Hydrothermal crystallization and modification of surface hydroxyl groups of anodized TiO2 nanotube-arrays for more efficient photoenergy conversion
[Display omitted] ► Hydrothermally crystallized nanotubes show improved cyrstallinity. ► Basic hydrothermal pH induces morphological transformation of the nanotubes. ► Acidic hydrothermal pH induces transition of surface hydroxyl groups. ► Adsorption of bipyridyl dye on nanotubes is greatly influenc...
Saved in:
Published in | Electrochimica acta Vol. 78; pp. 236 - 243 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
► Hydrothermally crystallized nanotubes show improved cyrstallinity. ► Basic hydrothermal pH induces morphological transformation of the nanotubes. ► Acidic hydrothermal pH induces transition of surface hydroxyl groups. ► Adsorption of bipyridyl dye on nanotubes is greatly influenced by hydrothermal pH. ► The efficiency of nanotube solar cell increased from 6.40% to 7.13%.
This paper describes a crystallization method for anodized TiO2 nanotube-array using a hydrothermal process. Pre-sintered TiO2 nanotube-array could further crystallize without experiencing a collapse of the nanotubes under the hydrothermal environment. Applying the hydrothermal crystallization method, the transition of surface bonds of nanotube from Ti–O to Ti–OH/Ti–OH2 can be controlled by acidic hydrothermal pH levels. Dissolution and structural transformation of nanotubes was easily induced if the hydrothermal environment became basic. These effects depicted great influence on the anchoring of carboxylate groups on the surface of TiO2 nanotubes and affected the performance of the dye-sensitized solar cell utilizing the hydrothermally crystallized TiO2 nanotubes as the photoelectrode. The photoenergy conversion efficiency increased from 6.40% for thermally annealed nanotubes to 7.13% for hydrothermally crystallized ones under illumination of 100mWcm−2. |
---|---|
AbstractList | [Display omitted]
► Hydrothermally crystallized nanotubes show improved cyrstallinity. ► Basic hydrothermal pH induces morphological transformation of the nanotubes. ► Acidic hydrothermal pH induces transition of surface hydroxyl groups. ► Adsorption of bipyridyl dye on nanotubes is greatly influenced by hydrothermal pH. ► The efficiency of nanotube solar cell increased from 6.40% to 7.13%.
This paper describes a crystallization method for anodized TiO2 nanotube-array using a hydrothermal process. Pre-sintered TiO2 nanotube-array could further crystallize without experiencing a collapse of the nanotubes under the hydrothermal environment. Applying the hydrothermal crystallization method, the transition of surface bonds of nanotube from Ti–O to Ti–OH/Ti–OH2 can be controlled by acidic hydrothermal pH levels. Dissolution and structural transformation of nanotubes was easily induced if the hydrothermal environment became basic. These effects depicted great influence on the anchoring of carboxylate groups on the surface of TiO2 nanotubes and affected the performance of the dye-sensitized solar cell utilizing the hydrothermally crystallized TiO2 nanotubes as the photoelectrode. The photoenergy conversion efficiency increased from 6.40% for thermally annealed nanotubes to 7.13% for hydrothermally crystallized ones under illumination of 100mWcm−2. This