Using improved DeepLabv3+ network integrated with normalized difference water index to extract water bodies in Sentinel-2A urban remote sensing images

Efficient and accurate extraction of water areas from remote sensing images is a popular research topic. Currently, researchers have attempted to use neural networks to extract water from remote sensing images. However, most of these studies used computer vision techniques to improve the model resul...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied remote sensing Vol. 15; no. 1; p. 018504
Main Authors Su, Houcheng, Peng, Yuhao, Xu, Chao, Feng, Ao, Liu, Tao
Format Journal Article
LanguageEnglish
Published Society of Photo-Optical Instrumentation Engineers 31.03.2021
Subjects
Online AccessGet full text
ISSN1931-3195
1931-3195
DOI10.1117/1.JRS.15.018504

Cover

Abstract Efficient and accurate extraction of water areas from remote sensing images is a popular research topic. Currently, researchers have attempted to use neural networks to extract water from remote sensing images. However, most of these studies used computer vision techniques to improve the model results without considering the multi-band information unique to remote sensing images. Thus our study proposes an improved DeepLabv3+ network to increase the water body extraction accuracy in urban remote sensing images. The DeepLabv3+ network has the characteristics of extracting image features at multiple scales. We improved the network structure to incorporate multi-band features. By comparing several multi-band input methods, the feature map calculated by the normalized difference water index (NDWI) was converted into an input suitable for the neural network by comparing several multi-band input methods. Simultaneously, we developed a parallel convolution structure to combine the NDWI feature map with a standard false color remote sensing image during feature extraction. This allows the network to focus more on image areas that may be water bodies. We used atmospherically corrected Sentinel-2A L2A-level data, divided the training set at multiple scales, and conducted several experiments. The results show that the proposed network can improve water extraction accuracy when training subregions are unified from different sizes to 512  ×  512. Finally, we used the model to extract water bodies from remote sensing images from different regions. We combined the images with visual interpretation to verify the reliability of the model results. Moreover, the model scores of four types of multi-scale neural networks in the two categories are compared, which proves the effectiveness of the method.
AbstractList Efficient and accurate extraction of water areas from remote sensing images is a popular research topic. Currently, researchers have attempted to use neural networks to extract water from remote sensing images. However, most of these studies used computer vision techniques to improve the model results without considering the multi-band information unique to remote sensing images. Thus our study proposes an improved DeepLabv3+ network to increase the water body extraction accuracy in urban remote sensing images. The DeepLabv3+ network has the characteristics of extracting image features at multiple scales. We improved the network structure to incorporate multi-band features. By comparing several multi-band input methods, the feature map calculated by the normalized difference water index (NDWI) was converted into an input suitable for the neural network by comparing several multi-band input methods. Simultaneously, we developed a parallel convolution structure to combine the NDWI feature map with a standard false color remote sensing image during feature extraction. This allows the network to focus more on image areas that may be water bodies. We used atmospherically corrected Sentinel-2A L2A-level data, divided the training set at multiple scales, and conducted several experiments. The results show that the proposed network can improve water extraction accuracy when training subregions are unified from different sizes to 512  ×  512. Finally, we used the model to extract water bodies from remote sensing images from different regions. We combined the images with visual interpretation to verify the reliability of the model results. Moreover, the model scores of four types of multi-scale neural networks in the two categories are compared, which proves the effectiveness of the method.
Author Peng, Yuhao
Xu, Chao
Liu, Tao
Feng, Ao
Su, Houcheng
Author_xml – sequence: 1
  givenname: Houcheng
  orcidid: 0000-0001-6558-4244
  surname: Su
  fullname: Su, Houcheng
  email: bamboosir920@stu.sicau.edu.cn
  organization: Sichuan Agricultural University, College of Information Engineering, Ya’an, China
– sequence: 2
  givenname: Yuhao
  orcidid: 0000-0002-1000-1280
  surname: Peng
  fullname: Peng, Yuhao
  email: pengyuhao@stu.sicau.edu.cn
  organization: Sichuan Agricultural University, College of Information Engineering, Ya’an, China
– sequence: 3
  givenname: Chao
  surname: Xu
  fullname: Xu, Chao
  email: 201803766@stu.sicau.edu.cn
  organization: Sichuan Agricultural University, College of Information Engineering, Ya’an, China
– sequence: 4
  givenname: Ao
  orcidid: 0000-0002-5692-1242
  surname: Feng
  fullname: Feng, Ao
  email: fengao@stu.sicau.edu.cn
  organization: Sichuan Agricultural University, College of Information Engineering, Ya’an, China
– sequence: 5
  givenname: Tao
  orcidid: 0000-0002-9500-1465
  surname: Liu
  fullname: Liu, Tao
  email: liutao@sicau.edu.cn
  organization: Sichuan Agricultural University, College of Information Engineering, Ya’an, China
BookMark eNp9UMlOwzAUtBBItIUzV98haVzHWY5V2VUJidJz5DjPxSW1I9td4EP4XozaA0KC01tm5unN9NGxNhoQuiBJTAjJhyR-fJ7FhMUJKViSHqEeKSmJKCnZ8Y_-FPWdWyYJo0WR99Dn3Cm9wGrVWbOBBl8DdFNeb-gl1uC3xr5hpT0sLPcB3Sr_irWxK96qjzA3SkqwoAXgbSDYwG1gh73BsPOWC39Y16ZR4AKKZ6C90tBGozFe25prbGFlPGAH-vAJX4A7QyeStw7OD3WA5rc3L5P7aPp09zAZTyMxygsf5Q2nXEKZctmAoCktk0TIjOd1WqRlWgsiqCQskyIjtcgy3ggJciSoYLUQTNIBGu7vCmucsyCrzoYP7HtFkuo71opUIdaKsGofa1CwXwqhPPfK6GBYtf_orvY61ymolmZtdTD2J_0L8q-REg
CitedBy_id crossref_primary_10_1016_j_compag_2023_107867
crossref_primary_10_1109_JSTARS_2022_3146275
crossref_primary_10_3390_rs14205181
crossref_primary_10_3389_fmars_2021_730984
crossref_primary_10_3390_rs16101703
crossref_primary_10_26833_ijeg_1052556
crossref_primary_10_1016_j_rsase_2023_100943
crossref_primary_10_3390_rs13122292
crossref_primary_10_1117_1_JRS_18_025501
crossref_primary_10_3390_rs14153701
crossref_primary_10_3390_rs14133001
crossref_primary_10_1016_j_jhydrol_2024_132556
crossref_primary_10_1016_j_jag_2024_104241
crossref_primary_10_1016_j_compag_2024_109760
crossref_primary_10_3390_su15129729
crossref_primary_10_3390_su16010092
crossref_primary_10_1080_01431161_2024_2379518
crossref_primary_10_3390_rs14030750
crossref_primary_10_3390_rs14092225
crossref_primary_10_1007_s40747_023_01304_z
crossref_primary_10_1109_ACCESS_2023_3313390
ContentType Journal Article
Copyright 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
Copyright_xml – notice: 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
DBID AAYXX
CITATION
DOI 10.1117/1.JRS.15.018504
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1931-3195
EndPage 018504
ExternalDocumentID 10_1117_1_JRS_15_018504
GroupedDBID 0R
29J
5GY
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
FQ0
HZ
M4X
O9-
RNS
SPBNH
UT2
0R~
AAYXX
ABJNI
ACGFO
ADMLS
AKROS
CITATION
HZ~
ID FETCH-LOGICAL-c278t-7da3afe94afdec343900cf6a7b48494bc1c3f156fc61bc66adcfef2c3c5bcc5f3
ISSN 1931-3195
IngestDate Thu Apr 24 22:55:12 EDT 2025
Tue Jul 01 04:09:59 EDT 2025
Sat Apr 03 13:48:01 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords adaptive threshold segmentation
multi-scale input model
improved DeepLabv3
water body extraction
water body index
convolutional feature cascade
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c278t-7da3afe94afdec343900cf6a7b48494bc1c3f156fc61bc66adcfef2c3c5bcc5f3
ORCID 0000-0001-6558-4244
0000-0002-9500-1465
0000-0002-5692-1242
0000-0002-1000-1280
PageCount 1
ParticipantIDs crossref_citationtrail_10_1117_1_JRS_15_018504
crossref_primary_10_1117_1_JRS_15_018504
spie_journals_10_1117_1_JRS_15_018504
ProviderPackageCode FQ0
SPBNH
UT2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-31
PublicationDateYYYYMMDD 2021-03-31
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-31
  day: 31
PublicationDecade 2020
PublicationTitle Journal of applied remote sensing
PublicationTitleAlternate J. Appl. Remote Sens
PublicationYear 2021
Publisher Society of Photo-Optical Instrumentation Engineers
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
SSID ssj0053887
Score 2.369103
Snippet Efficient and accurate extraction of water areas from remote sensing images is a popular research topic. Currently, researchers have attempted to use neural...
SourceID crossref
spie
SourceType Enrichment Source
Index Database
Publisher
StartPage 018504
Title Using improved DeepLabv3+ network integrated with normalized difference water index to extract water bodies in Sentinel-2A urban remote sensing images
URI http://www.dx.doi.org/10.1117/1.JRS.15.018504
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6F9ACXilWUTXOgElJk4_HuY1hKqcoi0krhZM2MZ9RIwY4aG6T-EP4j_4I3i5dAIhUuVvIyHlt537z5_PwWhJ7HRRhwkhCH0lg68PwVOTSUxClSTzIeM5lQHSD7MT4-D0_m0Xw0-jWIWmpq5vKrrXkl_6NVkIFeVZbsP2i2mxQE8Bn0C0fQMByvpWPzvn-h_QJCRRSL1Sll34ND_9WkNPHdfT0IG2ZeKpK6XFzB97Y5CiztH1QVS9SlExUbBYutsqesmFUq1FB5RmYqtqgUS8efTppLRlUuDOhaTNYqDl7fC9in9Q7GSy3j3Tynfy2lt8GqARj10s_CGKOvzQWtWuG8sZECneTIDptWQzeGT9q8vtaNaWNUVeDfRVVXzqeV8eW_14V0v9lErLIr0zhwZQIHJTCXadbpii2y1tJHfyHamG0PWIvpgmxJQC_YssXoIgXuyZeZS1TN1_7Ujbrd5ukqyUkOI3MS5WbkDbTnJ4mKKNibvvlwOmtpA2w8uptjd-O2DhVM8fKPi21QqPF6tRADSnR2G-1bzeKpAeYdNBLlXXTznbBV0O-hnxqguAUo7gA6wRaeuIcnVvDEPTxxD0-scYg1PHFdYQtPKzbwhF_xAJ5YwxMbqGELNWzgeR-dH709e33s2EYgDveTtHaSggZUiiykshA8AA7teVzGNGFhGmYh44QHkkSx5DEBAxPTgkshfR7wiHEeyeABGpdVKR4inEkB8tCDiUUoSMpozIRkvp-xOOUZPUBu-9_m3FbJV81alvkOfR6gF90JK1MgZvfQQ6Ws3FqQ9a5xj6457jG61a-kJ2gM60Q8BYpcs2cWXL8BJonCJg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+improved+DeepLabv3%2B+network+integrated+with+normalized+difference+water+index+to+extract+water+bodies+in+Sentinel-2A+urban+remote+sensing+images&rft.jtitle=Journal+of+applied+remote+sensing&rft.au=Su%2C+Houcheng&rft.au=Peng%2C+Yuhao&rft.au=Xu%2C+Chao&rft.au=Feng%2C+Ao&rft.date=2021-03-31&rft.pub=Society+of+Photo-Optical+Instrumentation+Engineers&rft.issn=1931-3195&rft.eissn=1931-3195&rft.volume=15&rft.issue=1&rft.spage=018504&rft.epage=018504&rft_id=info:doi/10.1117%2F1.JRS.15.018504&rft.externalDocID=10_1117_1_JRS_15_018504
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3195&client=summon