Functional characterization of transcription factor WIN1 genes associated with lipid biosynthesis and stress tolerance in soybean (Glycine max)

Transcription factor WAX INDUCER1 (WIN1) plays an important role in wax and cutin biosynthesis in plants. In this study, six GmWIN1 genes were identified from soybean (Glycine max), with GmWIN1–5 having high expression in flowers and seeds, particularly under cold stress. GmWIN1–5′s functions in lip...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental and experimental botany Vol. 200; p. 104916
Main Authors Cai, Guiping, Liu, Baoling, Zhou, Yali, Gao, Huiling, Xue, Jinai, Ji, Chunli, Zhang, Li, Jia, Xiaoyun, Li, Runzhi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transcription factor WAX INDUCER1 (WIN1) plays an important role in wax and cutin biosynthesis in plants. In this study, six GmWIN1 genes were identified from soybean (Glycine max), with GmWIN1–5 having high expression in flowers and seeds, particularly under cold stress. GmWIN1–5′s functions in lipid/oil biosynthesis and stress tolerance were characterized by its overexpression in soybean hairy roots and tobacco (Nicotiana benthamiana) plants. Under cold stress, GmWIN1–5 overexpression (GmWIN1–5-OE) resulted in large oil enhancement and high level of phospholipids involved in cell membranes formation. Malondialdehyde content and elcetronlyte leakage in GmWIN1–5-OE plants was smaller than that in the wild-type control under cold stress, indicating that GmWIN1–5 promote plant stress tolerance. Moreover, GmWIN1–5-OE also led to upregulated expression of numerous genes involved in de novo fatty acid biosynthesis and triacylglycerol (TAG) production, including genes encoding phospholipase D (PLD), biotin carboxyl carrier protein 1 (BCCP1), lysophosphatidic acid acyltransferase 5 (LPAT5), and diacylglycerol acyltransferase 2 (DGAT2). GmWIN1–5 directly bound to the promoter region of PLD gene. Overall, the results revealed that GmWIN1–5 can upregulate the biosynthesis and accumulation of lipids/oils, especially unsaturated fatty acids and phospholipids benefiting membrane integrity, and ultimately confer plants with high stress tolerance. •Six GmWIN1 members with structural integrity are identified in soybean (Glycine max).•Of the six GmWIN1s, GmWIN1-5 expression level was the highest in flower and seed tissues.•Overexpression of GmWiN1-5 in soybean hair roots increased total lipids and cold stress tolerance.•Ectopic expression of GmWIN1-5 in tobacco plant boosted oil content and stress tolerance.•GmWIN1-5 promoted expression of several lipid synthesis-related genes, particularly PLD.
AbstractList Transcription factor WAX INDUCER1 (WIN1) plays an important role in wax and cutin biosynthesis in plants. In this study, six GmWIN1 genes were identified from soybean (Glycine max), with GmWIN1–5 having high expression in flowers and seeds, particularly under cold stress. GmWIN1–5′s functions in lipid/oil biosynthesis and stress tolerance were characterized by its overexpression in soybean hairy roots and tobacco (Nicotiana benthamiana) plants. Under cold stress, GmWIN1–5 overexpression (GmWIN1–5-OE) resulted in large oil enhancement and high level of phospholipids involved in cell membranes formation. Malondialdehyde content and elcetronlyte leakage in GmWIN1–5-OE plants was smaller than that in the wild-type control under cold stress, indicating that GmWIN1–5 promote plant stress tolerance. Moreover, GmWIN1–5-OE also led to upregulated expression of numerous genes involved in de novo fatty acid biosynthesis and triacylglycerol (TAG) production, including genes encoding phospholipase D (PLD), biotin carboxyl carrier protein 1 (BCCP1), lysophosphatidic acid acyltransferase 5 (LPAT5), and diacylglycerol acyltransferase 2 (DGAT2). GmWIN1–5 directly bound to the promoter region of PLD gene. Overall, the results revealed that GmWIN1–5 can upregulate the biosynthesis and accumulation of lipids/oils, especially unsaturated fatty acids and phospholipids benefiting membrane integrity, and ultimately confer plants with high stress tolerance.
Transcription factor WAX INDUCER1 (WIN1) plays an important role in wax and cutin biosynthesis in plants. In this study, six GmWIN1 genes were identified from soybean (Glycine max), with GmWIN1–5 having high expression in flowers and seeds, particularly under cold stress. GmWIN1–5′s functions in lipid/oil biosynthesis and stress tolerance were characterized by its overexpression in soybean hairy roots and tobacco (Nicotiana benthamiana) plants. Under cold stress, GmWIN1–5 overexpression (GmWIN1–5-OE) resulted in large oil enhancement and high level of phospholipids involved in cell membranes formation. Malondialdehyde content and elcetronlyte leakage in GmWIN1–5-OE plants was smaller than that in the wild-type control under cold stress, indicating that GmWIN1–5 promote plant stress tolerance. Moreover, GmWIN1–5-OE also led to upregulated expression of numerous genes involved in de novo fatty acid biosynthesis and triacylglycerol (TAG) production, including genes encoding phospholipase D (PLD), biotin carboxyl carrier protein 1 (BCCP1), lysophosphatidic acid acyltransferase 5 (LPAT5), and diacylglycerol acyltransferase 2 (DGAT2). GmWIN1–5 directly bound to the promoter region of PLD gene. Overall, the results revealed that GmWIN1–5 can upregulate the biosynthesis and accumulation of lipids/oils, especially unsaturated fatty acids and phospholipids benefiting membrane integrity, and ultimately confer plants with high stress tolerance. •Six GmWIN1 members with structural integrity are identified in soybean (Glycine max).•Of the six GmWIN1s, GmWIN1-5 expression level was the highest in flower and seed tissues.•Overexpression of GmWiN1-5 in soybean hair roots increased total lipids and cold stress tolerance.•Ectopic expression of GmWIN1-5 in tobacco plant boosted oil content and stress tolerance.•GmWIN1-5 promoted expression of several lipid synthesis-related genes, particularly PLD.
