: 6 givenname: Micael surname: Granström fullname: Granström, Micael – sequence: 7 givenname: Jari surname: Konu fullname: Konu, Jari – sequence: 8 givenname: Göran surname: Ågren fullname: Ågren, Göran – sequence: 9 givenname: Pekka surname: Laukkanen fullname: Laukkanen, Pekka – sequence: 10 givenname: Laeticia surname: Petit fullname: Petit, Laeticia – sequence: 11 givenname: Anu J surname: Airaksinen fullname: Airaksinen, Anu J – sequence: 12 givenname: Ludo surname: van Goethem fullname: van Goethem, Ludo – sequence: 13 givenname: Tangui surname: Le Bahers fullname: Le Bahers, Tangui – sequence: 14 givenname: Mika surname: Lastusaari fullname: Lastusaari, Mika |
BackLink | https://hal.science/hal-03821163$$DView record in HAL |
BookMark | eNpt0d1P2zAQAHALFQnW8cI7UiReNqSOOzsfjnhCHdChIiS0PUcXxyHu4rizEzb-ewJFnVTxdNb5d6fz-RObdK7TjB0jfEMQ-XnFbQOQ5GK1xw45JDhLRZJMtuc4O2BHIawAAEWcgIRDdvGgh0BlqyNPlXGq8c4aFTWkflvqTK-jv6ZvokeyliL9b-3C4HVktXX--TPbr6kN-ug9Ttmv66uf88VseX_zY365nCmeyX4m46wqyzIHXXKSRPU4VaZVFadS1jFWQGmKsk7rhOeCp_l4AYi5QORYQ5yIKfu66dtQW6y9seSfC0emWFwui9ccCMkRU_GEo_2ysWvv_gw69IU1Qem2pU67IRQ8QxSQScxGerpDV27w3fiSUQngScZjGNXZRinvQvC63k6AULyuvfjO7xZva78dMexgZXrqjet6T6b9uORkU-KD2rb-_5PiBYqrjU8 |
CitedBy_id | crossref_primary_10_1002_advs_202305378 crossref_primary_10_1002_adfm_202303398 crossref_primary_10_1016_j_cej_2024_153069 crossref_primary_10_1039_D4TC05351F crossref_primary_10_1039_D2TC04312B crossref_primary_10_1021_acs_accounts_4c00624 crossref_primary_10_3390_min13050663 crossref_primary_10_1002_smll_202206782 crossref_primary_10_1002_adfm_202406186 crossref_primary_10_1016_j_optmat_2024_115826 crossref_primary_10_1039_D3TC00116D crossref_primary_10_1002_rpm_20240004 |
Cites_doi | 10.1038/s41598-019-41705-0 10.1002/mp.13798 10.18434/T48G6X 10.1007/s12665-021-09944-5 10.1002/pssa.200925002 10.1080/00031305.1994.10476030 10.1021/ic010822c 10.1002/mp.14497 10.1063/1.4996022 10.1073/pnas.2202487119 10.1093/petrology/43.4.725 10.1016/0021-9517(74)90261-9 10.1097/00004032-200408000-00001 10.1016/j.lithos.2013.04.016 10.1002/adom.202170083 10.4103/0971-6203.54846 10.3390/app11219906 10.1063/1.1356016 10.1039/C8MH00308D 10.1016/j.ejmp.2014.07.002 10.1289/ehp.1408855 10.1016/j.ejmp.2016.02.008 10.1016/j.radphyschem.2020.109217 10.1016/j.jeurceramsoc.2016.04.017 10.1016/j.radphyschem.2022.110338 10.3390/en7084757 10.1021/acs.jpcc.0c00615 10.1039/a704920j 10.1007/s00269-009-0309-z 10.1021/acsami.6b01959 10.1016/j.ejmp.2010.10.001 10.1201/9781351005388-5 10.1002/(SICI)1097-458X(199912)37:133.0.CO;2-V 10.1021/acs.inorgchem.6b02323 10.1021/la026137f 10.1063/1.478522 10.1063/5.0043628 10.1016/S0927-796X(03)00034-2 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 1XC |
DOI | 10.1039/d2mh00593j |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2051-6355 |
EndPage | 2784 |
ExternalDocumentID | oai_HAL_hal_03821163v1 10_1039_D2MH00593J d2mh00593j |
GroupedDBID | 0R~ 4.4 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACIWK ACLDK ADMRA ADSRN AENEX AFOGI AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- H13 HZ~ H~N J3I O-G O9- RCNCU RPMJG RRC RSCEA RVUXY AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABPDG ABXOH AEFDR AENGV AETIL AFLYV AFRZK AGEGJ AHGCF AKBGW AKMSF APEMP CITATION GGIMP RAOCF 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 1XC |
ID | FETCH-LOGICAL-c278t-847dbbb90eb2a8aaf6357ecd4688f41d0a6618f6f5293269d46011931121f0453 |
ISSN | 2051-6347 2051-6355 |
IngestDate | Fri May 09 12:20:20 EDT 2025 Fri Jul 11 07:52:11 EDT 2025 Mon Jun 30 03:05:25 EDT 2025 Tue Jul 01 01:36:17 EDT 2025 Thu Apr 24 23:04:33 EDT 2025 Tue Nov 01 14:42:37 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c278t-847dbbb90eb2a8aaf6357ecd4688f41d0a6618f6f5293269d46011931121f0453 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d2mh00593j ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4563-7403 0000-0002-7408-8995 0000-0002-7464-8411 0000-0002-5943-3105 0000-0002-0852-3143 0000-0003-2166-081X 0000-0003-1872-0391 |
PQID | 2730257240 |
PQPubID | 2047518 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2730257240 crossref_primary_10_1039_D2MH00593J rsc_primary_d2mh00593j hal_primary_oai_HAL_hal_03821163v1 proquest_miscellaneous_2711307817 crossref_citationtrail_10_1039_D2MH00593J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-31 |
PublicationDateYYYYMMDD | 2022-10-31 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Materials horizons |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry the Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: the Royal Society of Chemistry |
References | Devic (D2MH00593J/cit11/1) 2016; 32 Feng (D2MH00593J/cit51/1) 2018; 89 Casolaro (D2MH00593J/cit47/1) 2019; 9 Newton (D2MH00593J/cit14/1) 2021; 11 Colinet (D2MH00593J/cit31/1) 2022; 119 Malczewski (D2MH00593J/cit43/1) 2021; 80 Santos (D2MH00593J/cit10/1) 2021; 179 Butson (D2MH00593J/cit7/1) 2003; 41 Chu (D2MH00593J/cit41/1) Cruz-Zaragoza (D2MH00593J/cit23/1) 2009; 206 Nelson (D2MH00593J/cit40/1) 2015; 123 Curutchet (D2MH00593J/cit4/1) 2017; 56 Faryad (D2MH00593J/cit44/1) 2002; 43 Colinet (D2MH00593J/cit20/1) 2020; 124 Zhilinskaya (D2MH00593J/cit28/1) 2003; 19 Adamo (D2MH00593J/cit17/1) 1999; 110 Vuori (D2MH00593J/cit5/1) 2021; 9 Peterson (D2MH00593J/cit33/1) 1983; 21 Abe (D2MH00593J/cit50/1) 2021; 92 Abdel Rahim (D2MH00593J/cit8/1) 1985; 25 McCay (D2MH00593J/cit42/1) 2014; 7 Mossahebi (D2MH00593J/cit46/1) 2021 Norrbo (D2MH00593J/cit22/1) 2016; 8 Lee (D2MH00593J/cit2/1) 1936; 21 Pukelsheim (D2MH00593J/cit32/1) 1994; 48 Stueber (D2MH00593J/cit21/1) 2001; 114 Medved (D2MH00593J/cit1/1) 1954; 39 Rice (D2MH00593J/cit49/1) Schreiner (D2MH00593J/cit37/1) 2009; 34 Cano (D2MH00593J/cit26/1) 2010; 37 Wieckowski (D2MH00593J/cit29/1) 1999; 37 Niroomand-Rad (D2MH00593J/cit12/1) 2020; 47 Derouane (D2MH00593J/cit27/1) 1974; 3 Berger (D2MH00593J/cit35/1) 2010 Abhinay (D2MH00593J/cit16/1) 2016; 36 Pigmente (D2MH00593J/cit48/1) 2012 Lacroix (D2MH00593J/cit39/1) 2005 US Office of Environment Health Safety and Security (D2MH00593J/cit36/1) Reinen (D2MH00593J/cit25/1) 1999; 28 Zaman (D2MH00593J/cit38/1) 2014; 30 Rogalev (D2MH00593J/cit34/1) 2002 Dovesi (D2MH00593J/cit18/1) 2018; 8 Fukuda (D2MH00593J/cit24/1) 1961; 39 Norrbo (D2MH00593J/cit3/1) 2018; 5 Rabaeh (D2MH00593J/cit15/1) 2022; 199 Gobeltz-Hautecoeur (D2MH00593J/cit30/1) 2002; 41 Devic (D2MH00593J/cit9/1) 2011; 27 Faryad (D2MH00593J/cit45/1) 2013; 175–176 Collins (D2MH00593J/cit13/1) 2019; 46 Frame (D2MH00593J/cit6/1) 2004; 87 |
