Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO2–fS2 conditions
In order to better understand the behavior of highly siderophile elements (HSEs: Os, Ir, Ru, Rh, Pt, Pd, Au, Re), Ag, Pb and chalcogens (As, Se, Sb, Te and Bi) during the solidification of sulfide magmas, we have conducted a series of experiments to measure partition coefficients (D values) between...
Saved in:
Published in | Geochimica et cosmochimica acta Vol. 159; pp. 139 - 161 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2015
|
Online Access | Get full text |
Cover
Loading…
Abstract | In order to better understand the behavior of highly siderophile elements (HSEs: Os, Ir, Ru, Rh, Pt, Pd, Au, Re), Ag, Pb and chalcogens (As, Se, Sb, Te and Bi) during the solidification of sulfide magmas, we have conducted a series of experiments to measure partition coefficients (D values) between monosulfide solid solution (MSS) and sulfide melt, as well as MSS and intermediate solid solution (ISS), at 0.1MPa and 860–926°C, log fS2 −3.0 to −2.2 (similar to the Pt–PtS buffer), with fO2 controlled at the fayalite–magnetite–quartz (FMQ) buffer. The IPGEs (Os, Ir, Ru), Rh and Re are found to be compatible in MSS relative to sulfide melt with D values ranging from ∼20 to ∼5, and DRe/DOs of ∼0.5. Pd, Pt, Au, Ag, Pb, as well as the chalcogens, are incompatible in MSS, with D values ranging from ∼0.1 to ∼1×10−3. For the same metal/sulfur ratio, D values for the IPGEs, Rh and Re are systematically larger than most past studies, correlating with higher oxygen content in the sulfide liquid, reflecting the significant effect of oxygen on increasing the activity coefficients for these elements in the melt phase. MSS/ISS partitioning experiments reveal that Ru, Os, Ir, Rh and Re are partitioned into MSS by a factor of >50, whereas Pd, Pt, Ag, Au and the chalcogens partition from weakly (Se, As) to strongly (Ag, Au) into ISS. Uniformly low MSS- and ISS- melt partition coefficients for the chalcogens, Pt, Pd, Ag and Au will lead to enrichment in the residual sulfide liquid, but D values are generally too large to reach early saturation in Pt–Pd-chalcogen-rich accessory minerals, based on current solubility estimates. Instead, these phases likely precipitate at the last dregs of crystallization. Modeled evolution curves for the PGEs and chalcogens are in reasonably good agreement with whole-rock sulfide compositions for the McCreedy East deposit (Sudbury, Ontario), consistent with an origin by crystallization of MSS, then MSS+ISS from sulfide magma. |
---|---|
AbstractList | In order to better understand the behavior of highly siderophile elements (HSEs: Os, Ir, Ru, Rh, Pt, Pd, Au, Re), Ag, Pb and chalcogens (As, Se, Sb, Te and Bi) during the solidification of sulfide magmas, we have conducted a series of experiments to measure partition coefficients (D values) between monosulfide solid solution (MSS) and sulfide melt, as well as MSS and intermediate solid solution (ISS), at 0.1MPa and 860–926°C, log fS2 −3.0 to −2.2 (similar to the Pt–PtS buffer), with fO2 controlled at the fayalite–magnetite–quartz (FMQ) buffer. The IPGEs (Os, Ir, Ru), Rh and Re are found to be compatible in MSS relative to sulfide melt with D values ranging from ∼20 to ∼5, and DRe/DOs of ∼0.5. Pd, Pt, Au, Ag, Pb, as well as the chalcogens, are incompatible in MSS, with D values ranging from ∼0.1 to ∼1×10−3. For the same metal/sulfur ratio, D values for the IPGEs, Rh and Re are systematically larger than most past studies, correlating with higher oxygen content in the sulfide liquid, reflecting the significant effect of oxygen on increasing the activity coefficients for these elements in the melt phase. MSS/ISS partitioning experiments reveal that Ru, Os, Ir, Rh and Re are partitioned into MSS by a factor of >50, whereas Pd, Pt, Ag, Au and the chalcogens partition from weakly (Se, As) to strongly (Ag, Au) into ISS. Uniformly low MSS- and ISS- melt partition coefficients for the chalcogens, Pt, Pd, Ag and Au will lead to enrichment in the residual sulfide liquid, but D values are generally too large to reach early saturation in Pt–Pd-chalcogen-rich accessory minerals, based on current solubility estimates. Instead, these phases likely precipitate at the last dregs of crystallization. Modeled evolution curves for the PGEs and chalcogens are in reasonably good agreement with whole-rock sulfide compositions for the McCreedy East deposit (Sudbury, Ontario), consistent with an origin by crystallization of MSS, then MSS+ISS from sulfide magma. |
Author | Liu, Yanan Brenan, James |
Author_xml | – sequence: 1 givenname: Yanan surname: Liu fullname: Liu, Yanan email: liu@es.utoronto.ca – sequence: 2 givenname: James surname: Brenan fullname: Brenan, James |
BookMark | eNp9kU9u3CAUxlGUSp2kPUB3LDPS2AEzmKm6SqM0jZQokZyuEYbnCSMMU8CtuusderTeoCcpTrLKIgtAeu_7vT98R-jQBw8IfaCkpoS2p7t6q1XdEMprwmrS0AO0oBvRVB85Y4doQYqoEoSJt-gopR0hRHBOFujvnYrZZhu89VscBrx3Kls_jdU2hmmPwcEIPid8cnd5scTKG6wflNNhC74EO1jh-3LO0gp3_Qp_tkvcQ_4J4PEYfEiTG6yBKgVnDS73NLfCJzddt1xh6zPEEYxVGfBLyVWRPPZ7roGd_T4VhcpYB59jcA4MHm6bf7__DF0zB83jIukdejMol-D983uMvn25uD__Wl3fXl6dn11XuhGbXLWct0owrnthWrXhhgngvdLrfuDM6JaA5muqVAt8zVTP-dAowgfRtqQpeWDHSDzV1TGkFGGQ2mY1j5Cjsk5SImdv5E4Wb-TsjSRMFm8KSV-Q-2hHFX-9ynx6YqCs9MNClElb8Lp8XwSdpQn2Ffo_Y_CsfA |
CitedBy_id | crossref_primary_10_3390_min9090531 crossref_primary_10_1016_j_oregeorev_2021_104411 crossref_primary_10_3389_feart_2022_868011 crossref_primary_10_1016_j_oregeorev_2023_105465 crossref_primary_10_1016_j_oregeorev_2024_106433 crossref_primary_10_1016_j_jafrearsci_2022_104646 crossref_primary_10_3749_canmin_2100056 crossref_primary_10_1016_j_gexplo_2024_107440 crossref_primary_10_1016_j_chemgeo_2019_04_015 crossref_primary_10_1080_08120099_2024_2375063 crossref_primary_10_3389_feart_2020_597469 crossref_primary_10_1016_j_oregeorev_2023_105578 crossref_primary_10_1007_s00126_019_00926_z crossref_primary_10_1007_s00410_019_1583_5 crossref_primary_10_1016_j_epsl_2022_117986 crossref_primary_10_1016_j_gca_2017_04_015 crossref_primary_10_1016_j_oregeorev_2021_104005 crossref_primary_10_3799_dqkx_2022_302 crossref_primary_10_1039_C8RA05117H crossref_primary_10_1016_j_jseaes_2023_105903 crossref_primary_10_1007_s00410_021_01824_2 crossref_primary_10_5382_econgeo_5091 crossref_primary_10_1016_j_jsames_2021_103501 crossref_primary_10_1007_s00126_024_01282_3 crossref_primary_10_1016_j_gca_2017_05_010 crossref_primary_10_2138_am_2018_6423 crossref_primary_10_5382_econgeo_4717 crossref_primary_10_1016_j_lithos_2021_106374 crossref_primary_10_1038_s41467_022_31894_0 crossref_primary_10_1016_j_gca_2020_01_008 crossref_primary_10_1007_s00126_020_01014_3 crossref_primary_10_1016_j_gca_2020_12_019 crossref_primary_10_1007_s00126_023_01184_w crossref_primary_10_1134_S1028334X21050135 crossref_primary_10_1007_s00126_021_01060_5 crossref_primary_10_1016_j_gca_2024_06_023 crossref_primary_10_2138_am_2017_5631 crossref_primary_10_1134_S1075701521040061 crossref_primary_10_3749_canmin_1800082 crossref_primary_10_1016_j_oregeorev_2024_106300 crossref_primary_10_1016_j_oregeorev_2023_105396 crossref_primary_10_3749_canmin_2100020 crossref_primary_10_1093_petrology_egy083 crossref_primary_10_1016_j_gca_2020_08_029 crossref_primary_10_3389_feart_2022_860751 crossref_primary_10_1016_j_gexplo_2015_08_002 crossref_primary_10_1016_j_gexplo_2024_107615 crossref_primary_10_1016_j_epsl_2015_04_011 crossref_primary_10_3390_geosciences8120474 crossref_primary_10_3390_min13091150 crossref_primary_10_1016_j_gca_2021_03_020 crossref_primary_10_1007_s00126_016_0642_3 crossref_primary_10_1016_j_gca_2017_04_041 crossref_primary_10_1016_j_lithos_2017_11_019 crossref_primary_10_1134_S086959112306005X crossref_primary_10_2138_am_2022_8704 crossref_primary_10_1007_s00126_021_01091_y crossref_primary_10_1016_j_oregeorev_2021_104055 crossref_primary_10_1016_j_oregeorev_2023_105666 crossref_primary_10_3749_canmin_2100018 crossref_primary_10_1093_petrology_egz004 crossref_primary_10_3749_canmin_2100017 crossref_primary_10_1007_s00126_015_0622_z crossref_primary_10_1016_j_lithos_2020_105901 crossref_primary_10_5382_econgeo_4742 crossref_primary_10_5382_econgeo_4741 crossref_primary_10_1016_j_lithos_2023_107244 crossref_primary_10_1016_j_oregeorev_2016_09_030 crossref_primary_10_1016_j_gca_2017_01_006 crossref_primary_10_1007_s00410_022_01966_x crossref_primary_10_18654_1000_0569_2021_09_03 crossref_primary_10_1016_j_chemgeo_2024_122301 crossref_primary_10_3749_canmin_2100006 crossref_primary_10_1016_j_oregeorev_2023_105497 crossref_primary_10_1016_j_lithos_2018_10_022 crossref_primary_10_1016_j_oregeorev_2019_05_010 crossref_primary_10_1016_j_gca_2020_04_014 crossref_primary_10_1038_s43247_024_01571_9 crossref_primary_10_1016_j_gca_2016_11_029 crossref_primary_10_1016_j_oregeorev_2017_05_016 crossref_primary_10_1016_j_lithos_2020_105451 crossref_primary_10_1007_s00126_024_01246_7 crossref_primary_10_1038_s43017_021_00182_8 crossref_primary_10_31857_S0869590323060067 crossref_primary_10_1007_s00126_024_01280_5 crossref_primary_10_3390_min11111258 crossref_primary_10_1016_j_sab_2020_105790 crossref_primary_10_1016_j_lithos_2020_105407 crossref_primary_10_5382_econgeo_4757 crossref_primary_10_2138_am_2020_7477 crossref_primary_10_5382_econgeo_4887 crossref_primary_10_1016_j_lithos_2020_105880 crossref_primary_10_3390_jmse10050678 crossref_primary_10_1016_j_gca_2017_04_011 crossref_primary_10_1007_s11053_023_10183_7 crossref_primary_10_1016_j_chemgeo_2023_121645 crossref_primary_10_1007_s00410_023_02092_y crossref_primary_10_1016_j_gca_2019_01_028 crossref_primary_10_1016_j_epsl_2022_117640 crossref_primary_10_1016_j_gca_2015_12_035 crossref_primary_10_1016_j_chemer_2023_125954 crossref_primary_10_1016_j_gexplo_2016_04_005 crossref_primary_10_5382_econgeo_4928 crossref_primary_10_1130_G45779_1 crossref_primary_10_3390_min9050276 crossref_primary_10_1093_petrology_egab089 crossref_primary_10_3799_dqkx_2022_285 crossref_primary_10_5382_econgeo_4894 crossref_primary_10_1016_j_jseaes_2023_105605 crossref_primary_10_1016_j_gca_2022_01_017 crossref_primary_10_2138_am_2019_6557 crossref_primary_10_3749_canmin_2000126 |
Cites_doi | 10.1016/S0024-4937(98)00083-8 10.2138/rmg.2006.61.2 10.2113/econgeo.107.2.275 10.1016/0016-7037(94)90092-2 10.1080/01411590500185542 10.1038/39299 10.1016/0016-7037(95)00355-X 10.2113/gsecongeo.94.2.185 10.1007/BF00712976 10.1029/2003GC000597 10.1016/j.epsl.2012.08.008 10.1016/j.gca.2010.08.009 10.2113/gsecongeo.73.1.82 10.1016/0016-7037(95)00038-2 10.2113/gsecongeo.91.3.607 10.1016/j.epsl.2015.04.011 10.1016/j.epsl.2011.09.035 10.2113/gsecongeo.87.6.1584 10.1093/petrology/10.2.171 10.2113/gsecongeo.96.3.525 10.1007/s00410-013-0951-9 10.1016/0016-7037(96)00009-9 10.1007/s00126-011-0336-9 10.1016/j.gca.2004.07.011 10.2113/gsecongeo.102.2.305 10.1016/j.gca.2013.05.014 10.1007/s00126-010-0295-6 10.1016/S0012-821X(00)00165-5 10.1002/chem.200305249 10.1007/s11669-004-0138-1 10.1038/ncomms3405 10.1007/BF01226568 10.2113/econgeo.105.6.1071 10.1038/nature02577 10.1016/j.epsl.2007.06.012 10.1007/s00410-006-0163-7 10.1002/9783527619825 10.2113/gscanmin.40.1.1 10.1016/j.gca.2004.11.025 10.1016/0016-7037(64)90083-3 10.1016/j.gca.2008.03.009 10.1361/154770306X109872 10.1016/S0016-7037(98)00121-5 10.1016/j.gca.2013.10.002 10.1093/petrology/egm030 10.1016/S0009-2541(02)00043-8 10.1016/j.gca.2009.06.038 10.2113/econgeo.109.2.343 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.gca.2015.03.021 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9533 |
EndPage | 161 |
ExternalDocumentID | 10_1016_j_gca_2015_03_021 S0016703715001635 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMA IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SEP SES SPC SSE SSZ T5K TN5 TWZ XSW ZMT ~02 ~G- 29H 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ MVM OHT R2- SEW SSH UQL VH1 VOH WUQ XJT XOL ZKB |
ID | FETCH-LOGICAL-c278t-6556a735cb7d6a85d37e5bac4bf53dc60ec541aa6e543ab55f2a05f766023dce3 |
IEDL.DBID | .~1 |
ISSN | 0016-7037 |
IngestDate | Tue Jul 01 03:36:03 EDT 2025 Thu Apr 24 22:56:45 EDT 2025 Fri Feb 23 02:30:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c278t-6556a735cb7d6a85d37e5bac4bf53dc60ec541aa6e543ab55f2a05f766023dce3 |
PageCount | 23 |
ParticipantIDs | crossref_citationtrail_10_1016_j_gca_2015_03_021 crossref_primary_10_1016_j_gca_2015_03_021 elsevier_sciencedirect_doi_10_1016_j_gca_2015_03_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06 |
PublicationDecade | 2010 |
PublicationTitle | Geochimica et cosmochimica acta |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dare, Barnes, Prichard, Fisher (b0055) 2014; 109 Fonseca, Mallman, O’Neil, Campell, Laurenz (b0095) 2011; 311 Li, Andetat (b0175) 2013; 118 Barin I. (1995) Thermochemical Data of Pure Substances. Weinheim, New York. 1885 pp. in press. Gödel B., Gonzalez-Alvarez I., Barnes S., Barnes, S-J, Parker P. and Day J. (2012) Sulfides and Sulfarsenides from the Rosie Nickel Prospect, Duketon Greenstone Belt, Western Australia. Salters, Stracke (b0255) 2004; 5 Helmy, Ballhaus, Wohlgemuth-Ueberwasser, Fonseca, Laurenz (b0135) 2010; 74 Gao, Luo, Zhang, Zhang, Han, Hu, Zhao (b0105) 1998; 62 Kress (b0165) 1997; 389 Rajamani, Naldrett (b0240) 1978; 73 Brenan J. M. (2014) Se–Te fractionation by sulfide–silicate melt partitioning: implications for the composition of mantle-derived magmas and their melting residues (in revision with EPSL). Toulmin, Barton (b0275) 1964; 28 Raghavan (b0235) 2006; 27 Ballhaus, Ulmer (b0010) 1995; 59 Brenan, Cherniak, Rose (b0030) 2000; 180 Rudnick, Gao (b0250) 2003; Vol. 3 Li, Naldrett, Coats, Johannessen (b0180) 1992; 87 Makovicky (b0190) 2006; 61 Fonseca, Campbell, O’Neill, Allen (b0090) 2009; 73 O’Neill (b0225) 1987; 27 Naldrett, Asif, Schandl, Searcy, Morrison, Binney, Moore (b0220) 1999; 94 Farrow, Watkinson (b0065) 1997; 35 Naldrett (b0215) 1969; 10 Raybaud, Kresse, Hafner, Toulhoat (b0245) 1997; 9 Fleet, Pan (b0070) 1994; 58 Hanley (b0125) 2007; 102 Raghavan (b0230) 2004; 25 Dare, Barnes, Prichard (b0040) 2010 Mungall, Ames, Hanley (b0205) 2004; 429 Fonseca, Campbell, O’Neill, Fitz Gerald (b0085) 2008; 72 Sylvester (b0265) 2001; 29 Jugo, Candela, Piccoli (b0150) 1999; 46 Gervilla, Leblanc, Torres-Ruiz, Fenoll (b0110) 1996; 34 Wedepohl (b0285) 1995; 59 Helmy, Ballhaus, Fonseca, Wirth, Nagel, Tredoux (b0140) 2013 Li, Barnes, Makovicky, Rose-Hansen, Makovicky (b0185) 1996; 60 Gervilla, Papunen, Kojonen, Johanson (b0115) 1998; 64 Ebel, Naldrett (b0060) 1996; 91 Andrews, Brenan (b0005) 2002; 192 Li, Andetat (b0170) 2012; 355 Helmy, Ballhaus, Fonseca, Nagel (b0145) 2013; 166 Shi (b0260) 1992; 77 Carvajal, Alvarez, Novoa (b0035) 2004; 10 Fonseca, Mallman, O’Neil, Campell (b0080) 2007; 260 Frost, Mavrogenes, Tomkins (b0100) 2002; 40 Mungall J.E. and Brenan J.M. (2014) Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Dare, Barnes, Prichard, Fisher (b0050) 2011; 46 Wang, Salveson (b0280) 2005; 78 Helmy, Ballhaus, Berndt, Bockrath, Wohlgemuth-Ueberwasser (b0130) 2007; 153 Mungall, Andrews, Cabri, Sylvester, Tubrett (b0210) 2005; 69 Jugo, Luth, Rochards (b0155) 2005; 69 Dare Sarah, Barnes, Prichard (b0045) 2010; 105 Tomkins, Maverogenes (b0270) 2001; 96 Fleet, Chryssiykus, Stone, Weisener (b0075) 1993; 115 Godel, Barnes, Maier (b0120) 2007; 48 Carvajal (10.1016/j.gca.2015.03.021_b0035) 2004; 10 Tomkins (10.1016/j.gca.2015.03.021_b0270) 2001; 96 Raghavan (10.1016/j.gca.2015.03.021_b0230) 2004; 25 Wedepohl (10.1016/j.gca.2015.03.021_b0285) 1995; 59 Kress (10.1016/j.gca.2015.03.021_b0165) 1997; 389 10.1016/j.gca.2015.03.021_b9000 Farrow (10.1016/j.gca.2015.03.021_b0065) 1997; 35 Helmy (10.1016/j.gca.2015.03.021_b0145) 2013; 166 Fonseca (10.1016/j.gca.2015.03.021_b0085) 2008; 72 Naldrett (10.1016/j.gca.2015.03.021_b0220) 1999; 94 Raybaud (10.1016/j.gca.2015.03.021_b0245) 1997; 9 Frost (10.1016/j.gca.2015.03.021_b0100) 2002; 40 Gervilla (10.1016/j.gca.2015.03.021_b0115) 1998; 64 10.1016/j.gca.2015.03.021_b0200 Dare (10.1016/j.gca.2015.03.021_b0040) 2010 Li (10.1016/j.gca.2015.03.021_b0170) 2012; 355 O’Neill (10.1016/j.gca.2015.03.021_b0225) 1987; 27 Helmy (10.1016/j.gca.2015.03.021_b0140) 2013 Fonseca (10.1016/j.gca.2015.03.021_b0095) 2011; 311 10.1016/j.gca.2015.03.021_b0015 Helmy (10.1016/j.gca.2015.03.021_b0130) 2007; 153 Fonseca (10.1016/j.gca.2015.03.021_b0090) 2009; 73 Li (10.1016/j.gca.2015.03.021_b0185) 1996; 60 Shi (10.1016/j.gca.2015.03.021_b0260) 1992; 77 Li (10.1016/j.gca.2015.03.021_b0175) 2013; 118 Fonseca (10.1016/j.gca.2015.03.021_b0080) 2007; 260 Godel (10.1016/j.gca.2015.03.021_b0120) 2007; 48 Salters (10.1016/j.gca.2015.03.021_b0255) 2004; 5 Jugo (10.1016/j.gca.2015.03.021_b0155) 2005; 69 Mungall (10.1016/j.gca.2015.03.021_b0205) 2004; 429 Helmy (10.1016/j.gca.2015.03.021_b0135) 2010; 74 Dare Sarah (10.1016/j.gca.2015.03.021_b0045) 2010; 105 Naldrett (10.1016/j.gca.2015.03.021_b0215) 1969; 10 Rajamani (10.1016/j.gca.2015.03.021_b0240) 1978; 73 Dare (10.1016/j.gca.2015.03.021_b0050) 2011; 46 Gao (10.1016/j.gca.2015.03.021_b0105) 1998; 62 Fleet (10.1016/j.gca.2015.03.021_b0075) 1993; 115 Ballhaus (10.1016/j.gca.2015.03.021_b0010) 1995; 59 Wang (10.1016/j.gca.2015.03.021_b0280) 2005; 78 Makovicky (10.1016/j.gca.2015.03.021_b0190) 2006; 61 10.1016/j.gca.2015.03.021_b0025 Fleet (10.1016/j.gca.2015.03.021_b0070) 1994; 58 Brenan (10.1016/j.gca.2015.03.021_b0030) 2000; 180 Dare (10.1016/j.gca.2015.03.021_b0055) 2014; 109 Toulmin (10.1016/j.gca.2015.03.021_b0275) 1964; 28 Rudnick (10.1016/j.gca.2015.03.021_b0250) 2003; Vol. 3 Mungall (10.1016/j.gca.2015.03.021_b0210) 2005; 69 Gervilla (10.1016/j.gca.2015.03.021_b0110) 1996; 34 Raghavan (10.1016/j.gca.2015.03.021_b0235) 2006; 27 Ebel (10.1016/j.gca.2015.03.021_b0060) 1996; 91 Li (10.1016/j.gca.2015.03.021_b0180) 1992; 87 Andrews (10.1016/j.gca.2015.03.021_b0005) 2002; 192 Jugo (10.1016/j.gca.2015.03.021_b0150) 1999; 46 Hanley (10.1016/j.gca.2015.03.021_b0125) 2007; 102 Sylvester (10.1016/j.gca.2015.03.021_b0265) 2001; 29 |
References_xml | – volume: 62 start-page: 1959 year: 1998 end-page: 1975 ident: b0105 article-title: Chemical composition of the continental crust as revealed by studies in east China publication-title: Geochim. Cosmochim. Acta – volume: 260 start-page: 537 year: 2007 end-page: 548 ident: b0080 article-title: How chalcophile is rhenium? An experimental study of the solubility of Re in sulphide mattes publication-title: Earth Planet. Sci. Lett. – volume: 166 start-page: 1725 year: 2013 end-page: 1737 ident: b0145 article-title: Fractionation of platinum, palladium, nickel, and copper in sulfide–arsenide systems at magmatic temperature publication-title: Contrib. Mineral. Petrol. – volume: 9 start-page: 11085 year: 1997 end-page: 11106 ident: b0245 article-title: Ab initio density functional studies of transition-metal sulphides: I. Crystal structure and cohesive properties publication-title: J. Phys.: Condens. Matter. – volume: 48 start-page: 1569 year: 2007 end-page: 1604 ident: b0120 article-title: Platinum-group elements in sulphide minerals, platinum-group minerals, and the whole rock of the Merensky Reef (Bushveld Complex, South Africa): implication for the formation of the reef publication-title: J. Petrol. – reference: Barin I. (1995) Thermochemical Data of Pure Substances. Weinheim, New York. 1885 pp. – year: 2010 ident: b0040 article-title: The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite publication-title: Miner. Deposita – volume: 34 start-page: 485 year: 1996 end-page: 502 ident: b0110 article-title: Immiscibility between arsenide and sulfide melts: a mechanism for the concentration of noble metals publication-title: Can. Mineral. – volume: 429 start-page: 546 year: 2004 end-page: 548 ident: b0205 article-title: Geochemical evidence from the Sudbury structure for crustal redistribution by large bolide impacts publication-title: Nature – volume: 46 start-page: 381 year: 2011 end-page: 407 ident: b0050 article-title: Chalcophile and platinum-group element (PGE) concentrations in the sulfide minerals from the McCreedy East deposit, Sudbury, Canada, and the origin of PGE in pyrite publication-title: Miner. Deposita – volume: 180 start-page: 399 year: 2000 end-page: 413 ident: b0030 article-title: Diffusion of osmium in pyrrhotite and pyrite: implications for closure of the Re–Os isotopic system publication-title: Earth Planet. Sci. Lett. – volume: 153 start-page: 577 year: 2007 end-page: 591 ident: b0130 article-title: Formation of Pt, Pd, Ni tellurides: experiments in sulfide–telluride systems publication-title: Contrib. Mineral. Petrol. – volume: 69 start-page: 4349 year: 2005 end-page: 4360 ident: b0210 article-title: Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities publication-title: Geochim. Cosmochim. Acta – volume: 28 start-page: 641 year: 1964 end-page: 671 ident: b0275 article-title: A Thermodynamic study of pyrite and pyrrhotite publication-title: Geochim. Cosmochim. Acta – volume: 102 start-page: 305 year: 2007 end-page: 317 ident: b0125 article-title: The role of Arsenic-rich melts and mineral phases in the development of high grade Pt–Pd mineralization within komatiite-associated magmatic Ni–Cu sulfide horizons at Dundonald Beach South, Abitibi Subprovince, Ontario, Canada publication-title: Econ. Geol. – volume: 77 start-page: 1050 year: 1992 end-page: 1066 ident: b0260 article-title: Fluid fugacities and phase equilibria in the Fe–Si–O–H–S system publication-title: Am. Mineral. – reference: Brenan J. M. (2014) Se–Te fractionation by sulfide–silicate melt partitioning: implications for the composition of mantle-derived magmas and their melting residues (in revision with EPSL). – year: 2013 ident: b0140 article-title: Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts publication-title: Nat. Commun. – volume: 96 start-page: 525 year: 2001 end-page: 534 ident: b0270 article-title: Redistribution of gold within arsenopyrite and lollingite during Pro-and retrograde metamorphism: application to timing of mineralization publication-title: Econ. Geol. – reference: Gödel B., Gonzalez-Alvarez I., Barnes S., Barnes, S-J, Parker P. and Day J. (2012) Sulfides and Sulfarsenides from the Rosie Nickel Prospect, Duketon Greenstone Belt, Western Australia. – volume: 105 start-page: 1071 year: 2010 end-page: 1096 ident: b0045 article-title: The timing and formation of platinum-group minerals from the Creighton Ni–Cu–platinum-group element sulfide deposit, Sudbury, Canada: early crystallization of PGE-rich sulfarsenides publication-title: Econ. Geol. – volume: 355 start-page: 327 year: 2012 end-page: 340 ident: b0170 article-title: Partitioning of V, Mn Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions publication-title: Earth Planet. Sci. Lett. – volume: 10 start-page: 2117 year: 2004 end-page: 2132 ident: b0035 article-title: The nature of intermolecular Cu publication-title: Chem. Eur. J. – volume: 389 start-page: 591 year: 1997 end-page: 593 ident: b0165 article-title: Magma mixing as a source for Pinatubo sulphur publication-title: Nature – volume: 87 start-page: 1584 year: 1992 end-page: 1598 ident: b0180 article-title: Platinum, palladium, gold, and copper-rich stringers at the Strathcona mine, Sudbury: their enrichment by fractionation of a sulfide liquid publication-title: Econ. Geol. – volume: 29 start-page: 29 year: 2001 end-page: 46 ident: b0265 publication-title: Laser-Ablation-ICPMS in the Earth Sciences: Principles and Applications (Short course series) – volume: 118 start-page: 247 year: 2013 end-page: 262 ident: b0175 article-title: Gold solubility and partitioning between sulfide liquid, monosulfide solid solution and hydrous mantle melts: Implications for the formation of Au-rich magmas and crust–mantle differentiation publication-title: Geochim. Cosmochim. Acta – volume: 5 start-page: 1525 year: 2004 end-page: 2027 ident: b0255 article-title: Composition of the depleted mantle publication-title: Geochem. Geophys. Geosyst. – volume: 115 start-page: 36 year: 1993 end-page: 44 ident: b0075 article-title: Partitioning of platinum-group elements and Au in the Fe–Ni–Cu–S system: experiments on the fractional crystallization of sulfide melt publication-title: Contrib. Mineral. Petrol. – volume: 72 start-page: 2619 year: 2008 end-page: 2635 ident: b0085 article-title: Oxygen solubility and speciation in sulphide-rich mattes publication-title: Geochim. Cosmochim. Acta – volume: 59 start-page: 1217 year: 1995 end-page: 1239 ident: b0285 article-title: The composition of the continental crust publication-title: Geochim. Cosmochim. Acta – volume: Vol. 3 start-page: 1 year: 2003 end-page: 64 ident: b0250 article-title: Composition of the continental crust publication-title: Treatise on Geochemistry – reference: Mungall J.E. and Brenan J.M. (2014) Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. – volume: 25 start-page: 450 year: 2004 end-page: 457 ident: b0230 article-title: Cu–Fe–S (Copper–Iron–Sulfur) publication-title: J. Phase Equilib. Diffus. – volume: 46 start-page: 573 year: 1999 end-page: 589 ident: b0150 article-title: Magmatic sulfides and Au: Cu ratios in porphyry deposits: an experimental study of copper and gold partitioning at 8508C, 100 publication-title: Lithos – volume: 40 start-page: 1 year: 2002 end-page: 18 ident: b0100 article-title: Partial melting of sulfide ore deposits during medium- and high-grade metamorphism publication-title: Can. Mineral. – volume: 109 start-page: 343 year: 2014 end-page: 366 ident: b0055 article-title: Mineralogy and geochemistry of Cu-rich ores from the McCreedy East Ni–Cu–PGE deposit (Sudbury, Canada): implications for the behavior of platinum group and chalcophile elements at the end of crystallization of a sulfide liquid publication-title: Econ. Geol. – volume: 27 start-page: 290 year: 2006 ident: b0235 article-title: Cu–Fe–S (Copper–Iron–Sulfur) publication-title: J. Phase Equilib. Diffus. – volume: 35 start-page: 817 year: 1997 end-page: 839 ident: b0065 article-title: Diversity of precious metal mineralization in footwall Cu–Ni–PGE deposits, Sudbury, Ontario: implications for hydrothermal models of formation publication-title: Can. Mineral. – volume: 94 start-page: 185 year: 1999 end-page: 210 ident: b0220 article-title: PGE in the Sudbury ores: significance with respect to the origin of different ore zones and the exploration for footwall orebodies publication-title: Econ. Geol. – volume: 74 start-page: 6174 year: 2010 end-page: 6179 ident: b0135 article-title: Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and sulfide melt – application to magmatic sulfide deposits publication-title: Geochim. Cosmochim. Acta – volume: 69 start-page: 497 year: 2005 end-page: 503 ident: b0155 article-title: Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts publication-title: Geochim. Cosmochim. Acta – volume: 73 start-page: 82 year: 1978 end-page: 93 ident: b0240 article-title: Partitioning of Fe Co, Ni, and Cu between sulfide liquid and basaltic melts and the composition of Ni–Cu sulfide deposits publication-title: Econ. Geol. – volume: 311 start-page: 339 year: 2011 end-page: 350 ident: b0095 article-title: Solubility of Os and Ir in sulfide melt: implications for Re/Os fractionation during mantle melting publication-title: Earth Planet. Sci. Lett. – volume: 61 start-page: 7 year: 2006 end-page: 125 ident: b0190 article-title: Crystal structures of sulfides and other chalcogenides publication-title: Rev. Mineral. Geochem. – volume: 192 start-page: 163 year: 2002 end-page: 181 ident: b0005 article-title: The solubility of ruthenium in sulfide liquid: implications for platinum group mineral stability and sulfide melt–silicate melt partitioning publication-title: Chem. Geol. – volume: 73 start-page: 5764 year: 2009 end-page: 5777 ident: b0090 article-title: Solubility of Pt in sulphide mattes: Implications for the genesis of PGE-rich horizons in layered intrusions publication-title: Geochim. Cosmochim. Acta – volume: 10 start-page: 171 year: 1969 end-page: 201 ident: b0215 article-title: A portion of the Fe–S–O system and its application to sulfide ore magmas publication-title: J. Petrol. – volume: 27 start-page: 67 year: 1987 end-page: 75 ident: b0225 article-title: Quartz–fayalite–iron and quartz–fayalite–magnetite equilibria and the free energy of formation of fayalite (Fe publication-title: Am. Mineral. – volume: 60 start-page: 1231 year: 1996 end-page: 1238 ident: b0185 article-title: Partitioning of nickel, copper, iridium, rhenium, platinum and palladium between monosulfide solid solution and sulfide liquid: effects if composition and temperature publication-title: Geochim. Cosmochim. Acta – volume: 78 start-page: 547 year: 2005 end-page: 567 ident: b0280 article-title: A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe publication-title: Phase Transitions – volume: 64 start-page: 163 year: 1998 end-page: 185 ident: b0115 article-title: Platinum-, palladium- and gold-rich arsenide ores from the Kylmäkoski Ni–Cu deposit (Vammala Nickel Belt, SW Finland) publication-title: Mineral. Petrol. – volume: 59 start-page: 4881 year: 1995 end-page: 4888 ident: b0010 article-title: Platinum-group elements in the Merensky Reef. 2. Experimental solubilities of platinum and palladium in Fe publication-title: Geochim. Cosmochim. Acta – volume: 58 start-page: 3369 year: 1994 end-page: 3377 ident: b0070 article-title: Fractional crystallization of anhydrous sulfide liquid in the system Fe–Ni–Cu–S, with application to magmatic sulfide deposits publication-title: Geochim. Cosmochim. Acta – reference: , in press. – volume: 91 start-page: 607 year: 1996 end-page: 621 ident: b0060 article-title: Fractional crystallization of sulfide ore liquids at high temperature publication-title: Econ. Geol. – volume: 46 start-page: 573 year: 1999 ident: 10.1016/j.gca.2015.03.021_b0150 article-title: Magmatic sulfides and Au: Cu ratios in porphyry deposits: an experimental study of copper and gold partitioning at 8508C, 100MPa in a haplogranitic melt–pyrrhotite–intermediate solid solution–gold metal assemblage, at gas saturation publication-title: Lithos doi: 10.1016/S0024-4937(98)00083-8 – volume: 61 start-page: 7 year: 2006 ident: 10.1016/j.gca.2015.03.021_b0190 article-title: Crystal structures of sulfides and other chalcogenides publication-title: Rev. Mineral. Geochem. doi: 10.2138/rmg.2006.61.2 – ident: 10.1016/j.gca.2015.03.021_b9000 doi: 10.2113/econgeo.107.2.275 – volume: 77 start-page: 1050 year: 1992 ident: 10.1016/j.gca.2015.03.021_b0260 article-title: Fluid fugacities and phase equilibria in the Fe–Si–O–H–S system publication-title: Am. Mineral. – volume: 58 start-page: 3369 year: 1994 ident: 10.1016/j.gca.2015.03.021_b0070 article-title: Fractional crystallization of anhydrous sulfide liquid in the system Fe–Ni–Cu–S, with application to magmatic sulfide deposits publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)90092-2 – volume: 78 start-page: 547 year: 2005 ident: 10.1016/j.gca.2015.03.021_b0280 article-title: A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1−xS (0⩽x⩽0.125): polymorphs, phase relations and transitions, electronic and magnetic structures publication-title: Phase Transitions doi: 10.1080/01411590500185542 – volume: 389 start-page: 591 year: 1997 ident: 10.1016/j.gca.2015.03.021_b0165 article-title: Magma mixing as a source for Pinatubo sulphur publication-title: Nature doi: 10.1038/39299 – volume: 59 start-page: 4881 year: 1995 ident: 10.1016/j.gca.2015.03.021_b0010 article-title: Platinum-group elements in the Merensky Reef. 2. Experimental solubilities of platinum and palladium in Fe1−xS from 950° to 450°C under controlled fs2 and fH2 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(95)00355-X – volume: 94 start-page: 185 year: 1999 ident: 10.1016/j.gca.2015.03.021_b0220 article-title: PGE in the Sudbury ores: significance with respect to the origin of different ore zones and the exploration for footwall orebodies publication-title: Econ. Geol. doi: 10.2113/gsecongeo.94.2.185 – volume: 115 start-page: 36 year: 1993 ident: 10.1016/j.gca.2015.03.021_b0075 article-title: Partitioning of platinum-group elements and Au in the Fe–Ni–Cu–S system: experiments on the fractional crystallization of sulfide melt publication-title: Contrib. Mineral. Petrol. doi: 10.1007/BF00712976 – volume: 9 start-page: 11085 year: 1997 ident: 10.1016/j.gca.2015.03.021_b0245 article-title: Ab initio density functional studies of transition-metal sulphides: I. Crystal structure and cohesive properties publication-title: J. Phys.: Condens. Matter. – volume: 5 start-page: 1525 year: 2004 ident: 10.1016/j.gca.2015.03.021_b0255 article-title: Composition of the depleted mantle publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2003GC000597 – volume: 355 start-page: 327 year: 2012 ident: 10.1016/j.gca.2015.03.021_b0170 article-title: Partitioning of V, Mn Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2012.08.008 – volume: 74 start-page: 6174 year: 2010 ident: 10.1016/j.gca.2015.03.021_b0135 article-title: Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and sulfide melt – application to magmatic sulfide deposits publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2010.08.009 – volume: 73 start-page: 82 year: 1978 ident: 10.1016/j.gca.2015.03.021_b0240 article-title: Partitioning of Fe Co, Ni, and Cu between sulfide liquid and basaltic melts and the composition of Ni–Cu sulfide deposits publication-title: Econ. Geol. doi: 10.2113/gsecongeo.73.1.82 – volume: 59 start-page: 1217 year: 1995 ident: 10.1016/j.gca.2015.03.021_b0285 article-title: The composition of the continental crust publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(95)00038-2 – volume: 34 start-page: 485 year: 1996 ident: 10.1016/j.gca.2015.03.021_b0110 article-title: Immiscibility between arsenide and sulfide melts: a mechanism for the concentration of noble metals publication-title: Can. Mineral. – volume: 91 start-page: 607 year: 1996 ident: 10.1016/j.gca.2015.03.021_b0060 article-title: Fractional crystallization of sulfide ore liquids at high temperature publication-title: Econ. Geol. doi: 10.2113/gsecongeo.91.3.607 – ident: 10.1016/j.gca.2015.03.021_b0025 doi: 10.1016/j.epsl.2015.04.011 – volume: 311 start-page: 339 year: 2011 ident: 10.1016/j.gca.2015.03.021_b0095 article-title: Solubility of Os and Ir in sulfide melt: implications for Re/Os fractionation during mantle melting publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2011.09.035 – volume: 87 start-page: 1584 year: 1992 ident: 10.1016/j.gca.2015.03.021_b0180 article-title: Platinum, palladium, gold, and copper-rich stringers at the Strathcona mine, Sudbury: their enrichment by fractionation of a sulfide liquid publication-title: Econ. Geol. doi: 10.2113/gsecongeo.87.6.1584 – volume: 10 start-page: 171 year: 1969 ident: 10.1016/j.gca.2015.03.021_b0215 article-title: A portion of the Fe–S–O system and its application to sulfide ore magmas publication-title: J. Petrol. doi: 10.1093/petrology/10.2.171 – volume: 96 start-page: 525 year: 2001 ident: 10.1016/j.gca.2015.03.021_b0270 article-title: Redistribution of gold within arsenopyrite and lollingite during Pro-and retrograde metamorphism: application to timing of mineralization publication-title: Econ. Geol. doi: 10.2113/gsecongeo.96.3.525 – volume: 166 start-page: 1725 year: 2013 ident: 10.1016/j.gca.2015.03.021_b0145 article-title: Fractionation of platinum, palladium, nickel, and copper in sulfide–arsenide systems at magmatic temperature publication-title: Contrib. Mineral. Petrol. doi: 10.1007/s00410-013-0951-9 – volume: 60 start-page: 1231 year: 1996 ident: 10.1016/j.gca.2015.03.021_b0185 article-title: Partitioning of nickel, copper, iridium, rhenium, platinum and palladium between monosulfide solid solution and sulfide liquid: effects if composition and temperature publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(96)00009-9 – volume: 46 start-page: 381 year: 2011 ident: 10.1016/j.gca.2015.03.021_b0050 article-title: Chalcophile and platinum-group element (PGE) concentrations in the sulfide minerals from the McCreedy East deposit, Sudbury, Canada, and the origin of PGE in pyrite publication-title: Miner. Deposita doi: 10.1007/s00126-011-0336-9 – volume: 69 start-page: 497 year: 2005 ident: 10.1016/j.gca.2015.03.021_b0155 article-title: Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2004.07.011 – volume: 102 start-page: 305 year: 2007 ident: 10.1016/j.gca.2015.03.021_b0125 article-title: The role of Arsenic-rich melts and mineral phases in the development of high grade Pt–Pd mineralization within komatiite-associated magmatic Ni–Cu sulfide horizons at Dundonald Beach South, Abitibi Subprovince, Ontario, Canada publication-title: Econ. Geol. doi: 10.2113/gsecongeo.102.2.305 – volume: 118 start-page: 247 year: 2013 ident: 10.1016/j.gca.2015.03.021_b0175 article-title: Gold solubility and partitioning between sulfide liquid, monosulfide solid solution and hydrous mantle melts: Implications for the formation of Au-rich magmas and crust–mantle differentiation publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.05.014 – year: 2010 ident: 10.1016/j.gca.2015.03.021_b0040 article-title: The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite publication-title: Miner. Deposita doi: 10.1007/s00126-010-0295-6 – volume: 180 start-page: 399 year: 2000 ident: 10.1016/j.gca.2015.03.021_b0030 article-title: Diffusion of osmium in pyrrhotite and pyrite: implications for closure of the Re–Os isotopic system publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(00)00165-5 – volume: 10 start-page: 2117 year: 2004 ident: 10.1016/j.gca.2015.03.021_b0035 article-title: The nature of intermolecular CuI–CuI interactions: a combined theoretical and structural database analysis publication-title: Chem. Eur. J. doi: 10.1002/chem.200305249 – volume: 35 start-page: 817 year: 1997 ident: 10.1016/j.gca.2015.03.021_b0065 article-title: Diversity of precious metal mineralization in footwall Cu–Ni–PGE deposits, Sudbury, Ontario: implications for hydrothermal models of formation publication-title: Can. Mineral. – volume: 25 start-page: 450 issue: 5 year: 2004 ident: 10.1016/j.gca.2015.03.021_b0230 article-title: Cu–Fe–S (Copper–Iron–Sulfur) publication-title: J. Phase Equilib. Diffus. doi: 10.1007/s11669-004-0138-1 – year: 2013 ident: 10.1016/j.gca.2015.03.021_b0140 article-title: Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts publication-title: Nat. Commun. doi: 10.1038/ncomms3405 – volume: 64 start-page: 163 year: 1998 ident: 10.1016/j.gca.2015.03.021_b0115 article-title: Platinum-, palladium- and gold-rich arsenide ores from the Kylmäkoski Ni–Cu deposit (Vammala Nickel Belt, SW Finland) publication-title: Mineral. Petrol. doi: 10.1007/BF01226568 – volume: 105 start-page: 1071 year: 2010 ident: 10.1016/j.gca.2015.03.021_b0045 article-title: The timing and formation of platinum-group minerals from the Creighton Ni–Cu–platinum-group element sulfide deposit, Sudbury, Canada: early crystallization of PGE-rich sulfarsenides publication-title: Econ. Geol. doi: 10.2113/econgeo.105.6.1071 – volume: 429 start-page: 546 year: 2004 ident: 10.1016/j.gca.2015.03.021_b0205 article-title: Geochemical evidence from the Sudbury structure for crustal redistribution by large bolide impacts publication-title: Nature doi: 10.1038/nature02577 – volume: 29 start-page: 29 year: 2001 ident: 10.1016/j.gca.2015.03.021_b0265 – volume: 260 start-page: 537 year: 2007 ident: 10.1016/j.gca.2015.03.021_b0080 article-title: How chalcophile is rhenium? An experimental study of the solubility of Re in sulphide mattes publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2007.06.012 – volume: 153 start-page: 577 year: 2007 ident: 10.1016/j.gca.2015.03.021_b0130 article-title: Formation of Pt, Pd, Ni tellurides: experiments in sulfide–telluride systems publication-title: Contrib. Mineral. Petrol. doi: 10.1007/s00410-006-0163-7 – ident: 10.1016/j.gca.2015.03.021_b0015 doi: 10.1002/9783527619825 – volume: 40 start-page: 1 year: 2002 ident: 10.1016/j.gca.2015.03.021_b0100 article-title: Partial melting of sulfide ore deposits during medium- and high-grade metamorphism publication-title: Can. Mineral. doi: 10.2113/gscanmin.40.1.1 – volume: 69 start-page: 4349 year: 2005 ident: 10.1016/j.gca.2015.03.021_b0210 article-title: Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2004.11.025 – volume: 27 start-page: 67 year: 1987 ident: 10.1016/j.gca.2015.03.021_b0225 article-title: Quartz–fayalite–iron and quartz–fayalite–magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4) publication-title: Am. Mineral. – volume: Vol. 3 start-page: 1 year: 2003 ident: 10.1016/j.gca.2015.03.021_b0250 article-title: Composition of the continental crust – volume: 28 start-page: 641 year: 1964 ident: 10.1016/j.gca.2015.03.021_b0275 article-title: A Thermodynamic study of pyrite and pyrrhotite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(64)90083-3 – volume: 72 start-page: 2619 year: 2008 ident: 10.1016/j.gca.2015.03.021_b0085 article-title: Oxygen solubility and speciation in sulphide-rich mattes publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.03.009 – volume: 27 start-page: 290 issue: 3 year: 2006 ident: 10.1016/j.gca.2015.03.021_b0235 article-title: Cu–Fe–S (Copper–Iron–Sulfur) publication-title: J. Phase Equilib. Diffus. doi: 10.1361/154770306X109872 – volume: 62 start-page: 1959 year: 1998 ident: 10.1016/j.gca.2015.03.021_b0105 article-title: Chemical composition of the continental crust as revealed by studies in east China publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(98)00121-5 – ident: 10.1016/j.gca.2015.03.021_b0200 doi: 10.1016/j.gca.2013.10.002 – volume: 48 start-page: 1569 year: 2007 ident: 10.1016/j.gca.2015.03.021_b0120 article-title: Platinum-group elements in sulphide minerals, platinum-group minerals, and the whole rock of the Merensky Reef (Bushveld Complex, South Africa): implication for the formation of the reef publication-title: J. Petrol. doi: 10.1093/petrology/egm030 – volume: 192 start-page: 163 year: 2002 ident: 10.1016/j.gca.2015.03.021_b0005 article-title: The solubility of ruthenium in sulfide liquid: implications for platinum group mineral stability and sulfide melt–silicate melt partitioning publication-title: Chem. Geol. doi: 10.1016/S0009-2541(02)00043-8 – volume: 73 start-page: 5764 year: 2009 ident: 10.1016/j.gca.2015.03.021_b0090 article-title: Solubility of Pt in sulphide mattes: Implications for the genesis of PGE-rich horizons in layered intrusions publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.06.038 – volume: 109 start-page: 343 year: 2014 ident: 10.1016/j.gca.2015.03.021_b0055 article-title: Mineralogy and geochemistry of Cu-rich ores from the McCreedy East Ni–Cu–PGE deposit (Sudbury, Canada): implications for the behavior of platinum group and chalcophile elements at the end of crystallization of a sulfide liquid publication-title: Econ. Geol. doi: 10.2113/econgeo.109.2.343 |
SSID | ssj0007550 |
Score | 2.4902887 |
Snippet | In order to better understand the behavior of highly siderophile elements (HSEs: Os, Ir, Ru, Rh, Pt, Pd, Au, Re), Ag, Pb and chalcogens (As, Se, Sb, Te and Bi)... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 139 |
Title | Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO2–fS2 conditions |
URI | https://dx.doi.org/10.1016/j.gca.2015.03.021 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWqIiQ2iKcoj-ouWHTQmCaOfT2zHKq2U1BLpbRSd5HjRwkKmaGTWbBB_AOfxh_wJdiJw0vAgkWk-Oo6sXKP7CvnnGtCnrKpQXQG6ZQpR_kULS2tbzKf3qfKaZmqIE4-PsH5OX95IS42yN6ghQm0yjj393N6N1tHy278mrvLqgoa3xRlqDgnwl0WhOacy4Dy5x9_0DykEL0MJUUavIc_mx3H61KH0kOp6OqcsvTPa9NP683BLXIzJoow68dym2zY5g65ftgdxPvhLvlyGkYZd1Nh4WAZSG3N-h3tdBpge1r4CnZOD_dHoBoD-o2q9cIDxhtzO4Yzf81WY8jLMbyoRhApW-CBuVita1cZSz0yKwMDPmHnOM9HYwg1Jq46zUlr4XeXI-_SvS8-A-rq_dp7qBYiL762Btxr9vXTZ5ezYDQ9b-weOT_YP9ub03hAA9VMTlqKQqCSmdClNKgmwmTSilJpXjqRGY2J1YKnSqEVPFOlEI6pRDiJ6DMFo212n2w2i8Y-ICDNBK1Cnx85xlE4D5jS2NRozRPLEr5FkiE0hY7Vy8MhGnUx0NTeFj6aRYhmkWSFj-YWefa9y7Iv3fEvZz7Eu_gFf4VfWv7e7eH_dXtEboRWTzl7TDbbq7V94pObttzu0LtNrs2OXs1PvgE_gft2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4qm2vObAoYvWNHH82D2Wqu0WuqVStlJvluMHBKXZpZs9cEH8B34a_4Bfgp04vAQcOERKnJnEynwZj5JvZhB6SsaGc2c4HhPlMB1ziwvrD4kP71PltEhVSE6envDJGX15zs7X0F6fCxNoldH3dz699dZxZCc-zZ1FWYYc35SLUHGOhb2MXUFXqX99QxuD5x9_8DwEY10eSspxEO9_bbYkrzc61B5KWVvolKR_Xpx-WnAObqGbMVKE3W4yt9Gare-ga4dtJ94Pd9GX0zDN-DkV5g4WgdVWry5wm6gBtuOFL2H79HB_AKo2oN-qSs89Yvxgbocw89vucgh5MYQX5QAiZws8MufLVeVKY7GHZmmgByhsT_N8MIRQZOKyTTppLPwucuRF2vvFa0BVvl95CdVAJMZX1oB7Tb5--uxyEgZNRxy7h84O9md7Exw7NGBNxKjBnDGuRMZ0IQxXI2YyYVmhNC0cy4zmidWMpkpxy2imCsYcUQlzgnMfKhhts_tovZ7XdgOBMCNuFfcBkiOUM-cRUxibGq1pYklCN1HSm0bqWL48dNGoZM9Teye9NWWwpkwy6a25iZ59V1l0tTv-JUx7e8tfACj92vJ3ta3_U3uCrk9m02N5fHTy6gG6Ec50_LOHaL25XNlHPtJpisctkr8B9Cr9BA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partitioning+of+platinum-group+elements+%28PGE%29+and+chalcogens+%28Se%2C+Te%2C+As%2C+Sb%2C+Bi%29+between+monosulfide-solid+solution+%28MSS%29%2C+intermediate+solid+solution+%28ISS%29+and+sulfide+liquid+at+controlled+fO2%E2%80%93fS2+conditions&rft.jtitle=Geochimica+et+cosmochimica+acta&rft.au=Liu%2C+Yanan&rft.au=Brenan%2C+James&rft.date=2015-06-01&rft.pub=Elsevier+Ltd&rft.issn=0016-7037&rft.eissn=1872-9533&rft.volume=159&rft.spage=139&rft.epage=161&rft_id=info:doi/10.1016%2Fj.gca.2015.03.021&rft.externalDocID=S0016703715001635 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7037&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7037&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7037&client=summon |