ArticleNumber 104916
Author Zhou, Yali
Ji, Chunli
Cai, Guiping
Gao, Huiling
Xue, Jinai
Zhang, Li
Jia, Xiaoyun
Li, Runzhi
Liu, Baoling
Author_xml – sequence: 1
  givenname: Guiping
  surname: Cai
  fullname: Cai, Guiping
– sequence: 2
  givenname: Baoling
  surname: Liu
  fullname: Liu, Baoling
– sequence: 3
  givenname: Yali
  surname: Zhou
  fullname: Zhou, Yali
– sequence: 4
  givenname: Huiling
  surname: Gao
  fullname: Gao, Huiling
– sequence: 5
  givenname: Jinai
  surname: Xue
  fullname: Xue, Jinai
– sequence: 6
  givenname: Chunli
  surname: Ji
  fullname: Ji, Chunli
– sequence: 7
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  email: Zhangli7912@163.com
– sequence: 8
  givenname: Xiaoyun
  surname: Jia
  fullname: Jia, Xiaoyun
  email: gssjxy@hotmail.com
– sequence: 9
  givenname: Runzhi
  surname: Li
  fullname: Li, Runzhi
  email: rli2001@126.com
BookMark eNqNkL1uFDEUhV0EiSTwDLgMxS6en7VnCoooIiFSBA2I0rLv3GHvatYefL0hy0vwynh3EQUNVFc-Pt8pvgtxFmJAIV5ValmpSr_ZLDE84tPsY17Wqq5L2vaVPhPnSvXdomtN_VxcMG-UUqYx-lz8vN0FyBSDmySsXXKQMdEPd4hkHGVOLjAkmo_BWL5jkl_uP1TyKwZk6ZgjkMs4yO-U13KimQbpKfI-5DUylUoYJOeEzDLHCcsgoKQgOe49uiCv7qY9UEC5dU-vX4hno5sYX_6-l-Lz7btPN-8XDx_v7m-uHxZQmy4vDLaFdf3Q-16v3PHVt4ht4x3iqDV0nTftsKoBwJWrQTcOlDfeNU3nm0txddqdU_y2Q852Sww4TS5g3LGtTdXVTdXpVam-PVUhReaEowXKR0FFDk22UvYg327sH_n2IN-e5Bfe_MXPibYu7f-DvD6RWEw8EibLQFj0DZQQsh0i_XPjF6dbrlk
CitedBy_id crossref_primary_10_1016_j_seta_2025_104201
crossref_primary_10_1016_j_plaphy_2025_109594
crossref_primary_10_1139_cjps_2022_0111
crossref_primary_10_1080_21645698_2023_2243041
crossref_primary_10_1111_pce_15272
crossref_primary_10_1016_j_plaphy_2022_12_030
Cites_doi 10.1007/s10535-014-0471-0
10.1007/s004250050597
10.1146/annurev.arplant.48.1.109
10.1007/s00709-015-0775-8
10.1073/pnas.0305574101
10.1016/j.plantsci.2019.110298
10.1007/s11105-013-0687-8
10.1093/jxb/erw242
10.1104/pp.112.201541
10.1111/nph.12032
10.1074/jbc.M205375200
10.1186/s12870-019-2199-7
10.1007/s11033-014-3733-1
10.3390/ijms20184435
10.1371/journal.pgen.1001388
10.1186/s12870-021-03157-5
10.1104/pp.111.175000
10.1105/tpc.106.047076
10.1016/j.plantsci.2012.09.015
10.1007/s11033-020-05433-3
10.1016/j.bbagrm.2011.08.004
10.1007/s11103-011-9861-2
10.1071/FP19100
10.1016/j.jplph.2018.04.019
10.1111/j.1365-313X.2008.03430.x
10.3390/ijms19010146
10.1016/j.jplph.2011.05.017
10.1016/j.abb.2018.08.001
10.3389/fpls.2018.01088
10.1104/pp.110.157537
10.1111/nph.16000
10.1186/s13007-019-0442-8
10.1016/j.bbalip.2016.03.021
10.1016/j.gene.2014.12.029
10.3390/ijms17040587
10.1105/tpc.104.022897
10.1111/nph.17016
10.1104/pp.109.148247
10.1104/pp.16.01894
10.1186/1471-2229-14-73
10.1093/molbev/msm092
10.1093/jxb/erv366
10.1073/pnas.0409893102
10.1104/pp.15.01563
10.1105/tpc.106.043695
10.1093/jxb/ert156
10.1016/j.envexpbot.2019.06.005
10.1016/j.plantsci.2016.02.007
10.1093/jxb/erx271
10.1104/pp.108.123471
10.1111/j.1365-313X.2008.03442.x
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.envexpbot.2022.104916
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Botany
Environmental Sciences
ExternalDocumentID 10_1016_j_envexpbot_2022_104916
S0098847222001381
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABPPZ
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AEQOU
AFFNX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSA
SSH
SSZ
T5K
TN5
TWZ
WH7
WUQ
XOL
~G-
~KM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
GROUPED_DOAJ
7S9
L.6
ID FETCH-LOGICAL-c278t-7e4beaa9d9b965ae4bea94ee43baeef66c88b74d52ccca4d56c63ac0b7ba338b3
IEDL.DBID .~1
ISSN 0098-8472
IngestDate Fri Jul 11 11:14:32 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Tue Jul 01 01:41:16 EDT 2025
Sun Apr 06 06:53:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords BC
BCCP1
DGAT2
GmWIN1–5-OE
WIN1 transcription factor
Total lipid
Phospholipid
PLD
ACCase
LPAT5
MDA
Soybean
CT
Expression analysis
Stress tolerance
FA
TAG
WIN1
GPAT
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c278t-7e4beaa9d9b965ae4bea94ee43baeef66c88b74d52ccca4d56c63ac0b7ba338b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718231865
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718231865
crossref_citationtrail_10_1016_j_envexpbot_2022_104916
crossref_primary_10_1016_j_envexpbot_2022_104916
elsevier_sciencedirect_doi_10_1016_j_envexpbot_2022_104916
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Environmental and experimental botany
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jiang, Li, Gai (bib25) 2019; 15
Dong, Wang, Li, Ji (bib13) 2021; 21
Shi, Adato, Alkan, He, Lashbrooke, Matas, Meir, Malitsky, Isaacson, Prusky, Leshkowitz, Schreiber, Granell, Widemann, Grausem, Pinot, Rose, Rogachev, Rothan, Aharoni (bib42) 2013; 197
Yang, Tang, Ma, Wang, Meng (bib55) 2011; 168
Tamura, Dudley, Nei, Kumar (bib49) 2007; 24
Dyer, Stymne, Green, Carlsson (bib15) 2008; 54
Liu, Chen, Wang, Li, Cui, Jia, Hong (bib33) 2019; 20
SoyStats. American soybean association (ASA), St. Louis, Missouri. 2019.
Bates (bib5) 2016; 1861
Grayburn, Collins, Hildebrand (bib18) 1992; 10
Ji, Mao, Hao, Liu, Xue, Li (bib24) 2018; 19
Xu, Wu, Zhao, Wu, Xu, Gu (bib53) 2016; 17
Hernández, Whitehead, He, Gazda, Gilday, Kozhevnikova, Vaistij, Larson, Graham (bib20) 2012; 160
Zhukov, Shumskaya (bib59) 2020; 47
Lashbrooke, Aharoni, Costa (bib29) 2015; 66
Liu, Xia, Wu, Fu, Hayward, Luo, Yan, Xiong, Fu, Wu, Lu (bib31) 2015; 557
Shi, Malitsky, De Oliveira, Branigan, Franke, Schreiber, Aharoni (bib43) 2011; 7
Kannangara, Branigan, Liu, Penfield, Rao, Mouille, Höfte, Pauly, Riechmann, Broun (bib27) 2007; 19
Liu, Yang, Mao, Li, Lin, Yan, Lin (bib32) 2021; 37
Mizoi, Shinozaki, Yamaguchi-Shinozaki (bib38) 2012; 1819
Gorb, Gorb (bib17) 2017; 68
Bhatt-Wessel, Jordan, Miller, Peng (bib6) 2018; 655
Ohlrogge, Browse (bib39) 1995; 7
Shockey, Gidda, Chapital, Kuan, Dhanoa, Bland, Rothstein, Mullen, Dyer (bib45) 2006; 18
.
Ohlrogge, Jaworski (bib40) 1997; 48
Zhang, Iskandarov, Klotz, Stevens, Cahoon, Nazarenus, Pereira, Cahoon (bib57) 2013; 64
Li, Wu, Lam, Bird, Zheng, Samuels, Jetter, Kunst (bib30) 2008; 148
Arroyo-Caro, Chileh, Kazachkov, Zou, Alonso, García-Maroto (bib3) 2013; 199–200
Djemal, Mila, Bouzayen, Pirrello, Khoudi (bib11) 2018; 228
Wang, Wan, Zhang, Zhang, Zhang, Quan, Zhou, Huang (bib51) 2012; 78
Singer, Chen, Mietkiewska, Tomasi, Jayawardhane, Dyer, Weselake (bib46) 2016; 67
Misra, Panda, Parida (bib37) 2014; 41
Angkawijaya, Nguyen, Nakamura (bib2) 2019; 24
Hernández-Pinzón, Ross, Barnes, Damant, Murphy (bib21) 1999; 208
Shockey, Regmi, Cotton, Adhikari, Browse, Bates (bib44) 2016; 170
Cheng, Zhao, Ren, Zou, Sun (bib10) 2021; 229
Kong, Zhou, Zhou, Wei, Ji (bib28) 2020; 71
Jager, Miskó, Fábián, Deák, Kiss-Bába, Polgári, Barnabas, Papp (bib23) 2015; 59
Liu, Li, Lu, Song, Lam, Zhang, Ma, Lin, Man, Du, Shui, Chen, Zhang (bib35) 2014; 14
Yao, You, Duan, Ren, Chu, Zhao, Li, Zhou, Jiao (bib56) 2020; 20
Broun, Poindexter, Osborne, Jiang, Riechmann (bib7) 2004; 10
Tan, Yang, Zhang, Zheng, Qu, Mu, Fu, Li, Guan, Zhang, Wang, Zuo (bib50) 2011; 156
Liu, Ma, Zhang, Wang, Du, Deng, Yin (bib34) 2019; 165
Gai, Zhang, Liu, Cai, Du, Meng, Gu, Chen (bib16) 2019; 9
Maisonneuve, Bessoule, Lessire, Delseny, Roscoe (bib36) 2010; 152
Shen, Allen, Zheng, Li, Glassman, Ranch, Nubel, Tarczynski (bib41) 2010; 153
Aharoni, Dixit, Jetter, Thoenes, van Arkel, Pereira (bib1) 2004; 16
Durrett, Benning, Ohlrogge (bib14) 2008; 54
Djemal, Khoudi (bib12) 2015; 252
Jofuku, Omidyar, Gee, Okamuro (bib26) 2005; 102
Carmit, Zhao, Gao, Xia (bib9) 2018; 9
Iskandarov, Silva, Kim, Andersson, Cahoon, Mockaitis, Cahoon (bib22) 2017; 174
Bai, Jing, Zhou, Li, Bi, Zhao, Jia, Zhang, Zhang (bib4) 2020; 290
Sun, Xue, Lin (bib48) 2018; 8
Welti, Li, Li, Sang, Biesiada, Zhou, Rajashekar, Williams, Wang (bib52) 2022; 277
Guo, Wang, Wang, Lu, Wang, Guo, Ji (bib19) 2020; 47
Zhou, Jenks, Liu, Liu, Zhang, Xiang, Zou, Peng, Chen (bib58) 2014; 32
Yamasaki, Randall (bib54) 2016; 246
Cai, Liu, Zhou, Deng, Gao, Li, Zhang, Li (bib8) 2021; 30
Singer (10.1016/j.envexpbot.2022.104916_bib46) 2016; 67
Gorb (10.1016/j.envexpbot.2022.104916_bib17) 2017; 68
Arroyo-Caro (10.1016/j.envexpbot.2022.104916_bib3) 2013; 199–200
Ji (10.1016/j.envexpbot.2022.104916_bib24) 2018; 19
10.1016/j.envexpbot.2022.104916_bib47
Yamasaki (10.1016/j.envexpbot.2022.104916_bib54) 2016; 246
Zhou (10.1016/j.envexpbot.2022.104916_bib58) 2014; 32
Hernández (10.1016/j.envexpbot.2022.104916_bib20) 2012; 160
Hernández-Pinzón (10.1016/j.envexpbot.2022.104916_bib21) 1999; 208
Kong (10.1016/j.envexpbot.2022.104916_bib28) 2020; 71
Iskandarov (10.1016/j.envexpbot.2022.104916_bib22) 2017; 174
Yao (10.1016/j.envexpbot.2022.104916_bib56) 2020; 20
Bates (10.1016/j.envexpbot.2022.104916_bib5) 2016; 1861
Wang (10.1016/j.envexpbot.2022.104916_bib51) 2012; 78
Djemal (10.1016/j.envexpbot.2022.104916_bib12) 2015; 252
Welti (10.1016/j.envexpbot.2022.104916_bib52) 2022; 277
Liu (10.1016/j.envexpbot.2022.104916_bib35) 2014; 14
Shen (10.1016/j.envexpbot.2022.104916_bib41) 2010; 153
Shockey (10.1016/j.envexpbot.2022.104916_bib45) 2006; 18
Zhukov (10.1016/j.envexpbot.2022.104916_bib59) 2020; 47
Li (10.1016/j.envexpbot.2022.104916_bib30) 2008; 148
Ohlrogge (10.1016/j.envexpbot.2022.104916_bib39) 1995; 7
Durrett (10.1016/j.envexpbot.2022.104916_bib14) 2008; 54
Gai (10.1016/j.envexpbot.2022.104916_bib16) 2019; 9
Liu (10.1016/j.envexpbot.2022.104916_bib33) 2019; 20
Liu (10.1016/j.envexpbot.2022.104916_bib31) 2015; 557
Tamura (10.1016/j.envexpbot.2022.104916_bib49) 2007; 24
Carmit (10.1016/j.envexpbot.2022.104916_bib9) 2018; 9
Lashbrooke (10.1016/j.envexpbot.2022.104916_bib29) 2015; 66
Sun (10.1016/j.envexpbot.2022.104916_bib48) 2018; 8
Mizoi (10.1016/j.envexpbot.2022.104916_bib38) 2012; 1819
Liu (10.1016/j.envexpbot.2022.104916_bib34) 2019; 165
Bai (10.1016/j.envexpbot.2022.104916_bib4) 2020; 290
Jager (10.1016/j.envexpbot.2022.104916_bib23) 2015; 59
Misra (10.1016/j.envexpbot.2022.104916_bib37) 2014; 41
Maisonneuve (10.1016/j.envexpbot.2022.104916_bib36) 2010; 152
Grayburn (10.1016/j.envexpbot.2022.104916_bib18) 1992; 10
Djemal (10.1016/j.envexpbot.2022.104916_bib11) 2018; 228
Ohlrogge (10.1016/j.envexpbot.2022.104916_bib40) 1997; 48
Shockey (10.1016/j.envexpbot.2022.104916_bib44) 2016; 170
Broun (10.1016/j.envexpbot.2022.104916_bib7) 2004; 10
Cai (10.1016/j.envexpbot.2022.104916_bib8) 2021; 30
Jiang (10.1016/j.envexpbot.2022.104916_bib25) 2019; 15
Guo (10.1016/j.envexpbot.2022.104916_bib19) 2020; 47
Liu (10.1016/j.envexpbot.2022.104916_bib32) 2021; 37
Kannangara (10.1016/j.envexpbot.2022.104916_bib27) 2007; 19
Dong (10.1016/j.envexpbot.2022.104916_bib13) 2021; 21
Angkawijaya (10.1016/j.envexpbot.2022.104916_bib2) 2019; 24
Tan (10.1016/j.envexpbot.2022.104916_bib50) 2011; 156
Cheng (10.1016/j.envexpbot.2022.104916_bib10) 2021; 229
Aharoni (10.1016/j.envexpbot.2022.104916_bib1) 2004; 16
Xu (10.1016/j.envexpbot.2022.104916_bib53) 2016; 17
Shi (10.1016/j.envexpbot.2022.104916_bib43) 2011; 7
Shi (10.1016/j.envexpbot.2022.104916_bib42) 2013; 197
Jofuku (10.1016/j.envexpbot.2022.104916_bib26) 2005; 102
Zhang (10.1016/j.envexpbot.2022.104916_bib57) 2013; 64
Bhatt-Wessel (10.1016/j.envexpbot.2022.104916_bib6) 2018; 655
Dyer (10.1016/j.envexpbot.2022.104916_bib15) 2008; 54
Yang (10.1016/j.envexpbot.2022.104916_bib55) 2011; 168
References_xml – volume: 20
  start-page: 4435
  year: 2019
  ident: bib33
  article-title: Overexpression of Wax inducer1/shine1 gene enhances wax accumulation under osmotic stress and oil synthesis in
  publication-title: Int. J. Mol. Sci.
– volume: 290
  year: 2020
  ident: bib4
  article-title: Overexpression of soybean GmPLDγ enhances seed oil content and modulates fatty acid composition in transgenic Arabidopsis
  publication-title: Plant Sci.
– volume: 168
  start-page: 1804
  year: 2011
  end-page: 1812
  ident: bib55
  article-title: Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco
  publication-title: J. Plant Physiol.
– volume: 67
  start-page: 4627
  year: 2016
  end-page: 4638
  ident: bib46
  article-title: Arabidopsis
  publication-title: J. Exp. Bot.
– volume: 1819
  start-page: 86
  year: 2012
  end-page: 96
  ident: bib38
  article-title: AP2/ERF family transcription factors in plant abiotic stress responses
  publication-title: Biochim Biophys. Acta
– volume: 7
  start-page: 957
  year: 1995
  end-page: 970
  ident: bib39
  article-title: Lipid biosynthesis
  publication-title: Plant Cell.
– volume: 102
  start-page: 3117
  year: 2005
  end-page: 3122
  ident: bib26
  article-title: Control of seed mass and seed yield by the floral homeotic gene APETALA2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 54
  start-page: 593
  year: 2008
  end-page: 607
  ident: bib14
  article-title: Plant triacylglycerols as feedstocks for the production of biofuels
  publication-title: Plant J.
– volume: 47
  start-page: 695
  year: 2020
  end-page: 703
  ident: bib59
  article-title: Very-long-chain fatty acids (VLCFAs) in plant response to stress
  publication-title: Funct. Plant Biol.
– volume: 165
  start-page: 174
  year: 2019
  end-page: 184
  ident: bib34
  article-title: Plant lipid remodeling in response to abiotic stresses
  publication-title: Environ. Exp. Bot.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 4
  ident: bib16
  article-title: Cold stress affects morphological and physiological indexes of soybean seeding and seed yield
  publication-title: Chin. J. Agric.
– volume: 655
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib6
  article-title: Role of DGAT enzymes in triacylglycerol metabolism
  publication-title: Arch. Biochem Biophys.
– volume: 47
  start-page: 3475
  year: 2020
  end-page: 3484
  ident: bib19
  article-title: Overexpression of GmSUMO2 gene confers increased abscisic acid sensitivity in transgenic soybean hairy roots
  publication-title: Mol. Biol. Rep.
– volume: 170
  start-page: 163
  year: 2016
  end-page: 179
  ident: bib44
  article-title: Identification of Arabidopsis
  publication-title: Plant Physiol.
– volume: 174
  start-page: 97
  year: 2017
  end-page: 109
  ident: bib22
  article-title: A specialized diacylglycerol acyltransferase contributes to the extreme medium-chain fatty acid content of
  publication-title: Plant Physiol.
– volume: 153
  start-page: 980
  year: 2010
  end-page: 987
  ident: bib41
  article-title: Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize
  publication-title: Plant Physiol.
– volume: 59
  start-page: 29
  year: 2015
  end-page: 36
  ident: bib23
  article-title: Expression of a win/shn-type regulator from wheat triggers disorganized proliferation in the arabidopsis leaf cuticle
  publication-title: Biol. Plant.
– reference: SoyStats. American soybean association (ASA), St. Louis, Missouri. 2019.
– volume: 78
  start-page: 275
  year: 2012
  end-page: 288
  ident: bib51
  article-title: An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice
  publication-title: Plant Mol. Biol.
– volume: 246
  start-page: 80
  year: 2016
  end-page: 90
  ident: bib54
  article-title: Functionality of soybean CBF/DREB1 transcription factors
  publication-title: Plant Sci.
– volume: 1861
  start-page: 1214
  year: 2016
  end-page: 1225
  ident: bib5
  article-title: Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis
  publication-title: Biochim Biophys. Acta
– volume: 8
  start-page: 222
  year: 2018
  ident: bib48
  article-title: Overexpression of soybean transcription factors
  publication-title: Agron. J.
– volume: 24
  start-page: 336
  year: 2019
  end-page: 351
  ident: bib2
  article-title: Lysophosphatidic acid acyltransferases 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis
  publication-title: N. Phytol.
– volume: 10
  start-page: 675
  year: 1992
  end-page: 678
  ident: bib18
  article-title: Fatty acid alteration by a delta 9 desaturase in transgenic tobacco tissue
  publication-title: Biotechnol. (N. Y)
– volume: 24
  start-page: 1596
  year: 2007
  end-page: 1599
  ident: bib49
  article-title: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0
  publication-title: Mol. Biol. Evol.
– volume: 156
  start-page: 1577
  year: 2011
  end-page: 1588
  ident: bib50
  article-title: Enhanced seed oil production in canola by conditionalexpression of
  publication-title: Plant Physiol.
– volume: 9
  start-page: 1088
  year: 2018
  ident: bib9
  article-title: Multifunctional roles of plant cuticle during plant-pathogen interactions
  publication-title: Front Plant Sci.
– volume: 148
  start-page: 97
  year: 2008
  end-page: 107
  ident: bib30
  article-title: Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis
  publication-title: Plant Physiol.
– volume: 15
  start-page: 56
  year: 2019
  ident: bib25
  article-title: -induced soybean hairy roots versus
  publication-title: Plant Methods
– volume: 199–200
  start-page: 29
  year: 2013
  end-page: 40
  ident: bib3
  article-title: The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds
  publication-title: Plant Sci.
– volume: 10
  start-page: 4706
  year: 2004
  end-page: 4711
  ident: bib7
  article-title: WIN1, a transcriptional activator of epidermal wax accumulation in
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 557
  start-page: 163
  year: 2015
  end-page: 171
  ident: bib31
  article-title: Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis
  publication-title: Gene
– volume: 16
  start-page: 2463
  year: 2004
  end-page: 2480
  ident: bib1
  article-title: The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis
  publication-title: Plant Cell
– volume: 68
  start-page: 5323
  year: 2017
  end-page: 5337
  ident: bib17
  article-title: Anti-adhesive effects of plant wax coverage on insect attachment
  publication-title: J. Exp. Bot.
– volume: 37
  start-page: 2658
  year: 2021
  end-page: 2667
  ident: bib32
  article-title: Advances in the physiological functions of plant lipids in response to stresses
  publication-title: Chin. J. Biotechnol.
– volume: 19
  start-page: 146
  year: 2018
  ident: bib24
  article-title: Splice variants of the castor WRI1 gene upregulate fatty acid and oil biosynthesis when expressed in tobacco leaves
  publication-title: Int. J. Mol. Sci.
– volume: 252
  start-page: 1461
  year: 2015
  end-page: 1473
  ident: bib12
  article-title: Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (
  publication-title: Protoplasma
– volume: 152
  start-page: 670
  year: 2010
  end-page: 684
  ident: bib36
  article-title: Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis
  publication-title: Plant Physiol.
– volume: 14
  start-page: 73
  year: 2014
  ident: bib35
  article-title: Soybean GmMYB73 promotes lipid accumulation in transgenic plants
  publication-title: BMC Plant Biol.
– volume: 64
  year: 2013
  ident: bib57
  article-title: A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds
  publication-title: J. Exp. Bot.
– volume: 20
  start-page: 51
  year: 2020
  ident: bib56
  article-title: Quantitative trait loci analysis of seed oil content and composition of wild and cultivated soybean
  publication-title: BMC Plant Biol.
– volume: 32
  start-page: 719
  year: 2014
  end-page: 731
  ident: bib58
  article-title: Overexpression of transcription factor OsWR2 regulates wax and cutin biosynthesis in rice and enhances its tolerance to water deficit
  publication-title: Plant Mol. Biol. Rep.
– volume: 228
  start-page: 39
  year: 2018
  end-page: 46
  ident: bib11
  article-title: Molecular cloning and characterization of novel WIN1/SHN1 ethylene responsive transcription factor HvSHN1 in barley (
  publication-title: J. Plant Physiol.
– volume: 7
  year: 2011
  ident: bib43
  article-title: SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs
  publication-title: PLoS Genet.
– volume: 19
  start-page: 1278
  year: 2007
  end-page: 1294
  ident: bib27
  article-title: The transcription factor WIN1/SHN1 regulates cutin biosynthesis in
  publication-title: Plant Cell.
– volume: 229
  start-page: 2152
  year: 2021
  end-page: 2162
  ident: bib10
  article-title: AtMIF1 increases seed oil content by attenuating GL2 inhibition
  publication-title: N. Phytol.
– volume: 71
  start-page: 1078
  year: 2020
  end-page: 1091
  ident: bib28
  article-title: Transcription factor CaNAC1 regulates low-temperature-induced phospholipid degradation in green bell pepper
  publication-title: J. Exp. Bot.
– volume: 21
  start-page: 369
  year: 2021
  ident: bib13
  article-title: Enhancement of plant cold tolerance by soybean RCC1 family gene GmTCF1a
  publication-title: BMC Plant Biol.
– volume: 160
  start-page: 215
  year: 2012
  end-page: 225
  ident: bib20
  article-title: A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants
  publication-title: Plant Physiol.
– volume: 208
  start-page: 588
  year: 1999
  end-page: 598
  ident: bib21
  article-title: Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus
  publication-title: Planta
– volume: 66
  start-page: 6579
  year: 2015
  end-page: 6589
  ident: bib29
  article-title: Genome investigation suggests MdSHN3, an APETALA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development
  publication-title: J. Exp. Bot.
– reference: .
– volume: 41
  start-page: 8319
  year: 2014
  end-page: 8332
  ident: bib37
  article-title: Genome-wide identification and evolutionary analysis of algal LPAT genes involved in TAG biosynthesis using bioinformatic approaches
  publication-title: Mol. Biol. Rep.
– volume: 197
  start-page: 468
  year: 2013
  end-page: 480
  ident: bib42
  article-title: The tomato SLSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning
  publication-title: N. Phytol.
– volume: 18
  start-page: 2294
  year: 2006
  end-page: 2313
  ident: bib45
  article-title: Tung tree
  publication-title: Plant Cell.
– volume: 30
  start-page: 154
  year: 2021
  end-page: 162
  ident: bib8
  article-title: Identification, expression analysis and salt stress response of soybean GmWIN1-6 transcription factor
  publication-title: Acta Laser Biol. Sin.
– volume: 17
  start-page: 587
  year: 2016
  ident: bib53
  article-title: Overexpression of the transcription factors GmSHN1 and GmSHN9 differentially regulates wax and cutin biosynthesis, alters cuticle properties, and changes leaf phenotypes in Arabidopsis
  publication-title: Int. J. Mol. Sci.
– volume: 54
  start-page: 640
  year: 2008
  end-page: 655
  ident: bib15
  article-title: High-value oils from plants
  publication-title: Plant J.
– volume: 48
  start-page: 109
  year: 1997
  end-page: 136
  ident: bib40
  article-title: Regulationoffattyacidsynthesis
  publication-title: Annu Rev. Plant Physiol. Plant Mol. Biol.
– volume: 277
  start-page: 31994
  year: 2022
  end-page: 32002
  ident: bib52
  article-title: Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis
  publication-title: J. Biol. Chem.
– volume: 59
  start-page: 29
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104916_bib23
  article-title: Expression of a win/shn-type regulator from wheat triggers disorganized proliferation in the arabidopsis leaf cuticle
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-014-0471-0
– volume: 208
  start-page: 588
  year: 1999
  ident: 10.1016/j.envexpbot.2022.104916_bib21
  article-title: Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus
  publication-title: Planta
  doi: 10.1007/s004250050597
– volume: 7
  start-page: 957
  year: 1995
  ident: 10.1016/j.envexpbot.2022.104916_bib39
  article-title: Lipid biosynthesis
  publication-title: Plant Cell.
– volume: 48
  start-page: 109
  year: 1997
  ident: 10.1016/j.envexpbot.2022.104916_bib40
  article-title: Regulationoffattyacidsynthesis
  publication-title: Annu Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.arplant.48.1.109
– volume: 252
  start-page: 1461
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104916_bib12
  article-title: Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum L.)
  publication-title: Protoplasma
  doi: 10.1007/s00709-015-0775-8
– volume: 8
  start-page: 222
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104916_bib48
  article-title: Overexpression of soybean transcription factors GmDof4 and GmDof11 signifificantly increase the oleic acid content in seed of Brassica napus L
  publication-title: Agron. J.
– volume: 10
  start-page: 4706
  year: 2004
  ident: 10.1016/j.envexpbot.2022.104916_bib7
  article-title: WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0305574101
– volume: 290
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104916_bib4
  article-title: Overexpression of soybean GmPLDγ enhances seed oil content and modulates fatty acid composition in transgenic Arabidopsis
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2019.110298
– volume: 32
  start-page: 719
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104916_bib58
  article-title: Overexpression of transcription factor OsWR2 regulates wax and cutin biosynthesis in rice and enhances its tolerance to water deficit
  publication-title: Plant Mol. Biol. Rep.
  doi: 10.1007/s11105-013-0687-8
– volume: 67
  start-page: 4627
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104916_bib46
  article-title: Arabidopsis GPAT9 contributes to synthesis of intracellular glycerolipids but not surface lipids
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw242
– volume: 160
  start-page: 215
  year: 2012
  ident: 10.1016/j.envexpbot.2022.104916_bib20
  article-title: A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.201541
– volume: 197
  start-page: 468
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104916_bib42
  article-title: The tomato SLSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning
  publication-title: N. Phytol.
  doi: 10.1111/nph.12032
– volume: 277
  start-page: 31994
  year: 2022
  ident: 10.1016/j.envexpbot.2022.104916_bib52
  article-title: Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M205375200
– volume: 20
  start-page: 51
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104916_bib56
  article-title: Quantitative trait loci analysis of seed oil content and composition of wild and cultivated soybean
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-2199-7
– volume: 41
  start-page: 8319
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104916_bib37
  article-title: Genome-wide identification and evolutionary analysis of algal LPAT genes involved in TAG biosynthesis using bioinformatic approaches
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-014-3733-1
– volume: 20
  start-page: 4435
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104916_bib33
  article-title: Overexpression of Wax inducer1/shine1 gene enhances wax accumulation under osmotic stress and oil synthesis in Brassica napus
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20184435
– volume: 7
  year: 2011
  ident: 10.1016/j.envexpbot.2022.104916_bib43
  article-title: SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001388
– volume: 21
  start-page: 369
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104916_bib13
  article-title: Enhancement of plant cold tolerance by soybean RCC1 family gene GmTCF1a
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-021-03157-5
– volume: 71
  start-page: 1078
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104916_bib28
  article-title: Transcription factor CaNAC1 regulates low-temperature-induced phospholipid degradation in green bell pepper
  publication-title: J. Exp. Bot.
– volume: 156
  start-page: 1577
  year: 2011
  ident: 10.1016/j.envexpbot.2022.104916_bib50
  article-title: Enhanced seed oil production in canola by conditionalexpression of Brassica napus leafy cotyledon1 and LEC1-like in developing seeds
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.175000
– volume: 19
  start-page: 1278
  year: 2007
  ident: 10.1016/j.envexpbot.2022.104916_bib27
  article-title: The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana
  publication-title: Plant Cell.
  doi: 10.1105/tpc.106.047076
– volume: 199–200
  start-page: 29
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104916_bib3
  article-title: The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2012.09.015
– volume: 47
  start-page: 3475
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104916_bib19
  article-title: Overexpression of GmSUMO2 gene confers increased abscisic acid sensitivity in transgenic soybean hairy roots
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-020-05433-3
– volume: 1819
  start-page: 86
  year: 2012
  ident: 10.1016/j.envexpbot.2022.104916_bib38
  article-title: AP2/ERF family transcription factors in plant abiotic stress responses
  publication-title: Biochim Biophys. Acta
  doi: 10.1016/j.bbagrm.2011.08.004
– volume: 78
  start-page: 275
  year: 2012
  ident: 10.1016/j.envexpbot.2022.104916_bib51
  article-title: An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-011-9861-2
– volume: 47
  start-page: 695
  year: 2020
  ident: 10.1016/j.envexpbot.2022.104916_bib59
  article-title: Very-long-chain fatty acids (VLCFAs) in plant response to stress
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP19100
– volume: 228
  start-page: 39
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104916_bib11
  article-title: Molecular cloning and characterization of novel WIN1/SHN1 ethylene responsive transcription factor HvSHN1 in barley (Hordeum vulgare L.)
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2018.04.019
– ident: 10.1016/j.envexpbot.2022.104916_bib47
– volume: 54
  start-page: 640
  year: 2008
  ident: 10.1016/j.envexpbot.2022.104916_bib15
  article-title: High-value oils from plants
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03430.x
– volume: 19
  start-page: 146
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104916_bib24
  article-title: Splice variants of the castor WRI1 gene upregulate fatty acid and oil biosynthesis when expressed in tobacco leaves
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19010146
– volume: 168
  start-page: 1804
  year: 2011
  ident: 10.1016/j.envexpbot.2022.104916_bib55
  article-title: Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2011.05.017
– volume: 655
  start-page: 1
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104916_bib6
  article-title: Role of DGAT enzymes in triacylglycerol metabolism
  publication-title: Arch. Biochem Biophys.
  doi: 10.1016/j.abb.2018.08.001
– volume: 9
  start-page: 1088
  year: 2018
  ident: 10.1016/j.envexpbot.2022.104916_bib9
  article-title: Multifunctional roles of plant cuticle during plant-pathogen interactions
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2018.01088
– volume: 153
  start-page: 980
  year: 2010
  ident: 10.1016/j.envexpbot.2022.104916_bib41
  article-title: Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.157537
– volume: 24
  start-page: 336
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104916_bib2
  article-title: Lysophosphatidic acid acyltransferases 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis
  publication-title: N. Phytol.
  doi: 10.1111/nph.16000
– volume: 15
  start-page: 56
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104916_bib25
  article-title: Agrobacterium rhizogenes-induced soybean hairy roots versus Soybean mosaic virus (ARISHR-SMV) is an efficient pathosystem for studying soybean-virus interactions
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0442-8
– volume: 1861
  start-page: 1214
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104916_bib5
  article-title: Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis
  publication-title: Biochim Biophys. Acta
  doi: 10.1016/j.bbalip.2016.03.021
– volume: 557
  start-page: 163
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104916_bib31
  article-title: Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis
  publication-title: Gene
  doi: 10.1016/j.gene.2014.12.029
– volume: 17
  start-page: 587
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104916_bib53
  article-title: Overexpression of the transcription factors GmSHN1 and GmSHN9 differentially regulates wax and cutin biosynthesis, alters cuticle properties, and changes leaf phenotypes in Arabidopsis
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17040587
– volume: 16
  start-page: 2463
  year: 2004
  ident: 10.1016/j.envexpbot.2022.104916_bib1
  article-title: The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.022897
– volume: 229
  start-page: 2152
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104916_bib10
  article-title: AtMIF1 increases seed oil content by attenuating GL2 inhibition
  publication-title: N. Phytol.
  doi: 10.1111/nph.17016
– volume: 152
  start-page: 670
  year: 2010
  ident: 10.1016/j.envexpbot.2022.104916_bib36
  article-title: Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.148247
– volume: 30
  start-page: 154
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104916_bib8
  article-title: Identification, expression analysis and salt stress response of soybean GmWIN1-6 transcription factor
  publication-title: Acta Laser Biol. Sin.
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104916_bib16
  article-title: Cold stress affects morphological and physiological indexes of soybean seeding and seed yield
  publication-title: Chin. J. Agric.
– volume: 174
  start-page: 97
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104916_bib22
  article-title: A specialized diacylglycerol acyltransferase contributes to the extreme medium-chain fatty acid content of Cuphea seedoil
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01894
– volume: 14
  start-page: 73
  year: 2014
  ident: 10.1016/j.envexpbot.2022.104916_bib35
  article-title: Soybean GmMYB73 promotes lipid accumulation in transgenic plants
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-14-73
– volume: 24
  start-page: 1596
  year: 2007
  ident: 10.1016/j.envexpbot.2022.104916_bib49
  article-title: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msm092
– volume: 66
  start-page: 6579
  year: 2015
  ident: 10.1016/j.envexpbot.2022.104916_bib29
  article-title: Genome investigation suggests MdSHN3, an APETALA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv366
– volume: 102
  start-page: 3117
  year: 2005
  ident: 10.1016/j.envexpbot.2022.104916_bib26
  article-title: Control of seed mass and seed yield by the floral homeotic gene APETALA2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0409893102
– volume: 10
  start-page: 675
  year: 1992
  ident: 10.1016/j.envexpbot.2022.104916_bib18
  article-title: Fatty acid alteration by a delta 9 desaturase in transgenic tobacco tissue
  publication-title: Biotechnol. (N. Y)
– volume: 170
  start-page: 163
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104916_bib44
  article-title: Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.01563
– volume: 18
  start-page: 2294
  year: 2006
  ident: 10.1016/j.envexpbot.2022.104916_bib45
  article-title: Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum
  publication-title: Plant Cell.
  doi: 10.1105/tpc.106.043695
– volume: 64
  year: 2013
  ident: 10.1016/j.envexpbot.2022.104916_bib57
  article-title: A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert156
– volume: 165
  start-page: 174
  year: 2019
  ident: 10.1016/j.envexpbot.2022.104916_bib34
  article-title: Plant lipid remodeling in response to abiotic stresses
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2019.06.005
– volume: 246
  start-page: 80
  year: 2016
  ident: 10.1016/j.envexpbot.2022.104916_bib54
  article-title: Functionality of soybean CBF/DREB1 transcription factors
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2016.02.007
– volume: 68
  start-page: 5323
  year: 2017
  ident: 10.1016/j.envexpbot.2022.104916_bib17
  article-title: Anti-adhesive effects of plant wax coverage on insect attachment
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx271
– volume: 37
  start-page: 2658
  year: 2021
  ident: 10.1016/j.envexpbot.2022.104916_bib32
  article-title: Advances in the physiological functions of plant lipids in response to stresses
  publication-title: Chin. J. Biotechnol.
– volume: 148
  start-page: 97
  year: 2008
  ident: 10.1016/j.envexpbot.2022.104916_bib30
  article-title: Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.123471
– volume: 54
  start-page: 593
  year: 2008
  ident: 10.1016/j.envexpbot.2022.104916_bib14
  article-title: Plant triacylglycerols as feedstocks for the production of biofuels
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03442.x
SSID ssj0007376
Score 2.3969681
Snippet Transcription factor WAX INDUCER1 (WIN1) plays an important role in wax and cutin biosynthesis in plants. In this study, six GmWIN1 genes were identified from...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104916
SubjectTerms biosynthesis
biotin
cold stress
cutin
diacylglycerol acyltransferase
Expression analysis
genes
Glycine max
lysophospholipids
malondialdehyde
Nicotiana benthamiana
oils
phospholipases
Phospholipid
plant stress
promoter regions
Soybean
soybeans
Stress tolerance
tobacco
Total lipid
transcription factors
triacylglycerols
WIN1 transcription factor
Title Functional characterization of transcription factor WIN1 genes associated with lipid biosynthesis and stress tolerance in soybean (Glycine max)
URI https://dx.doi.org/10.1016/j.envexpbot.2022.104916
https://www.proquest.com/docview/2718231865
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQ7aGXikdReWoqcWgPKbuO4yS9AWJZWnVPReVm2bG3ClqcFQmIvfAX-pc7EyeLqCpx6ClyNE4iz2Tms-fF2OHQ8MTKJI54rLOIKspFRiQisvHUJoOpRMhPG8XvEzm-FF-vkqsVdtrnwlBYZaf7g05vtXV356hbzaN5WVKOb55lVOuQt-62NoNdpCTlnx-fwjzSuG0w19bNJOpnMV7O37uHuakoqJJz8nfm1Pj83xbqL13dGqDRGnvbIUc4Dh-3zlac32CvTypEd4sNtnX2lLGGVN0vW2-y3yO0XOHAD4pldeaQfAnVFBoyVr3qgNB-B35eTIbwi9Qg6I5_zgKd2cKsnJcWTFnVC4_gsS6RxFsIOSfQVDNHrToclB7qamGc9vDxfLYg_z3c6IdP79jl6OzH6TjqujBEBU-zJkqdQFqd29zkMtHtKBfOidho56ZSFllmUmETXqA04FUWMtbFwKRG4_7XxFts1VfevWcQ55YPtEakjA-VVAamEGaYISSRzqFkbDPZr7wquhLl1CljpvpYtGu1ZJkilqnAsm02WE6chyodL0_50rNWPRM4hbbk5ckfemFQ-DuSj0V7V93ViqOtR8icyWTnf16wy97QKEQa7rHV5vbO7SP6acxBK94H7NXxxbfx5A9F6QoD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKQaIXBIWKAoVBAgkOobtO4iSVOPDoskvbPbWiN2PH3ipocVYkhebCX-DH8AeZiZOtipB6QD1FSew8ZsYzn-15MPZsqHlsRBwGPFRpQBnlAh3FUWDCmYkHM4GQnyaKB1MxPoo-HsfHK-x3HwtDbpWd7vc6vdXW3ZXtjprbi6KgGN8sTSnXIW-324adZ-WebX7gvK16PXmPTH7O-Wj38N046EoLBDlP0jpIbKStUpnJdCZi1Z5lkbVRqJW1MyHyNNVJZGKe4y_iUeQiVPlAJ1rhpE6H-Nxr7HqE6oLKJrz6ee5XkoRtRbs2USd93gWnMuu-27OFLsmLk3PaYM2o0vq_TeJfxqG1eKPb7FYHVeGNp8YdtmLdOrvxtkQ42ayzjd3zEDls1emI6i77NUJT6VcYIV-mg_bRnlDOoCbr2Osq8PV-4NNkOoQT0rugOoGxBmiRGObFojCgi7JqHKLVqsAmzoAPcoG6nFuqDWKhcFCVDVLYwYsP84YcBuCrOnt5jx1dCW822Kornb3PIMwMHyiF0BwfKijvTB7pYYoYSFiLorjJRE95mXc50ak0x1z2zm9f5JJlklgmPcs22WDZceHTglzeZadnrbwg4RKN1-Wdn_bCIHH806aOcrY8rSRHcIEYPRXxg_95wRN2c3x4sC_3J9O9h2yN7ng3x0dstf52arcQetX6cSvqwD5f9dj6AwPGSTk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+characterization+of+transcription+factor+WIN1+genes+associated+with+lipid+biosynthesis+and+stress+tolerance+in+soybean+%28Glycine+max%29&rft.jtitle=Environmental+and+experimental+botany&rft.au=Cai%2C+Guiping&rft.au=Liu%2C+Baoling&rft.au=Zhou%2C+Yali&rft.au=Gao%2C+Huiling&rft.date=2022-08-01&rft.pub=Elsevier+B.V&rft.issn=0098-8472&rft.volume=200&rft_id=info:doi/10.1016%2Fj.envexpbot.2022.104916&rft.externalDocID=S0098847222001381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8472&client=summon