References_xml | – issn: 2021 end-page: p 61-74 publication-title: Radiation Therapy Dosimetry: A Practical Handbook doi: Mossahebi Hoshyar Khan Darafsheh – issn: 2012 end-page: p 1-4 doi: Pigmente – issn: 2002 volume-title: Chemical Applications of Synchrotron Radiation end-page: p 707-760 publication-title: Advanced Series in Physical Chemistry doi: Rogalev Goulon – issn: 2005 publication-title: Irradiation of foods doi: Lacroix – doi: Rice – issn: 2016 publication-title: Gaussian 16, Revision C.01 doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery, Jr. Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox – doi: Chu Ekström Firestone – doi: US Office of Environment Health Safety and Security – volume: 9 start-page: 1 year: 2019 ident: D2MH00593J/cit47/1 publication-title: Sci. Rep. doi: 10.1038/s41598-019-41705-0 – volume: 46 start-page: 5758 year: 2019 ident: D2MH00593J/cit13/1 publication-title: Med. Phys. doi: 10.1002/mp.13798 – volume: 21 start-page: 549 year: 1983 ident: D2MH00593J/cit33/1 publication-title: Can. Mineral. – year: 2010 ident: D2MH00593J/cit35/1 publication-title: NIST Stand. Ref. Database 8 (XGAM) doi: 10.18434/T48G6X – volume: 80 start-page: 1 year: 2021 ident: D2MH00593J/cit43/1 publication-title: Environ. Earth Sci. doi: 10.1007/s12665-021-09944-5 – volume: 39 start-page: 158 year: 1961 ident: D2MH00593J/cit24/1 publication-title: Bull. Inst. Chem. Res. Kyoto Univ. – volume: 206 start-page: 1425 year: 2009 ident: D2MH00593J/cit23/1 publication-title: Phys. Status Solidi Appl. Mater. Sci. doi: 10.1002/pssa.200925002 – volume: 48 start-page: 88 year: 1994 ident: D2MH00593J/cit32/1 publication-title: Am. Stat. doi: 10.1080/00031305.1994.10476030 – volume: 41 start-page: 2848 year: 2002 ident: D2MH00593J/cit30/1 publication-title: Inorg. Chem. doi: 10.1021/ic010822c – volume: 47 start-page: 5986 year: 2020 ident: D2MH00593J/cit12/1 publication-title: Med. Phys. doi: 10.1002/mp.14497 – volume: 89 start-page: 043511 year: 2018 ident: D2MH00593J/cit51/1 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4996022 – volume: 119 start-page: 1 year: 2022 ident: D2MH00593J/cit31/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2202487119 – volume: 43 start-page: 725 year: 2002 ident: D2MH00593J/cit44/1 publication-title: J. Petrol. doi: 10.1093/petrology/43.4.725 – volume: 3 start-page: 169 year: 1974 ident: D2MH00593J/cit27/1 publication-title: J. Catal. doi: 10.1016/0021-9517(74)90261-9 – ident: D2MH00593J/cit36/1 – volume: 87 start-page: 111 year: 2004 ident: D2MH00593J/cit6/1 publication-title: Health Phys. doi: 10.1097/00004032-200408000-00001 – volume: 175–176 start-page: 302 year: 2013 ident: D2MH00593J/cit45/1 publication-title: Lithos doi: 10.1016/j.lithos.2013.04.016 – volume: 9 start-page: 2170083 year: 2021 ident: D2MH00593J/cit5/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202170083 – ident: D2MH00593J/cit49/1 – volume: 34 start-page: 133 year: 2009 ident: D2MH00593J/cit37/1 publication-title: J. Med. Phys. doi: 10.4103/0971-6203.54846 – volume-title: Irradiation of foods year: 2005 ident: D2MH00593J/cit39/1 – volume: 11 start-page: 9906 year: 2021 ident: D2MH00593J/cit14/1 publication-title: Appl. Sci. doi: 10.3390/app11219906 – volume: 25 start-page: 767 year: 1985 ident: D2MH00593J/cit8/1 publication-title: Radiat. Phys. Chem. – volume: 114 start-page: 9236 year: 2001 ident: D2MH00593J/cit21/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1356016 – volume: 5 start-page: 569 year: 2018 ident: D2MH00593J/cit3/1 publication-title: Mater. Horiz. doi: 10.1039/C8MH00308D – volume: 30 start-page: 980 year: 2014 ident: D2MH00593J/cit38/1 publication-title: Phys. Medica doi: 10.1016/j.ejmp.2014.07.002 – volume: 123 start-page: 689 year: 2015 ident: D2MH00593J/cit40/1 publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1408855 – volume: 39 start-page: 615 year: 1954 ident: D2MH00593J/cit1/1 publication-title: Am. Mineral. – volume: 32 start-page: 541 year: 2016 ident: D2MH00593J/cit11/1 publication-title: Phys. Medica doi: 10.1016/j.ejmp.2016.02.008 – volume: 179 start-page: 109217 year: 2021 ident: D2MH00593J/cit10/1 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2020.109217 – ident: D2MH00593J/cit41/1 – volume: 36 start-page: 3125 year: 2016 ident: D2MH00593J/cit16/1 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.04.017 – volume: 199 start-page: 110338 year: 2022 ident: D2MH00593J/cit15/1 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2022.110338 – volume: 7 start-page: 4757 year: 2014 ident: D2MH00593J/cit42/1 publication-title: Energies doi: 10.3390/en7084757 – volume: 124 start-page: 8949 year: 2020 ident: D2MH00593J/cit20/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c00615 – volume: 28 start-page: 75 year: 1999 ident: D2MH00593J/cit25/1 publication-title: Chem. Soc. Rev. doi: 10.1039/a704920j – volume: 37 start-page: 57 year: 2010 ident: D2MH00593J/cit26/1 publication-title: Phys. Chem. Miner. doi: 10.1007/s00269-009-0309-z – volume: 8 start-page: 11592 year: 2016 ident: D2MH00593J/cit22/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01959 – start-page: 1 year: 2012 ident: D2MH00593J/cit48/1 – volume: 27 start-page: 122 year: 2011 ident: D2MH00593J/cit9/1 publication-title: Phys. Medica doi: 10.1016/j.ejmp.2010.10.001 – start-page: 61 volume-title: Radiation Therapy Dosimetry: A Practical Handbook year: 2021 ident: D2MH00593J/cit46/1 doi: 10.1201/9781351005388-5 – volume: 37 start-page: S150 year: 1999 ident: D2MH00593J/cit29/1 publication-title: Magn. Reson. Chem. doi: 10.1002/(SICI)1097-458X(199912)37:133.0.CO;2-V – start-page: 707 volume-title: Advanced Series in Physical Chemistry year: 2002 ident: D2MH00593J/cit34/1 – volume: 8 start-page: e1360 year: 2018 ident: D2MH00593J/cit18/1 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 56 start-page: 414 year: 2017 ident: D2MH00593J/cit4/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b02323 – volume: 19 start-page: 3596 year: 2003 ident: D2MH00593J/cit28/1 publication-title: Langmuir doi: 10.1021/la026137f – volume: 110 start-page: 6158 year: 1999 ident: D2MH00593J/cit17/1 publication-title: J. Chem. Phys. doi: 10.1063/1.478522 – volume: 21 start-page: 764 year: 1936 ident: D2MH00593J/cit2/1 publication-title: Am. Mineral. – volume: 92 start-page: 063301 year: 2021 ident: D2MH00593J/cit50/1 publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0043628 – volume: 41 start-page: 61 year: 2003 ident: D2MH00593J/cit7/1 publication-title: Mater. Sci. Eng., R doi: 10.1016/S0927-796X(03)00034-2 |
SSID | ssj0001345080 |
Score | 2.355653 |
Snippet | Radiochromic films are used as position-sensitive dose meters in
e.g.
medical physics and radiation processing. The currently available films like those based... Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based... Hackmanites are reusable and non-toxic materials for radiochromic films. They show a unique “gamma memory” function where the width of the reflectance spectrum... |
SourceID | hal proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2773 |
SubjectTerms | Alpha particles Alpha rays Beta particles Beta rays Chemical Sciences Exposure Gamma rays Lithium Material chemistry or physical chemistry Position sensing Positrons Radiation Radiochemistry Theoretical and Ultraviolet radiation |
Title | Reusable radiochromic hackmanite with gamma exposure memory |
URI | https://www.proquest.com/docview/2730257240 https://www.proquest.com/docview/2711307817 https://hal.science/hal-03821163 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6l6QUOiK0itCCzXFBkcGa8ilOgrdw2qSqaSr1Z4_G4DsFx5doc-ut5z-MtIofCxYo8o2Ti93nmrd8j5OME7R6LhXrsRKZuWgbX4VTkusCzMHRtLxJY4Dw_t_0r8_Tauh4MznpZS2URfhb3W-tK_keqcA_kilWy_yDZ9kvhBnwG-cIVJAzXB8n4hyzvqtKnnEfLTCQ5lhiPEy5WFauFVF7WG56mHKn8M_QGjlPMrd0I5s55oVY7TrJ8ed848LANV5mpSvRLni7bcAX2-VExDMwr7AXmZzIplhh6_2ario-E6xdyteLdhBSOYeVDhb9XRn2nA9ir3W6NMEGdWLk3mtzSKnek7lDXbWEUXnndZopT86_N2mDIdXpI537VWPC0O5KaMLw_vQwuDo-D2cn52eZoS43tT2dBApIzmAu2rM1-gym8S8FmoEOyOz1anMw6lxsDLFa99Np1NYS1zPvSrWNDRdlJMEG2Z33s5E1rmEoFWTwlT2rbQZsqIDwjA7l-Th73GCVfkK8NJLQ-JLQOEhpCQqsgoTWQ0BQkXpKr46PFd1-v-2PogjpuoYNiEYVh6BkypNzlPEZuQSki03bd2JxEBgfly43t2KKopXswgAx_DFTsSQyqPNsjw3W2lq-IRl0spZ2YFtIFyliENIy5wzxbeJzF1BmRT80jCURNHo89TH4FVRID84Lu8Y3Ih3buraJM2TrrPYqtmbBdlCNy0Dz4oH7v7gJQuEFRd0AVHZF37TBAD0NdfC2zEufAJoQ8VrDyPRBY-zsRTZNqAT9fP2QB--RRB_8DMizyUr4BLbQI39bo-gMYHYYh |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reusable+radiochromic+hackmanite+with+gamma+exposure+memory&rft.jtitle=Materials+horizons&rft.au=Vuori%2C+Sami&rft.au=Colinet%2C+Pauline&rft.au=Lehti%C3%B6%2C+Juha-Pekka&rft.au=Lemiere%2C+Arnaud&rft.date=2022-10-31&rft.pub=the+Royal+Society+of+Chemistry&rft.issn=2051-6347&rft_id=info:doi/10.1039%2FD2MH00593J&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03821163v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon |