Functional characterization of transcription factor WIN1 genes associated with lipid biosynthesis and stress tolerance in soybean (Glycine max)
Transcription factor WAX INDUCER1 (WIN1) plays an important role in wax and cutin biosynthesis in plants. In this study, six GmWIN1 genes were identified from soybean (Glycine max), with GmWIN1–5 having high expression in flowers and seeds, particularly under cold stress. GmWIN1–5′s functions in lip...
Saved in:
Published in | Environmental and experimental botany Vol. 200; p. 104916 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transcription factor WAX INDUCER1 (WIN1) plays an important role in wax and cutin biosynthesis in plants. In this study, six GmWIN1 genes were identified from soybean (Glycine max), with GmWIN1–5 having high expression in flowers and seeds, particularly under cold stress. GmWIN1–5′s functions in lipid/oil biosynthesis and stress tolerance were characterized by its overexpression in soybean hairy roots and tobacco (Nicotiana benthamiana) plants. Under cold stress, GmWIN1–5 overexpression (GmWIN1–5-OE) resulted in large oil enhancement and high level of phospholipids involved in cell membranes formation. Malondialdehyde content and elcetronlyte leakage in GmWIN1–5-OE plants was smaller than that in the wild-type control under cold stress, indicating that GmWIN1–5 promote plant stress tolerance. Moreover, GmWIN1–5-OE also led to upregulated expression of numerous genes involved in de novo fatty acid biosynthesis and triacylglycerol (TAG) production, including genes encoding phospholipase D (PLD), biotin carboxyl carrier protein 1 (BCCP1), lysophosphatidic acid acyltransferase 5 (LPAT5), and diacylglycerol acyltransferase 2 (DGAT2). GmWIN1–5 directly bound to the promoter region of PLD gene. Overall, the results revealed that GmWIN1–5 can upregulate the biosynthesis and accumulation of lipids/oils, especially unsaturated fatty acids and phospholipids benefiting membrane integrity, and ultimately confer plants with high stress tolerance.
•Six GmWIN1 members with structural integrity are identified in soybean (Glycine max).•Of the six GmWIN1s, GmWIN1-5 expression level was the highest in flower and seed tissues.•Overexpression of GmWiN1-5 in soybean hair roots increased total lipids and cold stress tolerance.•Ectopic expression of GmWIN1-5 in tobacco plant boosted oil content and stress tolerance.•GmWIN1-5 promoted expression of several lipid synthesis-related genes, particularly PLD. |
---|---|
AbstractList | Transcription factor WAX INDUCER1 (WIN1) plays an important role in wax and cutin biosynthesis in plants. In this study, six GmWIN1 genes were identified from soybean (Glycine max), with GmWIN1–5 having high expression in flowers and seeds, particularly under cold stress. GmWIN1–5′s functions in lipid/oil biosynthesis and stress tolerance were characterized by its overexpression in soybean hairy roots and tobacco (Nicotiana benthamiana) plants. Under cold stress, GmWIN1–5 overexpression (GmWIN1–5-OE) resulted in large oil enhancement and high level of phospholipids involved in cell membranes formation. Malondialdehyde content and elcetronlyte leakage in GmWIN1–5-OE plants was smaller than that in the wild-type control under cold stress, indicating that GmWIN1–5 promote plant stress tolerance. Moreover, GmWIN1–5-OE also led to upregulated expression of numerous genes involved in de novo fatty acid biosynthesis and triacylglycerol (TAG) production, including genes encoding phospholipase D (PLD), biotin carboxyl carrier protein 1 (BCCP1), lysophosphatidic acid acyltransferase 5 (LPAT5), and diacylglycerol acyltransferase 2 (DGAT2). GmWIN1–5 directly bound to the promoter region of PLD gene. Overall, the results revealed that GmWIN1–5 can upregulate the biosynthesis and accumulation of lipids/oils, especially unsaturated fatty acids and phospholipids benefiting membrane integrity, and ultimately confer plants with high stress tolerance. Transcription factor WAX INDUCER1 (WIN1) plays an important role in wax and cutin biosynthesis in plants. In this study, six GmWIN1 genes were identified from soybean (Glycine max), with GmWIN1–5 having high expression in flowers and seeds, particularly under cold stress. GmWIN1–5′s functions in lipid/oil biosynthesis and stress tolerance were characterized by its overexpression in soybean hairy roots and tobacco (Nicotiana benthamiana) plants. Under cold stress, GmWIN1–5 overexpression (GmWIN1–5-OE) resulted in large oil enhancement and high level of phospholipids involved in cell membranes formation. Malondialdehyde content and elcetronlyte leakage in GmWIN1–5-OE plants was smaller than that in the wild-type control under cold stress, indicating that GmWIN1–5 promote plant stress tolerance. Moreover, GmWIN1–5-OE also led to upregulated expression of numerous genes involved in de novo fatty acid biosynthesis and triacylglycerol (TAG) production, including genes encoding phospholipase D (PLD), biotin carboxyl carrier protein 1 (BCCP1), lysophosphatidic acid acyltransferase 5 (LPAT5), and diacylglycerol acyltransferase 2 (DGAT2). GmWIN1–5 directly bound to the promoter region of PLD gene. Overall, the results revealed that GmWIN1–5 can upregulate the biosynthesis and accumulation of lipids/oils, especially unsaturated fatty acids and phospholipids benefiting membrane integrity, and ultimately confer plants with high stress tolerance. •Six GmWIN1 members with structural integrity are identified in soybean (Glycine max).•Of the six GmWIN1s, GmWIN1-5 expression level was the highest in flower and seed tissues.•Overexpression of GmWiN1-5 in soybean hair roots increased total lipids and cold stress tolerance.•Ectopic expression of GmWIN1-5 in tobacco plant boosted oil content and stress tolerance.•GmWIN1-5 promoted expression of several lipid synthesis-related genes, particularly PLD. |
ArticleNumber | 104916 |
Author | Zhou, Yali Ji, Chunli Cai, Guiping Gao, Huiling Xue, Jinai Zhang, Li Jia, Xiaoyun Li, Runzhi Liu, Baoling |
Author_xml | – sequence: 1 givenname: Guiping surname: Cai fullname: Cai, Guiping – sequence: 2 givenname: Baoling surname: Liu fullname: Liu, Baoling – sequence: 3 givenname: Yali surname: Zhou fullname: Zhou, Yali – sequence: 4 givenname: Huiling surname: Gao fullname: Gao, Huiling – sequence: 5 givenname: Jinai surname: Xue fullname: Xue, Jinai – sequence: 6 givenname: Chunli surname: Ji fullname: Ji, Chunli – sequence: 7 givenname: Li surname: Zhang fullname: Zhang, Li email: Zhangli7912@163.com – sequence: 8 givenname: Xiaoyun surname: Jia fullname: Jia, Xiaoyun email: gssjxy@hotmail.com – sequence: 9 givenname: Runzhi surname: Li fullname: Li, Runzhi email: rli2001@126.com |
BookMark | eNqNkL1uFDEUhV0EiSTwDLgMxS6en7VnCoooIiFSBA2I0rLv3GHvatYefL0hy0vwynh3EQUNVFc-Pt8pvgtxFmJAIV5ValmpSr_ZLDE84tPsY17Wqq5L2vaVPhPnSvXdomtN_VxcMG-UUqYx-lz8vN0FyBSDmySsXXKQMdEPd4hkHGVOLjAkmo_BWL5jkl_uP1TyKwZk6ZgjkMs4yO-U13KimQbpKfI-5DUylUoYJOeEzDLHCcsgoKQgOe49uiCv7qY9UEC5dU-vX4hno5sYX_6-l-Lz7btPN-8XDx_v7m-uHxZQmy4vDLaFdf3Q-16v3PHVt4ht4x3iqDV0nTftsKoBwJWrQTcOlDfeNU3nm0txddqdU_y2Q852Sww4TS5g3LGtTdXVTdXpVam-PVUhReaEowXKR0FFDk22UvYg327sH_n2IN-e5Bfe_MXPibYu7f-DvD6RWEw8EibLQFj0DZQQsh0i_XPjF6dbrlk |
CitedBy_id | crossref_primary_10_1016_j_seta_2025_104201 crossref_primary_10_1016_j_plaphy_2025_109594 crossref_primary_10_1139_cjps_2022_0111 crossref_primary_10_1080_21645698_2023_2243041 crossref_primary_10_1111_pce_15272 crossref_primary_10_1016_j_plaphy_2022_12_030 |
Cites_doi | 10.1007/s10535-014-0471-0 10.1007/s004250050597 10.1146/annurev.arplant.48.1.109 10.1007/s00709-015-0775-8 10.1073/pnas.0305574101 10.1016/j.plantsci.2019.110298 10.1007/s11105-013-0687-8 10.1093/jxb/erw242 10.1104/pp.112.201541 10.1111/nph.12032 10.1074/jbc.M205375200 10.1186/s12870-019-2199-7 10.1007/s11033-014-3733-1 10.3390/ijms20184435 10.1371/journal.pgen.1001388 10.1186/s12870-021-03157-5 10.1104/pp.111.175000 10.1105/tpc.106.047076 10.1016/j.plantsci.2012.09.015 10.1007/s11033-020-05433-3 10.1016/j.bbagrm.2011.08.004 10.1007/s11103-011-9861-2 10.1071/FP19100 10.1016/j.jplph.2018.04.019 10.1111/j.1365-313X.2008.03430.x 10.3390/ijms19010146 10.1016/j.jplph.2011.05.017 10.1016/j.abb.2018.08.001 10.3389/fpls.2018.01088 10.1104/pp.110.157537 10.1111/nph.16000 10.1186/s13007-019-0442-8 10.1016/j.bbalip.2016.03.021 10.1016/j.gene.2014.12.029 10.3390/ijms17040587 10.1105/tpc.104.022897 10.1111/nph.17016 10.1104/pp.109.148247 10.1104/pp.16.01894 10.1186/1471-2229-14-73 10.1093/molbev/msm092 10.1093/jxb/erv366 10.1073/pnas.0409893102 10.1104/pp.15.01563 10.1105/tpc.106.043695 10.1093/jxb/ert156 10.1016/j.envexpbot.2019.06.005 10.1016/j.plantsci.2016.02.007 10.1093/jxb/erx271 10.1104/pp.108.123471 10.1111/j.1365-313X.2008.03442.x |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.envexpbot.2022.104916 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Environmental Sciences |
ExternalDocumentID | 10_1016_j_envexpbot_2022_104916 S0098847222001381 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABPPZ ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEQOU AFFNX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SEN SES SEW SPCBC SSA SSH SSZ T5K TN5 TWZ WH7 WUQ XOL ~G- ~KM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION GROUPED_DOAJ 7S9 L.6 |
ID | FETCH-LOGICAL-c278t-7e4beaa9d9b965ae4bea94ee43baeef66c88b74d52ccca4d56c63ac0b7ba338b3 |
IEDL.DBID | .~1 |
ISSN | 0098-8472 |
IngestDate | Fri Jul 11 11:14:32 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Tue Jul 01 01:41:16 EDT 2025 Sun Apr 06 06:53:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | BC BCCP1 DGAT2 GmWIN1–5-OE WIN1 transcription factor Total lipid Phospholipid PLD ACCase LPAT5 MDA Soybean CT Expression analysis Stress tolerance FA TAG WIN1 GPAT |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c278t-7e4beaa9d9b965ae4bea94ee43baeef66c88b74d52ccca4d56c63ac0b7ba338b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2718231865 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2718231865 crossref_citationtrail_10_1016_j_envexpbot_2022_104916 crossref_primary_10_1016_j_envexpbot_2022_104916 elsevier_sciencedirect_doi_10_1016_j_envexpbot_2022_104916 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationTitle | Environmental and experimental botany |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jiang, Li, Gai (bib25) 2019; 15 Dong, Wang, Li, Ji (bib13) 2021; 21 Shi, Adato, Alkan, He, Lashbrooke, Matas, Meir, Malitsky, Isaacson, Prusky, Leshkowitz, Schreiber, Granell, Widemann, Grausem, Pinot, Rose, Rogachev, Rothan, Aharoni (bib42) 2013; 197 Yang, Tang, Ma, Wang, Meng (bib55) 2011; 168 Tamura, Dudley, Nei, Kumar (bib49) 2007; 24 Dyer, Stymne, Green, Carlsson (bib15) 2008; 54 Liu, Chen, Wang, Li, Cui, Jia, Hong (bib33) 2019; 20 SoyStats. American soybean association (ASA), St. Louis, Missouri. 2019. Bates (bib5) 2016; 1861 Grayburn, Collins, Hildebrand (bib18) 1992; 10 Ji, Mao, Hao, Liu, Xue, Li (bib24) 2018; 19 Xu, Wu, Zhao, Wu, Xu, Gu (bib53) 2016; 17 Hernández, Whitehead, He, Gazda, Gilday, Kozhevnikova, Vaistij, Larson, Graham (bib20) 2012; 160 Zhukov, Shumskaya (bib59) 2020; 47 Lashbrooke, Aharoni, Costa (bib29) 2015; 66 Liu, Xia, Wu, Fu, Hayward, Luo, Yan, Xiong, Fu, Wu, Lu (bib31) 2015; 557 Shi, Malitsky, De Oliveira, Branigan, Franke, Schreiber, Aharoni (bib43) 2011; 7 Kannangara, Branigan, Liu, Penfield, Rao, Mouille, Höfte, Pauly, Riechmann, Broun (bib27) 2007; 19 Liu, Yang, Mao, Li, Lin, Yan, Lin (bib32) 2021; 37 Mizoi, Shinozaki, Yamaguchi-Shinozaki (bib38) 2012; 1819 Gorb, Gorb (bib17) 2017; 68 Bhatt-Wessel, Jordan, Miller, Peng (bib6) 2018; 655 Ohlrogge, Browse (bib39) 1995; 7 Shockey, Gidda, Chapital, Kuan, Dhanoa, Bland, Rothstein, Mullen, Dyer (bib45) 2006; 18 . Ohlrogge, Jaworski (bib40) 1997; 48 Zhang, Iskandarov, Klotz, Stevens, Cahoon, Nazarenus, Pereira, Cahoon (bib57) 2013; 64 Li, Wu, Lam, Bird, Zheng, Samuels, Jetter, Kunst (bib30) 2008; 148 Arroyo-Caro, Chileh, Kazachkov, Zou, Alonso, García-Maroto (bib3) 2013; 199–200 Djemal, Mila, Bouzayen, Pirrello, Khoudi (bib11) 2018; 228 Wang, Wan, Zhang, Zhang, Zhang, Quan, Zhou, Huang (bib51) 2012; 78 Singer, Chen, Mietkiewska, Tomasi, Jayawardhane, Dyer, Weselake (bib46) 2016; 67 Misra, Panda, Parida (bib37) 2014; 41 Angkawijaya, Nguyen, Nakamura (bib2) 2019; 24 Hernández-Pinzón, Ross, Barnes, Damant, Murphy (bib21) 1999; 208 Shockey, Regmi, Cotton, Adhikari, Browse, Bates (bib44) 2016; 170 Cheng, Zhao, Ren, Zou, Sun (bib10) 2021; 229 Kong, Zhou, Zhou, Wei, Ji (bib28) 2020; 71 Jager, Miskó, Fábián, Deák, Kiss-Bába, Polgári, Barnabas, Papp (bib23) 2015; 59 Liu, Li, Lu, Song, Lam, Zhang, Ma, Lin, Man, Du, Shui, Chen, Zhang (bib35) 2014; 14 Yao, You, Duan, Ren, Chu, Zhao, Li, Zhou, Jiao (bib56) 2020; 20 Broun, Poindexter, Osborne, Jiang, Riechmann (bib7) 2004; 10 Tan, Yang, Zhang, Zheng, Qu, Mu, Fu, Li, Guan, Zhang, Wang, Zuo (bib50) 2011; 156 Liu, Ma, Zhang, Wang, Du, Deng, Yin (bib34) 2019; 165 Gai, Zhang, Liu, Cai, Du, Meng, Gu, Chen (bib16) 2019; 9 Maisonneuve, Bessoule, Lessire, Delseny, Roscoe (bib36) 2010; 152 Shen, Allen, Zheng, Li, Glassman, Ranch, Nubel, Tarczynski (bib41) 2010; 153 Aharoni, Dixit, Jetter, Thoenes, van Arkel, Pereira (bib1) 2004; 16 Durrett, Benning, Ohlrogge (bib14) 2008; 54 Djemal, Khoudi (bib12) 2015; 252 Jofuku, Omidyar, Gee, Okamuro (bib26) 2005; 102 Carmit, Zhao, Gao, Xia (bib9) 2018; 9 Iskandarov, Silva, Kim, Andersson, Cahoon, Mockaitis, Cahoon (bib22) 2017; 174 Bai, Jing, Zhou, Li, Bi, Zhao, Jia, Zhang, Zhang (bib4) 2020; 290 Sun, Xue, Lin (bib48) 2018; 8 Welti, Li, Li, Sang, Biesiada, Zhou, Rajashekar, Williams, Wang (bib52) 2022; 277 Guo, Wang, Wang, Lu, Wang, Guo, Ji (bib19) 2020; 47 Zhou, Jenks, Liu, Liu, Zhang, Xiang, Zou, Peng, Chen (bib58) 2014; 32 Yamasaki, Randall (bib54) 2016; 246 Cai, Liu, Zhou, Deng, Gao, Li, Zhang, Li (bib8) 2021; 30 Singer (10.1016/j.envexpbot.2022.104916_bib46) 2016; 67 Gorb (10.1016/j.envexpbot.2022.104916_bib17) 2017; 68 Arroyo-Caro (10.1016/j.envexpbot.2022.104916_bib3) 2013; 199–200 Ji (10.1016/j.envexpbot.2022.104916_bib24) 2018; 19 10.1016/j.envexpbot.2022.104916_bib47 Yamasaki (10.1016/j.envexpbot.2022.104916_bib54) 2016; 246 Zhou (10.1016/j.envexpbot.2022.104916_bib58) 2014; 32 Hernández (10.1016/j.envexpbot.2022.104916_bib20) 2012; 160 Hernández-Pinzón (10.1016/j.envexpbot.2022.104916_bib21) 1999; 208 Kong (10.1016/j.envexpbot.2022.104916_bib28) 2020; 71 Iskandarov (10.1016/j.envexpbot.2022.104916_bib22) 2017; 174 Yao (10.1016/j.envexpbot.2022.104916_bib56) 2020; 20 Bates (10.1016/j.envexpbot.2022.104916_bib5) 2016; 1861 Wang (10.1016/j.envexpbot.2022.104916_bib51) 2012; 78 Djemal (10.1016/j.envexpbot.2022.104916_bib12) 2015; 252 Welti (10.1016/j.envexpbot.2022.104916_bib52) 2022; 277 Liu (10.1016/j.envexpbot.2022.104916_bib35) 2014; 14 Shen (10.1016/j.envexpbot.2022.104916_bib41) 2010; 153 Shockey (10.1016/j.envexpbot.2022.104916_bib45) 2006; 18 Zhukov (10.1016/j.envexpbot.2022.104916_bib59) 2020; 47 Li (10.1016/j.envexpbot.2022.104916_bib30) 2008; 148 Ohlrogge (10.1016/j.envexpbot.2022.104916_bib39) 1995; 7 Durrett (10.1016/j.envexpbot.2022.104916_bib14) 2008; 54 Gai (10.1016/j.envexpbot.2022.104916_bib16) 2019; 9 Liu (10.1016/j.envexpbot.2022.104916_bib33) 2019; 20 Liu (10.1016/j.envexpbot.2022.104916_bib31) 2015; 557 Tamura (10.1016/j.envexpbot.2022.104916_bib49) 2007; 24 Carmit (10.1016/j.envexpbot.2022.104916_bib9) 2018; 9 Lashbrooke (10.1016/j.envexpbot.2022.104916_bib29) 2015; 66 Sun (10.1016/j.envexpbot.2022.104916_bib48) 2018; 8 Mizoi (10.1016/j.envexpbot.2022.104916_bib38) 2012; 1819 Liu (10.1016/j.envexpbot.2022.104916_bib34) 2019; 165 Bai (10.1016/j.envexpbot.2022.104916_bib4) 2020; 290 Jager (10.1016/j.envexpbot.2022.104916_bib23) 2015; 59 Misra (10.1016/j.envexpbot.2022.104916_bib37) 2014; 41 Maisonneuve (10.1016/j.envexpbot.2022.104916_bib36) 2010; 152 Grayburn (10.1016/j.envexpbot.2022.104916_bib18) 1992; 10 Djemal (10.1016/j.envexpbot.2022.104916_bib11) 2018; 228 Ohlrogge (10.1016/j.envexpbot.2022.104916_bib40) 1997; 48 Shockey (10.1016/j.envexpbot.2022.104916_bib44) 2016; 170 Broun (10.1016/j.envexpbot.2022.104916_bib7) 2004; 10 Cai (10.1016/j.envexpbot.2022.104916_bib8) 2021; 30 Jiang (10.1016/j.envexpbot.2022.104916_bib25) 2019; 15 Guo (10.1016/j.envexpbot.2022.104916_bib19) 2020; 47 Liu (10.1016/j.envexpbot.2022.104916_bib32) 2021; 37 Kannangara (10.1016/j.envexpbot.2022.104916_bib27) 2007; 19 Dong (10.1016/j.envexpbot.2022.104916_bib13) 2021; 21 Angkawijaya (10.1016/j.envexpbot.2022.104916_bib2) 2019; 24 Tan (10.1016/j.envexpbot.2022.104916_bib50) 2011; 156 Cheng (10.1016/j.envexpbot.2022.104916_bib10) 2021; 229 Aharoni (10.1016/j.envexpbot.2022.104916_bib1) 2004; 16 Xu (10.1016/j.envexpbot.2022.104916_bib53) 2016; 17 Shi (10.1016/j.envexpbot.2022.104916_bib43) 2011; 7 Shi (10.1016/j.envexpbot.2022.104916_bib42) 2013; 197 Jofuku (10.1016/j.envexpbot.2022.104916_bib26) 2005; 102 Zhang (10.1016/j.envexpbot.2022.104916_bib57) 2013; 64 Bhatt-Wessel (10.1016/j.envexpbot.2022.104916_bib6) 2018; 655 Dyer (10.1016/j.envexpbot.2022.104916_bib15) 2008; 54 Yang (10.1016/j.envexpbot.2022.104916_bib55) 2011; 168 |
References_xml | – volume: 20 start-page: 4435 year: 2019 ident: bib33 article-title: Overexpression of Wax inducer1/shine1 gene enhances wax accumulation under osmotic stress and oil synthesis in publication-title: Int. J. Mol. Sci. – volume: 290 year: 2020 ident: bib4 article-title: Overexpression of soybean GmPLDγ enhances seed oil content and modulates fatty acid composition in transgenic Arabidopsis publication-title: Plant Sci. – volume: 168 start-page: 1804 year: 2011 end-page: 1812 ident: bib55 article-title: Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco publication-title: J. Plant Physiol. – volume: 67 start-page: 4627 year: 2016 end-page: 4638 ident: bib46 article-title: Arabidopsis publication-title: J. Exp. Bot. – volume: 1819 start-page: 86 year: 2012 end-page: 96 ident: bib38 article-title: AP2/ERF family transcription factors in plant abiotic stress responses publication-title: Biochim Biophys. Acta – volume: 7 start-page: 957 year: 1995 end-page: 970 ident: bib39 article-title: Lipid biosynthesis publication-title: Plant Cell. – volume: 102 start-page: 3117 year: 2005 end-page: 3122 ident: bib26 article-title: Control of seed mass and seed yield by the floral homeotic gene APETALA2 publication-title: Proc. Natl. Acad. Sci. USA – volume: 54 start-page: 593 year: 2008 end-page: 607 ident: bib14 article-title: Plant triacylglycerols as feedstocks for the production of biofuels publication-title: Plant J. – volume: 47 start-page: 695 year: 2020 end-page: 703 ident: bib59 article-title: Very-long-chain fatty acids (VLCFAs) in plant response to stress publication-title: Funct. Plant Biol. – volume: 165 start-page: 174 year: 2019 end-page: 184 ident: bib34 article-title: Plant lipid remodeling in response to abiotic stresses publication-title: Environ. Exp. Bot. – volume: 9 start-page: 1 year: 2019 end-page: 4 ident: bib16 article-title: Cold stress affects morphological and physiological indexes of soybean seeding and seed yield publication-title: Chin. J. Agric. – volume: 655 start-page: 1 year: 2018 end-page: 11 ident: bib6 article-title: Role of DGAT enzymes in triacylglycerol metabolism publication-title: Arch. Biochem Biophys. – volume: 47 start-page: 3475 year: 2020 end-page: 3484 ident: bib19 article-title: Overexpression of GmSUMO2 gene confers increased abscisic acid sensitivity in transgenic soybean hairy roots publication-title: Mol. Biol. Rep. – volume: 170 start-page: 163 year: 2016 end-page: 179 ident: bib44 article-title: Identification of Arabidopsis publication-title: Plant Physiol. – volume: 174 start-page: 97 year: 2017 end-page: 109 ident: bib22 article-title: A specialized diacylglycerol acyltransferase contributes to the extreme medium-chain fatty acid content of publication-title: Plant Physiol. – volume: 153 start-page: 980 year: 2010 end-page: 987 ident: bib41 article-title: Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize publication-title: Plant Physiol. – volume: 59 start-page: 29 year: 2015 end-page: 36 ident: bib23 article-title: Expression of a win/shn-type regulator from wheat triggers disorganized proliferation in the arabidopsis leaf cuticle publication-title: Biol. Plant. – reference: SoyStats. American soybean association (ASA), St. Louis, Missouri. 2019. – volume: 78 start-page: 275 year: 2012 end-page: 288 ident: bib51 article-title: An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice publication-title: Plant Mol. Biol. – volume: 246 start-page: 80 year: 2016 end-page: 90 ident: bib54 article-title: Functionality of soybean CBF/DREB1 transcription factors publication-title: Plant Sci. – volume: 1861 start-page: 1214 year: 2016 end-page: 1225 ident: bib5 article-title: Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis publication-title: Biochim Biophys. Acta – volume: 8 start-page: 222 year: 2018 ident: bib48 article-title: Overexpression of soybean transcription factors publication-title: Agron. J. – volume: 24 start-page: 336 year: 2019 end-page: 351 ident: bib2 article-title: Lysophosphatidic acid acyltransferases 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis publication-title: N. Phytol. – volume: 10 start-page: 675 year: 1992 end-page: 678 ident: bib18 article-title: Fatty acid alteration by a delta 9 desaturase in transgenic tobacco tissue publication-title: Biotechnol. (N. Y) – volume: 24 start-page: 1596 year: 2007 end-page: 1599 ident: bib49 article-title: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0 publication-title: Mol. Biol. Evol. – volume: 156 start-page: 1577 year: 2011 end-page: 1588 ident: bib50 article-title: Enhanced seed oil production in canola by conditionalexpression of publication-title: Plant Physiol. – volume: 9 start-page: 1088 year: 2018 ident: bib9 article-title: Multifunctional roles of plant cuticle during plant-pathogen interactions publication-title: Front Plant Sci. – volume: 148 start-page: 97 year: 2008 end-page: 107 ident: bib30 article-title: Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis publication-title: Plant Physiol. – volume: 15 start-page: 56 year: 2019 ident: bib25 article-title: -induced soybean hairy roots versus publication-title: Plant Methods – volume: 199–200 start-page: 29 year: 2013 end-page: 40 ident: bib3 article-title: The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds publication-title: Plant Sci. – volume: 10 start-page: 4706 year: 2004 end-page: 4711 ident: bib7 article-title: WIN1, a transcriptional activator of epidermal wax accumulation in publication-title: Proc. Natl. Acad. Sci. USA – volume: 557 start-page: 163 year: 2015 end-page: 171 ident: bib31 article-title: Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis publication-title: Gene – volume: 16 start-page: 2463 year: 2004 end-page: 2480 ident: bib1 article-title: The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis publication-title: Plant Cell – volume: 68 start-page: 5323 year: 2017 end-page: 5337 ident: bib17 article-title: Anti-adhesive effects of plant wax coverage on insect attachment publication-title: J. Exp. Bot. – volume: 37 start-page: 2658 year: 2021 end-page: 2667 ident: bib32 article-title: Advances in the physiological functions of plant lipids in response to stresses publication-title: Chin. J. Biotechnol. – volume: 19 start-page: 146 year: 2018 ident: bib24 article-title: Splice variants of the castor WRI1 gene upregulate fatty acid and oil biosynthesis when expressed in tobacco leaves publication-title: Int. J. Mol. Sci. – volume: 252 start-page: 1461 year: 2015 end-page: 1473 ident: bib12 article-title: Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat ( publication-title: Protoplasma – volume: 152 start-page: 670 year: 2010 end-page: 684 ident: bib36 article-title: Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis publication-title: Plant Physiol. – volume: 14 start-page: 73 year: 2014 ident: bib35 article-title: Soybean GmMYB73 promotes lipid accumulation in transgenic plants publication-title: BMC Plant Biol. – volume: 64 year: 2013 ident: bib57 article-title: A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds publication-title: J. Exp. Bot. – volume: 20 start-page: 51 year: 2020 ident: bib56 article-title: Quantitative trait loci analysis of seed oil content and composition of wild and cultivated soybean publication-title: BMC Plant Biol. – volume: 32 start-page: 719 year: 2014 end-page: 731 ident: bib58 article-title: Overexpression of transcription factor OsWR2 regulates wax and cutin biosynthesis in rice and enhances its tolerance to water deficit publication-title: Plant Mol. Biol. Rep. – volume: 228 start-page: 39 year: 2018 end-page: 46 ident: bib11 article-title: Molecular cloning and characterization of novel WIN1/SHN1 ethylene responsive transcription factor HvSHN1 in barley ( publication-title: J. Plant Physiol. – volume: 7 year: 2011 ident: bib43 article-title: SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs publication-title: PLoS Genet. – volume: 19 start-page: 1278 year: 2007 end-page: 1294 ident: bib27 article-title: The transcription factor WIN1/SHN1 regulates cutin biosynthesis in publication-title: Plant Cell. – volume: 229 start-page: 2152 year: 2021 end-page: 2162 ident: bib10 article-title: AtMIF1 increases seed oil content by attenuating GL2 inhibition publication-title: N. Phytol. – volume: 71 start-page: 1078 year: 2020 end-page: 1091 ident: bib28 article-title: Transcription factor CaNAC1 regulates low-temperature-induced phospholipid degradation in green bell pepper publication-title: J. Exp. Bot. – volume: 21 start-page: 369 year: 2021 ident: bib13 article-title: Enhancement of plant cold tolerance by soybean RCC1 family gene GmTCF1a publication-title: BMC Plant Biol. – volume: 160 start-page: 215 year: 2012 end-page: 225 ident: bib20 article-title: A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants publication-title: Plant Physiol. – volume: 208 start-page: 588 year: 1999 end-page: 598 ident: bib21 article-title: Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus publication-title: Planta – volume: 66 start-page: 6579 year: 2015 end-page: 6589 ident: bib29 article-title: Genome investigation suggests MdSHN3, an APETALA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development publication-title: J. Exp. Bot. – reference: . – volume: 41 start-page: 8319 year: 2014 end-page: 8332 ident: bib37 article-title: Genome-wide identification and evolutionary analysis of algal LPAT genes involved in TAG biosynthesis using bioinformatic approaches publication-title: Mol. Biol. Rep. – volume: 197 start-page: 468 year: 2013 end-page: 480 ident: bib42 article-title: The tomato SLSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning publication-title: N. Phytol. – volume: 18 start-page: 2294 year: 2006 end-page: 2313 ident: bib45 article-title: Tung tree publication-title: Plant Cell. – volume: 30 start-page: 154 year: 2021 end-page: 162 ident: bib8 article-title: Identification, expression analysis and salt stress response of soybean GmWIN1-6 transcription factor publication-title: Acta Laser Biol. Sin. – volume: 17 start-page: 587 year: 2016 ident: bib53 article-title: Overexpression of the transcription factors GmSHN1 and GmSHN9 differentially regulates wax and cutin biosynthesis, alters cuticle properties, and changes leaf phenotypes in Arabidopsis publication-title: Int. J. Mol. Sci. – volume: 54 start-page: 640 year: 2008 end-page: 655 ident: bib15 article-title: High-value oils from plants publication-title: Plant J. – volume: 48 start-page: 109 year: 1997 end-page: 136 ident: bib40 article-title: Regulationoffattyacidsynthesis publication-title: Annu Rev. Plant Physiol. Plant Mol. Biol. – volume: 277 start-page: 31994 year: 2022 end-page: 32002 ident: bib52 article-title: Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis publication-title: J. Biol. Chem. – volume: 59 start-page: 29 year: 2015 ident: 10.1016/j.envexpbot.2022.104916_bib23 article-title: Expression of a win/shn-type regulator from wheat triggers disorganized proliferation in the arabidopsis leaf cuticle publication-title: Biol. Plant. doi: 10.1007/s10535-014-0471-0 – volume: 208 start-page: 588 year: 1999 ident: 10.1016/j.envexpbot.2022.104916_bib21 article-title: Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus publication-title: Planta doi: 10.1007/s004250050597 – volume: 7 start-page: 957 year: 1995 ident: 10.1016/j.envexpbot.2022.104916_bib39 article-title: Lipid biosynthesis publication-title: Plant Cell. – volume: 48 start-page: 109 year: 1997 ident: 10.1016/j.envexpbot.2022.104916_bib40 article-title: Regulationoffattyacidsynthesis publication-title: Annu Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.arplant.48.1.109 – volume: 252 start-page: 1461 year: 2015 ident: 10.1016/j.envexpbot.2022.104916_bib12 article-title: Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum L.) publication-title: Protoplasma doi: 10.1007/s00709-015-0775-8 – volume: 8 start-page: 222 year: 2018 ident: 10.1016/j.envexpbot.2022.104916_bib48 article-title: Overexpression of soybean transcription factors GmDof4 and GmDof11 signifificantly increase the oleic acid content in seed of Brassica napus L publication-title: Agron. J. – volume: 10 start-page: 4706 year: 2004 ident: 10.1016/j.envexpbot.2022.104916_bib7 article-title: WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0305574101 – volume: 290 year: 2020 ident: 10.1016/j.envexpbot.2022.104916_bib4 article-title: Overexpression of soybean GmPLDγ enhances seed oil content and modulates fatty acid composition in transgenic Arabidopsis publication-title: Plant Sci. doi: 10.1016/j.plantsci.2019.110298 – volume: 32 start-page: 719 year: 2014 ident: 10.1016/j.envexpbot.2022.104916_bib58 article-title: Overexpression of transcription factor OsWR2 regulates wax and cutin biosynthesis in rice and enhances its tolerance to water deficit publication-title: Plant Mol. Biol. Rep. doi: 10.1007/s11105-013-0687-8 – volume: 67 start-page: 4627 year: 2016 ident: 10.1016/j.envexpbot.2022.104916_bib46 article-title: Arabidopsis GPAT9 contributes to synthesis of intracellular glycerolipids but not surface lipids publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw242 – volume: 160 start-page: 215 year: 2012 ident: 10.1016/j.envexpbot.2022.104916_bib20 article-title: A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants publication-title: Plant Physiol. doi: 10.1104/pp.112.201541 – volume: 197 start-page: 468 year: 2013 ident: 10.1016/j.envexpbot.2022.104916_bib42 article-title: The tomato SLSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning publication-title: N. Phytol. doi: 10.1111/nph.12032 – volume: 277 start-page: 31994 year: 2022 ident: 10.1016/j.envexpbot.2022.104916_bib52 article-title: Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M205375200 – volume: 20 start-page: 51 year: 2020 ident: 10.1016/j.envexpbot.2022.104916_bib56 article-title: Quantitative trait loci analysis of seed oil content and composition of wild and cultivated soybean publication-title: BMC Plant Biol. doi: 10.1186/s12870-019-2199-7 – volume: 41 start-page: 8319 year: 2014 ident: 10.1016/j.envexpbot.2022.104916_bib37 article-title: Genome-wide identification and evolutionary analysis of algal LPAT genes involved in TAG biosynthesis using bioinformatic approaches publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-014-3733-1 – volume: 20 start-page: 4435 year: 2019 ident: 10.1016/j.envexpbot.2022.104916_bib33 article-title: Overexpression of Wax inducer1/shine1 gene enhances wax accumulation under osmotic stress and oil synthesis in Brassica napus publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20184435 – volume: 7 year: 2011 ident: 10.1016/j.envexpbot.2022.104916_bib43 article-title: SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001388 – volume: 21 start-page: 369 year: 2021 ident: 10.1016/j.envexpbot.2022.104916_bib13 article-title: Enhancement of plant cold tolerance by soybean RCC1 family gene GmTCF1a publication-title: BMC Plant Biol. doi: 10.1186/s12870-021-03157-5 – volume: 71 start-page: 1078 year: 2020 ident: 10.1016/j.envexpbot.2022.104916_bib28 article-title: Transcription factor CaNAC1 regulates low-temperature-induced phospholipid degradation in green bell pepper publication-title: J. Exp. Bot. – volume: 156 start-page: 1577 year: 2011 ident: 10.1016/j.envexpbot.2022.104916_bib50 article-title: Enhanced seed oil production in canola by conditionalexpression of Brassica napus leafy cotyledon1 and LEC1-like in developing seeds publication-title: Plant Physiol. doi: 10.1104/pp.111.175000 – volume: 19 start-page: 1278 year: 2007 ident: 10.1016/j.envexpbot.2022.104916_bib27 article-title: The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana publication-title: Plant Cell. doi: 10.1105/tpc.106.047076 – volume: 199–200 start-page: 29 year: 2013 ident: 10.1016/j.envexpbot.2022.104916_bib3 article-title: The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds publication-title: Plant Sci. doi: 10.1016/j.plantsci.2012.09.015 – volume: 47 start-page: 3475 year: 2020 ident: 10.1016/j.envexpbot.2022.104916_bib19 article-title: Overexpression of GmSUMO2 gene confers increased abscisic acid sensitivity in transgenic soybean hairy roots publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-020-05433-3 – volume: 1819 start-page: 86 year: 2012 ident: 10.1016/j.envexpbot.2022.104916_bib38 article-title: AP2/ERF family transcription factors in plant abiotic stress responses publication-title: Biochim Biophys. Acta doi: 10.1016/j.bbagrm.2011.08.004 – volume: 78 start-page: 275 year: 2012 ident: 10.1016/j.envexpbot.2022.104916_bib51 article-title: An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice publication-title: Plant Mol. Biol. doi: 10.1007/s11103-011-9861-2 – volume: 47 start-page: 695 year: 2020 ident: 10.1016/j.envexpbot.2022.104916_bib59 article-title: Very-long-chain fatty acids (VLCFAs) in plant response to stress publication-title: Funct. Plant Biol. doi: 10.1071/FP19100 – volume: 228 start-page: 39 year: 2018 ident: 10.1016/j.envexpbot.2022.104916_bib11 article-title: Molecular cloning and characterization of novel WIN1/SHN1 ethylene responsive transcription factor HvSHN1 in barley (Hordeum vulgare L.) publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2018.04.019 – ident: 10.1016/j.envexpbot.2022.104916_bib47 – volume: 54 start-page: 640 year: 2008 ident: 10.1016/j.envexpbot.2022.104916_bib15 article-title: High-value oils from plants publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03430.x – volume: 19 start-page: 146 year: 2018 ident: 10.1016/j.envexpbot.2022.104916_bib24 article-title: Splice variants of the castor WRI1 gene upregulate fatty acid and oil biosynthesis when expressed in tobacco leaves publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19010146 – volume: 168 start-page: 1804 year: 2011 ident: 10.1016/j.envexpbot.2022.104916_bib55 article-title: Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2011.05.017 – volume: 655 start-page: 1 year: 2018 ident: 10.1016/j.envexpbot.2022.104916_bib6 article-title: Role of DGAT enzymes in triacylglycerol metabolism publication-title: Arch. Biochem Biophys. doi: 10.1016/j.abb.2018.08.001 – volume: 9 start-page: 1088 year: 2018 ident: 10.1016/j.envexpbot.2022.104916_bib9 article-title: Multifunctional roles of plant cuticle during plant-pathogen interactions publication-title: Front Plant Sci. doi: 10.3389/fpls.2018.01088 – volume: 153 start-page: 980 year: 2010 ident: 10.1016/j.envexpbot.2022.104916_bib41 article-title: Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize publication-title: Plant Physiol. doi: 10.1104/pp.110.157537 – volume: 24 start-page: 336 year: 2019 ident: 10.1016/j.envexpbot.2022.104916_bib2 article-title: Lysophosphatidic acid acyltransferases 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis publication-title: N. Phytol. doi: 10.1111/nph.16000 – volume: 15 start-page: 56 year: 2019 ident: 10.1016/j.envexpbot.2022.104916_bib25 article-title: Agrobacterium rhizogenes-induced soybean hairy roots versus Soybean mosaic virus (ARISHR-SMV) is an efficient pathosystem for studying soybean-virus interactions publication-title: Plant Methods doi: 10.1186/s13007-019-0442-8 – volume: 1861 start-page: 1214 year: 2016 ident: 10.1016/j.envexpbot.2022.104916_bib5 article-title: Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis publication-title: Biochim Biophys. Acta doi: 10.1016/j.bbalip.2016.03.021 – volume: 557 start-page: 163 year: 2015 ident: 10.1016/j.envexpbot.2022.104916_bib31 article-title: Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis publication-title: Gene doi: 10.1016/j.gene.2014.12.029 – volume: 17 start-page: 587 year: 2016 ident: 10.1016/j.envexpbot.2022.104916_bib53 article-title: Overexpression of the transcription factors GmSHN1 and GmSHN9 differentially regulates wax and cutin biosynthesis, alters cuticle properties, and changes leaf phenotypes in Arabidopsis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17040587 – volume: 16 start-page: 2463 year: 2004 ident: 10.1016/j.envexpbot.2022.104916_bib1 article-title: The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.104.022897 – volume: 229 start-page: 2152 year: 2021 ident: 10.1016/j.envexpbot.2022.104916_bib10 article-title: AtMIF1 increases seed oil content by attenuating GL2 inhibition publication-title: N. Phytol. doi: 10.1111/nph.17016 – volume: 152 start-page: 670 year: 2010 ident: 10.1016/j.envexpbot.2022.104916_bib36 article-title: Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.109.148247 – volume: 30 start-page: 154 year: 2021 ident: 10.1016/j.envexpbot.2022.104916_bib8 article-title: Identification, expression analysis and salt stress response of soybean GmWIN1-6 transcription factor publication-title: Acta Laser Biol. Sin. – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.envexpbot.2022.104916_bib16 article-title: Cold stress affects morphological and physiological indexes of soybean seeding and seed yield publication-title: Chin. J. Agric. – volume: 174 start-page: 97 year: 2017 ident: 10.1016/j.envexpbot.2022.104916_bib22 article-title: A specialized diacylglycerol acyltransferase contributes to the extreme medium-chain fatty acid content of Cuphea seedoil publication-title: Plant Physiol. doi: 10.1104/pp.16.01894 – volume: 14 start-page: 73 year: 2014 ident: 10.1016/j.envexpbot.2022.104916_bib35 article-title: Soybean GmMYB73 promotes lipid accumulation in transgenic plants publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-14-73 – volume: 24 start-page: 1596 year: 2007 ident: 10.1016/j.envexpbot.2022.104916_bib49 article-title: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msm092 – volume: 66 start-page: 6579 year: 2015 ident: 10.1016/j.envexpbot.2022.104916_bib29 article-title: Genome investigation suggests MdSHN3, an APETALA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv366 – volume: 102 start-page: 3117 year: 2005 ident: 10.1016/j.envexpbot.2022.104916_bib26 article-title: Control of seed mass and seed yield by the floral homeotic gene APETALA2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0409893102 – volume: 10 start-page: 675 year: 1992 ident: 10.1016/j.envexpbot.2022.104916_bib18 article-title: Fatty acid alteration by a delta 9 desaturase in transgenic tobacco tissue publication-title: Biotechnol. (N. Y) – volume: 170 start-page: 163 year: 2016 ident: 10.1016/j.envexpbot.2022.104916_bib44 article-title: Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis publication-title: Plant Physiol. doi: 10.1104/pp.15.01563 – volume: 18 start-page: 2294 year: 2006 ident: 10.1016/j.envexpbot.2022.104916_bib45 article-title: Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum publication-title: Plant Cell. doi: 10.1105/tpc.106.043695 – volume: 64 year: 2013 ident: 10.1016/j.envexpbot.2022.104916_bib57 article-title: A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert156 – volume: 165 start-page: 174 year: 2019 ident: 10.1016/j.envexpbot.2022.104916_bib34 article-title: Plant lipid remodeling in response to abiotic stresses publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2019.06.005 – volume: 246 start-page: 80 year: 2016 ident: 10.1016/j.envexpbot.2022.104916_bib54 article-title: Functionality of soybean CBF/DREB1 transcription factors publication-title: Plant Sci. doi: 10.1016/j.plantsci.2016.02.007 – volume: 68 start-page: 5323 year: 2017 ident: 10.1016/j.envexpbot.2022.104916_bib17 article-title: Anti-adhesive effects of plant wax coverage on insect attachment publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx271 – volume: 37 start-page: 2658 year: 2021 ident: 10.1016/j.envexpbot.2022.104916_bib32 article-title: Advances in the physiological functions of plant lipids in response to stresses publication-title: Chin. J. Biotechnol. – volume: 148 start-page: 97 year: 2008 ident: 10.1016/j.envexpbot.2022.104916_bib30 article-title: Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.108.123471 – volume: 54 start-page: 593 year: 2008 ident: 10.1016/j.envexpbot.2022.104916_bib14 article-title: Plant triacylglycerols as feedstocks for the production of biofuels publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03442.x |
SSID | ssj0007376 |
Score | 2.3969681 |
Snippet | Transcription factor WAX INDUCER1 (WIN1) plays an important role in wax and cutin biosynthesis in plants. In this study, six GmWIN1 genes were identified from... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104916 |
SubjectTerms | biosynthesis biotin cold stress cutin diacylglycerol acyltransferase Expression analysis genes Glycine max lysophospholipids malondialdehyde Nicotiana benthamiana oils phospholipases Phospholipid plant stress promoter regions Soybean soybeans Stress tolerance tobacco Total lipid transcription factors triacylglycerols WIN1 transcription factor |
Title | Functional characterization of transcription factor WIN1 genes associated with lipid biosynthesis and stress tolerance in soybean (Glycine max) |
URI | https://dx.doi.org/10.1016/j.envexpbot.2022.104916 https://www.proquest.com/docview/2718231865 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQ7aGXikdReWoqcWgPKbuO4yS9AWJZWnVPReVm2bG3ClqcFQmIvfAX-pc7EyeLqCpx6ClyNE4iz2Tms-fF2OHQ8MTKJI54rLOIKspFRiQisvHUJoOpRMhPG8XvEzm-FF-vkqsVdtrnwlBYZaf7g05vtXV356hbzaN5WVKOb55lVOuQt-62NoNdpCTlnx-fwjzSuG0w19bNJOpnMV7O37uHuakoqJJz8nfm1Pj83xbqL13dGqDRGnvbIUc4Dh-3zlac32CvTypEd4sNtnX2lLGGVN0vW2-y3yO0XOHAD4pldeaQfAnVFBoyVr3qgNB-B35eTIbwi9Qg6I5_zgKd2cKsnJcWTFnVC4_gsS6RxFsIOSfQVDNHrToclB7qamGc9vDxfLYg_z3c6IdP79jl6OzH6TjqujBEBU-zJkqdQFqd29zkMtHtKBfOidho56ZSFllmUmETXqA04FUWMtbFwKRG4_7XxFts1VfevWcQ55YPtEakjA-VVAamEGaYISSRzqFkbDPZr7wquhLl1CljpvpYtGu1ZJkilqnAsm02WE6chyodL0_50rNWPRM4hbbk5ckfemFQ-DuSj0V7V93ViqOtR8icyWTnf16wy97QKEQa7rHV5vbO7SP6acxBK94H7NXxxbfx5A9F6QoD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKQaIXBIWKAoVBAgkOobtO4iSVOPDoskvbPbWiN2PH3ipocVYkhebCX-DH8AeZiZOtipB6QD1FSew8ZsYzn-15MPZsqHlsRBwGPFRpQBnlAh3FUWDCmYkHM4GQnyaKB1MxPoo-HsfHK-x3HwtDbpWd7vc6vdXW3ZXtjprbi6KgGN8sTSnXIW-324adZ-WebX7gvK16PXmPTH7O-Wj38N046EoLBDlP0jpIbKStUpnJdCZi1Z5lkbVRqJW1MyHyNNVJZGKe4y_iUeQiVPlAJ1rhpE6H-Nxr7HqE6oLKJrz6ee5XkoRtRbs2USd93gWnMuu-27OFLsmLk3PaYM2o0vq_TeJfxqG1eKPb7FYHVeGNp8YdtmLdOrvxtkQ42ayzjd3zEDls1emI6i77NUJT6VcYIV-mg_bRnlDOoCbr2Osq8PV-4NNkOoQT0rugOoGxBmiRGObFojCgi7JqHKLVqsAmzoAPcoG6nFuqDWKhcFCVDVLYwYsP84YcBuCrOnt5jx1dCW822Kornb3PIMwMHyiF0BwfKijvTB7pYYoYSFiLorjJRE95mXc50ak0x1z2zm9f5JJlklgmPcs22WDZceHTglzeZadnrbwg4RKN1-Wdn_bCIHH806aOcrY8rSRHcIEYPRXxg_95wRN2c3x4sC_3J9O9h2yN7ng3x0dstf52arcQetX6cSvqwD5f9dj6AwPGSTk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+characterization+of+transcription+factor+WIN1+genes+associated+with+lipid+biosynthesis+and+stress+tolerance+in+soybean+%28Glycine+max%29&rft.jtitle=Environmental+and+experimental+botany&rft.au=Cai%2C+Guiping&rft.au=Liu%2C+Baoling&rft.au=Zhou%2C+Yali&rft.au=Gao%2C+Huiling&rft.date=2022-08-01&rft.pub=Elsevier+B.V&rft.issn=0098-8472&rft.volume=200&rft_id=info:doi/10.1016%2Fj.envexpbot.2022.104916&rft.externalDocID=S0098847222001381 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8472&client=summon |