paper describes a crystallization method for anodized TiO2 nanotube-array using a hydrothermal process. Pre-sintered TiO2 nanotube-array could further crystallize without experiencing a collapse of the nanotubes under the hydrothermal environment. Applying the hydrothermal crystallization method, the transition of surface bonds of nanotube from Ti-O to Ti-OH/Ti-OH2 can be controlled by acidic hydrothermal pH levels. Dissolution and structural transformation of nanotubes was easily induced if the hydrothermal environment became basic. These effects depicted great influence on the anchoring of carboxylate groups on the surface of TiO2 nanotubes and affected the performance of the dye-sensitized solar cell utilizing the hydrothermally crystallized TiO2 nanotubes as the photoelectrode. The photoenergy conversion efficiency increased from 6.40% for thermally annealed nanotubes to 7.13% for hydrothermally crystallized ones under illumination of 100 mW cma2. |
Author | Li, Tze-Huei Chien, Chao-Hsin Kuo, Yu-Yen Lin, Chiung-Yuan Yao, Jing-Neng |
Author_xml | – sequence: 1 givenname: Yu-Yen surname: Kuo fullname: Kuo, Yu-Yen organization: Department of Electronics Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30010, Taiwan – sequence: 2 givenname: Tze-Huei surname: Li fullname: Li, Tze-Huei organization: Department of Electronics Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30010, Taiwan – sequence: 3 givenname: Jing-Neng surname: Yao fullname: Yao, Jing-Neng organization: Department of Electronics Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30010, Taiwan – sequence: 4 givenname: Chiung-Yuan surname: Lin fullname: Lin, Chiung-Yuan organization: Department of Electronics Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30010, Taiwan – sequence: 5 givenname: Chao-Hsin surname: Chien fullname: Chien, Chao-Hsin email: chchien@faculty.nctu.edu.tw organization: Department of Electronics Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30010, Taiwan |
BookMark | eNqNkcFuGyEURVGVSnXSfkNZdjNTmBnAXnQRRW1TKVI23iMMjxhrDO6DiTr5jf5wmLrKIptWQkLw7rlPuveSXMQUgZCPnLWccfn50MIItph62o7xrmWi5UK9ISu-Vn3Tr8XmgqwY430zyLV8Ry5zPjDGlFRsRX7fzg5T2QMezUgtzrmYcQxPpoQUqYmOHpMLPtjzR_I0T-iNBbpfwF_zSB8wTae8jEys2idwdBvuOxrrs0w7aAyimTP1CasZAgVf_QLEQk_7VBJEwIeZ2hQfAXPd8p689WbM8OHvfUW2375ub26bu_vvP26u7xrbqXVpBraRwnZeWKfA9buNcc5LIXZSglK-F3UKA4jBdDAYB7wTwhvXDxzMxvr-inw6254w_ZwgF30M2cI4mghpyppLxftODWyoUnWWWkw5I3h9wnA0OGvO9NKCPuiXFvTSgmZC1xYq-eUVaUP5k2VBE8b_4K_PPNQgHgOgzkt0FlzAqtcuhX96PAOAQbF7 |
CitedBy_id | crossref_primary_10_1016_j_jpowsour_2017_05_009 crossref_primary_10_1016_j_jpowsour_2015_02_150 crossref_primary_10_1149_2_0821712jes crossref_primary_10_1007_s10800_014_0725_8 crossref_primary_10_1021_cr500201c crossref_primary_10_1186_1556_276X_9_272 crossref_primary_10_1016_j_ceramint_2022_06_086 crossref_primary_10_1016_j_molcata_2014_11_026 crossref_primary_10_1016_j_elecom_2019_106501 crossref_primary_10_1080_09593330_2017_1287223 crossref_primary_10_1016_j_electacta_2013_01_002 crossref_primary_10_1016_j_jallcom_2019_01_147 crossref_primary_10_1021_acsbiomaterials_0c00187 crossref_primary_10_1016_j_electacta_2017_09_080 crossref_primary_10_1016_j_jpowsour_2019_227076 crossref_primary_10_20964_2017_03_50 crossref_primary_10_1016_j_matchar_2015_09_012 crossref_primary_10_1016_j_susc_2018_10_012 crossref_primary_10_1177_0885328213516821 crossref_primary_10_1016_j_msec_2014_11_030 crossref_primary_10_1116_1_4902350 crossref_primary_10_1016_j_jelechem_2016_04_025 crossref_primary_10_1016_j_ijhydene_2019_11_213 crossref_primary_10_3740_MRSK_2024_34_8_377 crossref_primary_10_1016_j_electacta_2016_05_117 crossref_primary_10_1016_j_aca_2022_339808 crossref_primary_10_1016_j_jallcom_2018_01_014 crossref_primary_10_1021_acs_jpcc_0c03744 crossref_primary_10_1016_j_jallcom_2013_04_040 crossref_primary_10_1016_j_cplett_2020_137950 crossref_primary_10_3390_coatings13061079 |
Cites_doi | 10.1021/jp106324x 10.1021/la971060u 10.1021/nl062000o 10.1016/j.susc.2009.07.041 10.1021/nl070264k 10.1016/S0927-0248(98)00023-3 10.1021/nn201169u 10.1021/la100137u 10.1007/s00339-009-5369-x 10.1021/jp105780v 10.1088/0957-4484/18/6/065707 10.1166/jnn.2011.4323 10.1021/cm011625e 10.1021/jp1116118 10.1016/j.apcatb.2008.03.009 10.1149/1.2908188 10.1063/1.479551 10.1021/jp806281r 10.1021/jp0525282 10.1021/jp064020k 10.1021/cm903164k 10.1021/nl070678d 10.1021/nl052099j 10.1016/j.elecom.2010.05.027 10.1021/la902807g 10.1002/adma.200701619 10.1002/adfm.200902063 10.1111/j.1551-2916.2009.03047.x 10.1021/jp109869z 10.1021/jp900336e 10.1021/j100289a025 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd |
Copyright_xml | – notice: 2012 Elsevier Ltd |
DBID | AAYXX CITATION 7QQ 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2012.05.157 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Ceramic Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
EndPage | 243 |
ExternalDocumentID | 10_1016_j_electacta_2012_05_157 S0013468612009942 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF H~9 LPU R2- SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7QQ 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c278t-40965c2f5cd7ed3b9addf655b66e77f3565ce4e54a2e4ade1255fad341ea9cf3 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Fri Jul 11 06:50:06 EDT 2025 Thu Apr 24 22:56:44 EDT 2025 Tue Jul 01 01:44:47 EDT 2025 Fri Feb 23 02:17:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydroxyl group TiO2 nanotube Dye-sensitized solar cells Hydrothermal Crystallization |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c278t-40965c2f5cd7ed3b9addf655b66e77f3565ce4e54a2e4ade1255fad341ea9cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1671327404 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1671327404 crossref_primary_10_1016_j_electacta_2012_05_157 crossref_citationtrail_10_1016_j_electacta_2012_05_157 elsevier_sciencedirect_doi_10_1016_j_electacta_2012_05_157 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 2012-9-00 20120901 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Electrochimica acta |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Simmons, Beard (bib0140) 1987; 91 Wang, Lin (bib0055) 2010; 22 Zheng, Zhou, Bai, Li, Jin, Zhang, Li, Liu, Cai, Zhu (bib0010) 2008; 20 Yu, Dai, Cheng (bib0090) 2010; 114 Chen, Zhao, Li, Han, Song (bib0105) 2009; 92 Zhu, Neale, Miedaner, Frank (bib0080) 2007; 7 Yu, Yu, Kuo, Liou, Chien (bib0035) 2008; 84 Mor, Shankar, Paulose, Varghese, Grimes (bib0015) 2006; 6 Lin, Chen, Chen (bib0060) 2010; 12 Zhang, Cha, Kang (bib0100) 2011; 11 Lee, Gomez, Regier, Hu, Demopoulos (bib0145) 2011; 115 Shankar, Mor, Prakasam, Yoriya, Paulose, Varghese, Grimes (bib0020) 2007; 18 Lei, Liao, Zhang, Wang, Su, Kuang (bib0070) 2010; 114 Albu, Ghicov, Macak, Hahn, Schmuki (bib0005) 2007; 7 Chen, Chung, Chen, Lu, Lan, Chen, Luo, Hung, Diau (bib0050) 2008; 112 Minella, Giulia, Maurino, Minero, Pelizzetti, Coluccia, Martra (bib0130) 2010; 26 Foong, Shen, Hu, Sellinger (bib0025) 2010; 20 Hirose, Kuribayashi, Suzuki, Narita, Kimura, Niwano (bib0135) 2008; 11 Chen, Xu (bib0065) 2009; 113 Bandura, Evarestov (bib0110) 2009; 603 Rensmo, Westermark, Södergren, Kohle, Persson, Lunell, Siegbahn (bib0150) 1999; 111 Jung, Kobayashi, Kjeld, van Bommel, Shinkai, Shimizu (bib0030) 2002; 14 Lee, Gomez, Elouatik, Demopoulos (bib0120) 2010; 26 Park, Bauer, von der Mark, Schmuki (bib0045) 2007; 7 Zheng, Kang, Yun, Lee, Park, Baik (bib0075) 2011; 5 Wang, Liu, Li, Huang, Zhong, Shen (bib0095) 2009; 97 Finnie, Bartlett, Woolfrey (bib0125) 1998; 14 Johansson, Hedlund, Siegbahn, Rensmo (bib0155) 2005; 109 Sun, Yan, Wang, Guo, Ma (bib0085) 2011; 115 Paulose, Shankar, Yoriya, Prakasam, Varghese, Mor, Latempa, Fitzgerald, Grimes (bib0040) 2006; 110 Falaras (bib0115) 1998; 53 Finnie (10.1016/j.electacta.2012.05.157_bib0125) 1998; 14 Jung (10.1016/j.electacta.2012.05.157_bib0030) 2002; 14 Zheng (10.1016/j.electacta.2012.05.157_bib0075) 2011; 5 Yu (10.1016/j.electacta.2012.05.157_bib0090) 2010; 114 Park (10.1016/j.electacta.2012.05.157_bib0045) 2007; 7 Zheng (10.1016/j.electacta.2012.05.157_bib0010) 2008; 20 Wang (10.1016/j.electacta.2012.05.157_bib0095) 2009; 97 Foong (10.1016/j.electacta.2012.05.157_bib0025) 2010; 20 Chen (10.1016/j.electacta.2012.05.157_bib0050) 2008; 112 Zhang (10.1016/j.electacta.2012.05.157_bib0100) 2011; 11 Yu (10.1016/j.electacta.2012.05.157_bib0035) 2008; 84 Albu (10.1016/j.electacta.2012.05.157_bib0005) 2007; 7 Minella (10.1016/j.electacta.2012.05.157_bib0130) 2010; 26 Wang (10.1016/j.electacta.2012.05.157_bib0055) 2010; 22 Hirose (10.1016/j.electacta.2012.05.157_bib0135) 2008; 11 Sun (10.1016/j.electacta.2012.05.157_bib0085) 2011; 115 Lee (10.1016/j.electacta.2012.05.157_bib0120) 2010; 26 Lin (10.1016/j.electacta.2012.05.157_bib0060) 2010; 12 Lee (10.1016/j.electacta.2012.05.157_bib0145) 2011; 115 Rensmo (10.1016/j.electacta.2012.05.157_bib0150) 1999; 111 Paulose (10.1016/j.electacta.2012.05.157_bib0040) 2006; 110 Lei (10.1016/j.electacta.2012.05.157_bib0070) 2010; 114 Shankar (10.1016/j.electacta.2012.05.157_bib0020) 2007; 18 Chen (10.1016/j.electacta.2012.05.157_bib0105) 2009; 92 Mor (10.1016/j.electacta.2012.05.157_bib0015) 2006; 6 Johansson (10.1016/j.electacta.2012.05.157_bib0155) 2005; 109 Zhu (10.1016/j.electacta.2012.05.157_bib0080) 2007; 7 Falaras (10.1016/j.electacta.2012.05.157_bib0115) 1998; 53 Simmons (10.1016/j.electacta.2012.05.157_bib0140) 1987; 91 Chen (10.1016/j.electacta.2012.05.157_bib0065) 2009; 113 Bandura (10.1016/j.electacta.2012.05.157_bib0110) 2009; 603 |
References_xml | – volume: 22 start-page: 579 year: 2010 ident: bib0055 publication-title: Chem. Mater. – volume: 20 start-page: 1044 year: 2008 ident: bib0010 publication-title: Adv. Mater. – volume: 5 start-page: 5088 year: 2011 ident: bib0075 publication-title: ACS Nano – volume: 6 start-page: 215 year: 2006 ident: bib0015 publication-title: Nano Lett. – volume: 92 start-page: 1024 year: 2009 ident: bib0105 publication-title: J. Am. Ceram. Soc. – volume: 84 start-page: 112 year: 2008 ident: bib0035 publication-title: Appl. Catal. B: Environ. – volume: 97 start-page: 25 year: 2009 ident: bib0095 publication-title: Appl. Phys A: Mater. Sci. Process. – volume: 7 start-page: 1686 year: 2007 ident: bib0045 publication-title: Nano Lett. – volume: 115 start-page: 5692 year: 2011 ident: bib0145 publication-title: J. Phys. Chem. C – volume: 114 start-page: 15228 year: 2010 ident: bib0070 publication-title: J. Phys. Chem. C – volume: 603 start-page: L117 year: 2009 ident: bib0110 publication-title: Surf. Sci. – volume: 53 start-page: 163 year: 1998 ident: bib0115 publication-title: Sol. Energy Mater. Sol. Cells – volume: 26 start-page: 2521 year: 2010 ident: bib0130 publication-title: Langmuir – volume: 114 start-page: 19378 year: 2010 ident: bib0090 publication-title: J. Phys. Chem. C – volume: 11 start-page: A109 year: 2008 ident: bib0135 publication-title: Electrochem. Solid-State Lett. – volume: 113 start-page: 6310 year: 2009 ident: bib0065 publication-title: J. Phys. Chem. C – volume: 7 start-page: 69 year: 2007 ident: bib0080 publication-title: Nano Lett. – volume: 18 start-page: 065707 year: 2007 ident: bib0020 publication-title: Nanotechnology – volume: 26 start-page: 9575 year: 2010 ident: bib0120 publication-title: Langmuir – volume: 110 start-page: 16179 year: 2006 ident: bib0040 publication-title: J. Phys. Chem. B – volume: 12 start-page: 1062 year: 2010 ident: bib0060 publication-title: Electrochem. Commun. – volume: 14 start-page: 2744 year: 1998 ident: bib0125 publication-title: Langmuir – volume: 115 start-page: 12844 year: 2011 ident: bib0085 publication-title: J. Phys. Chem. C – volume: 7 start-page: 1286 year: 2007 ident: bib0005 publication-title: Nano Lett. – volume: 91 start-page: 1143 year: 1987 ident: bib0140 publication-title: J. Phys. Chem. – volume: 14 start-page: 1445 year: 2002 ident: bib0030 publication-title: Chem. Mater. – volume: 20 start-page: 1390 year: 2010 ident: bib0025 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 6007 year: 2011 ident: bib0100 publication-title: J. Nanosci. Nanotechnol. – volume: 111 start-page: 2744 year: 1999 ident: bib0150 publication-title: J. Chem. Phys. – volume: 109 start-page: 22256 year: 2005 ident: bib0155 publication-title: J. Phys. Chem. B – volume: 112 start-page: 19151 year: 2008 ident: bib0050 publication-title: J. Phys. Chem. C – volume: 114 start-page: 19378 year: 2010 ident: 10.1016/j.electacta.2012.05.157_bib0090 publication-title: J. Phys. Chem. C doi: 10.1021/jp106324x – volume: 14 start-page: 2744 year: 1998 ident: 10.1016/j.electacta.2012.05.157_bib0125 publication-title: Langmuir doi: 10.1021/la971060u – volume: 7 start-page: 69 year: 2007 ident: 10.1016/j.electacta.2012.05.157_bib0080 publication-title: Nano Lett. doi: 10.1021/nl062000o – volume: 603 start-page: L117 year: 2009 ident: 10.1016/j.electacta.2012.05.157_bib0110 publication-title: Surf. Sci. doi: 10.1016/j.susc.2009.07.041 – volume: 7 start-page: 1286 year: 2007 ident: 10.1016/j.electacta.2012.05.157_bib0005 publication-title: Nano Lett. doi: 10.1021/nl070264k – volume: 53 start-page: 163 year: 1998 ident: 10.1016/j.electacta.2012.05.157_bib0115 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(98)00023-3 – volume: 5 start-page: 5088 year: 2011 ident: 10.1016/j.electacta.2012.05.157_bib0075 publication-title: ACS Nano doi: 10.1021/nn201169u – volume: 26 start-page: 9575 year: 2010 ident: 10.1016/j.electacta.2012.05.157_bib0120 publication-title: Langmuir doi: 10.1021/la100137u – volume: 97 start-page: 25 year: 2009 ident: 10.1016/j.electacta.2012.05.157_bib0095 publication-title: Appl. Phys A: Mater. Sci. Process. doi: 10.1007/s00339-009-5369-x – volume: 114 start-page: 15228 year: 2010 ident: 10.1016/j.electacta.2012.05.157_bib0070 publication-title: J. Phys. Chem. C doi: 10.1021/jp105780v – volume: 18 start-page: 065707 year: 2007 ident: 10.1016/j.electacta.2012.05.157_bib0020 publication-title: Nanotechnology doi: 10.1088/0957-4484/18/6/065707 – volume: 11 start-page: 6007 year: 2011 ident: 10.1016/j.electacta.2012.05.157_bib0100 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2011.4323 – volume: 14 start-page: 1445 year: 2002 ident: 10.1016/j.electacta.2012.05.157_bib0030 publication-title: Chem. Mater. doi: 10.1021/cm011625e – volume: 115 start-page: 12844 year: 2011 ident: 10.1016/j.electacta.2012.05.157_bib0085 publication-title: J. Phys. Chem. C doi: 10.1021/jp1116118 – volume: 84 start-page: 112 year: 2008 ident: 10.1016/j.electacta.2012.05.157_bib0035 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2008.03.009 – volume: 11 start-page: A109 year: 2008 ident: 10.1016/j.electacta.2012.05.157_bib0135 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.2908188 – volume: 111 start-page: 2744 year: 1999 ident: 10.1016/j.electacta.2012.05.157_bib0150 publication-title: J. Chem. Phys. doi: 10.1063/1.479551 – volume: 112 start-page: 19151 year: 2008 ident: 10.1016/j.electacta.2012.05.157_bib0050 publication-title: J. Phys. Chem. C doi: 10.1021/jp806281r – volume: 109 start-page: 22256 year: 2005 ident: 10.1016/j.electacta.2012.05.157_bib0155 publication-title: J. Phys. Chem. B doi: 10.1021/jp0525282 – volume: 110 start-page: 16179 year: 2006 ident: 10.1016/j.electacta.2012.05.157_bib0040 publication-title: J. Phys. Chem. B doi: 10.1021/jp064020k – volume: 22 start-page: 579 year: 2010 ident: 10.1016/j.electacta.2012.05.157_bib0055 publication-title: Chem. Mater. doi: 10.1021/cm903164k – volume: 7 start-page: 1686 year: 2007 ident: 10.1016/j.electacta.2012.05.157_bib0045 publication-title: Nano Lett. doi: 10.1021/nl070678d – volume: 6 start-page: 215 year: 2006 ident: 10.1016/j.electacta.2012.05.157_bib0015 publication-title: Nano Lett. doi: 10.1021/nl052099j – volume: 12 start-page: 1062 year: 2010 ident: 10.1016/j.electacta.2012.05.157_bib0060 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.05.027 – volume: 26 start-page: 2521 year: 2010 ident: 10.1016/j.electacta.2012.05.157_bib0130 publication-title: Langmuir doi: 10.1021/la902807g – volume: 20 start-page: 1044 year: 2008 ident: 10.1016/j.electacta.2012.05.157_bib0010 publication-title: Adv. Mater. doi: 10.1002/adma.200701619 – volume: 20 start-page: 1390 year: 2010 ident: 10.1016/j.electacta.2012.05.157_bib0025 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200902063 – volume: 92 start-page: 1024 year: 2009 ident: 10.1016/j.electacta.2012.05.157_bib0105 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03047.x – volume: 115 start-page: 5692 year: 2011 ident: 10.1016/j.electacta.2012.05.157_bib0145 publication-title: J. Phys. Chem. C doi: 10.1021/jp109869z – volume: 113 start-page: 6310 year: 2009 ident: 10.1016/j.electacta.2012.05.157_bib0065 publication-title: J. Phys. Chem. C doi: 10.1021/jp900336e – volume: 91 start-page: 1143 year: 1987 ident: 10.1016/j.electacta.2012.05.157_bib0140 publication-title: J. Phys. Chem. doi: 10.1021/j100289a025 |
SSID | ssj0007670 |
Score | 2.2215605 |
Snippet | [Display omitted]
► Hydrothermally crystallized nanotubes show improved cyrstallinity. ► Basic hydrothermal pH induces morphological transformation of the... This paper describes a crystallization method for anodized TiO2 nanotube-array using a hydrothermal process. Pre-sintered TiO2 nanotube-array could further... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 236 |
SubjectTerms | Anodizing Crystallization Dye-sensitized solar cells Hydrothermal Hydroxyl group Nanocomposites Nanomaterials Nanostructure Nanotubes TiO2 nanotube Titanium Titanium dioxide |
Title | Hydrothermal crystallization and modification of surface hydroxyl groups of anodized TiO2 nanotube-arrays for more efficient photoenergy conversion |
URI | https://dx.doi.org/10.1016/j.electacta.2012.05.157 https://www.proquest.com/docview/1671327404 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQHEoPFaVF5SlX6jUlD9vZcEMr0AIqvWwlbpZjT8SiJVlls1KXA3-CP8yMk0CpkDgg5WLHIyeeyczY-WaGsR8ZKn3rrAsGKsoDYUMZZIDfY-xSsCoPEyMoOPnXpRr9EedX8mqFDftYGIJVdrq_1eleW3c9h91qHs4mE4rxjRKhcA464M8E6WEhUpLyn_fPMI9UpWFfxYBGv8B4-VIzBi_CeMWUwjMiO_W6hfpPV3sDdLrBPnWeIz9uH-4zW4Fyk30Y9gXbNtnHf3ILfmEPo6WrfXjVLVLZeolu4HTaRV1yUzp-WznCCbUdVcHni7owFvg1Ef5dTrmP-JjTLVPi2DtwfDz5HfMSm80ih8DUtVnOOfq9nPC6HHw-CjRjfHZdNRX4uELuge3-VO4rG5-ejIejoKvAENg4HTS4ucyUtHEhLbLOJXmG2rBQUuZKQZoWCXqDFgRIYWIQxgF6S7IwDi0jmMwWyRZbLasSvjFeWCNNlMLAZOihhWBIEwwS5xLrcGOcbzPVL7q2XXZyKpIx1T0M7UY_cUsTt3QoNXJrm4VPhLM2QcfbJEc9V_ULWdNoRt4m_t7LgUb-0u8VU0K1mOtI4YYf3yUUO--ZYJetU6vFse2x1aZewD46Pk1-4CX7gK0dn12MLh8Bq_AJtw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBVhc0h7KGna0iRNq0KvJv6Q5HVvYUlwmmR72UJuQpbGZMvGXrxe6OZv9A93RraXpBRyKPhiyYNtjfxmJL-ZYexLhqBvnXXBWEVFIGwogwzwe4xdClYVYWIEBSffTFX-Q3y7lbc7bDLEwhCtssf-DtM9Wvctp_1oni7nc4rxjRKh8B60wZ8JxOFdyk4lR2z37PIqn24BOVVpOBQyIIEnNC9fbcbgQTSvmLJ4RmSq_m2k_oJrb4Mu9tmr3nnkZ93zvWY7UB2wvclQs-2AvXyUXvAN-51vXOMjrO5RyjYb9AQXiz7wkpvK8fvaEVWoa6hLvlo3pbHA70jw12bBfdDHirpMhdc-gOOz-feYV3jargsITNOYzYqj68uJssvBp6RAS8aXd3Vbgw8t5J7b7jfm3rLZxflskgd9EYbAxum4xfVlpqSNS2lRey4pMgTEUklZKAVpWiboEFoQIIWJQRgH6DDJ0jg0jmAyWybv2KiqK3jPeGmNNFEKY5OhkxaCITAYJ84l1uHauDhkahh0bfsE5VQnY6EHJtpPvdWWJm3pUGrU1iELt4LLLkfH8yJfB63qJ9NNoyV5XvjzMA806pf-sJgK6vVKRwrX_PguoTj6nxt8Ynv57OZaX19Or47ZC-rpaG0f2Kht1nCCflBbfOzn-R-szAxo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrothermal+crystallization+and+modification+of+surface+hydroxyl+groups+of+anodized+TiO2+nanotube-arrays+for+more+efficient+photoenergy+conversion&rft.jtitle=Electrochimica+acta&rft.au=Kuo%2C+Yu-Yen&rft.au=Li%2C+Tze-Huei&rft.au=Yao%2C+Jing-Neng&rft.au=Lin%2C+Chiung-Yuan&rft.date=2012-09-01&rft.issn=0013-4686&rft.volume=78&rft.spage=236&rft.epage=243&rft_id=info:doi/10.1016%2Fj.electacta.2012.05.157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2012_05_157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |