Hydrothermal crystallization and modification of surface hydroxyl groups of anodized TiO2 nanotube-arrays for more efficient photoenergy conversion

[Display omitted] ► Hydrothermally crystallized nanotubes show improved cyrstallinity. ► Basic hydrothermal pH induces morphological transformation of the nanotubes. ► Acidic hydrothermal pH induces transition of surface hydroxyl groups. ► Adsorption of bipyridyl dye on nanotubes is greatly influenc...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 78; pp. 236 - 243
Main Authors Kuo, Yu-Yen, Li, Tze-Huei, Yao, Jing-Neng, Lin, Chiung-Yuan, Chien, Chao-Hsin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] ► Hydrothermally crystallized nanotubes show improved cyrstallinity. ► Basic hydrothermal pH induces morphological transformation of the nanotubes. ► Acidic hydrothermal pH induces transition of surface hydroxyl groups. ► Adsorption of bipyridyl dye on nanotubes is greatly influenced by hydrothermal pH. ► The efficiency of nanotube solar cell increased from 6.40% to 7.13%. This paper describes a crystallization method for anodized TiO2 nanotube-array using a hydrothermal process. Pre-sintered TiO2 nanotube-array could further crystallize without experiencing a collapse of the nanotubes under the hydrothermal environment. Applying the hydrothermal crystallization method, the transition of surface bonds of nanotube from Ti–O to Ti–OH/Ti–OH2 can be controlled by acidic hydrothermal pH levels. Dissolution and structural transformation of nanotubes was easily induced if the hydrothermal environment became basic. These effects depicted great influence on the anchoring of carboxylate groups on the surface of TiO2 nanotubes and affected the performance of the dye-sensitized solar cell utilizing the hydrothermally crystallized TiO2 nanotubes as the photoelectrode. The photoenergy conversion efficiency increased from 6.40% for thermally annealed nanotubes to 7.13% for hydrothermally crystallized ones under illumination of 100mWcm−2.
AbstractList [Display omitted] ► Hydrothermally crystallized nanotubes show improved cyrstallinity. ► Basic hydrothermal pH induces morphological transformation of the nanotubes. ► Acidic hydrothermal pH induces transition of surface hydroxyl groups. ► Adsorption of bipyridyl dye on nanotubes is greatly influenced by hydrothermal pH. ► The efficiency of nanotube solar cell increased from 6.40% to 7.13%. This paper describes a crystallization method for anodized TiO2 nanotube-array using a hydrothermal process. Pre-sintered TiO2 nanotube-array could further crystallize without experiencing a collapse of the nanotubes under the hydrothermal environment. Applying the hydrothermal crystallization method, the transition of surface bonds of nanotube from Ti–O to Ti–OH/Ti–OH2 can be controlled by acidic hydrothermal pH levels. Dissolution and structural transformation of nanotubes was easily induced if the hydrothermal environment became basic. These effects depicted great influence on the anchoring of carboxylate groups on the surface of TiO2 nanotubes and affected the performance of the dye-sensitized solar cell utilizing the hydrothermally crystallized TiO2 nanotubes as the photoelectrode. The photoenergy conversion efficiency increased from 6.40% for thermally annealed nanotubes to 7.13% for hydrothermally crystallized ones under illumination of 100mWcm−2.
This paper describes a crystallization method for anodized TiO2 nanotube-array using a hydrothermal process. Pre-sintered TiO2 nanotube-array could further crystallize without experiencing a collapse of the nanotubes under the hydrothermal environment. Applying the hydrothermal crystallization method, the transition of surface bonds of nanotube from Ti-O to Ti-OH/Ti-OH2 can be controlled by acidic hydrothermal pH levels. Dissolution and structural transformation of nanotubes was easily induced if the hydrothermal environment became basic. These effects depicted great influence on the anchoring of carboxylate groups on the surface of TiO2 nanotubes and affected the performance of the dye-sensitized solar cell utilizing the hydrothermally crystallized TiO2 nanotubes as the photoelectrode. The photoenergy conversion efficiency increased from 6.40% for thermally annealed nanotubes to 7.13% for hydrothermally crystallized ones under illumination of 100 mW cma2.
Author Li, Tze-Huei
Chien, Chao-Hsin
Kuo, Yu-Yen
Lin, Chiung-Yuan
Yao, Jing-Neng
Author_xml – sequence: 1
  givenname: Yu-Yen
  surname: Kuo
  fullname: Kuo, Yu-Yen
  organization: Department of Electronics Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30010, Taiwan
– sequence: 2
  givenname: Tze-Huei
  surname: Li
  fullname: Li, Tze-Huei
  organization: Department of Electronics Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30010, Taiwan
– sequence: 3
  givenname: Jing-Neng
  surname: Yao
  fullname: Yao, Jing-Neng
  organization: Department of Electronics Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30010, Taiwan
– sequence: 4
  givenname: Chiung-Yuan
  surname: Lin
  fullname: Lin, Chiung-Yuan
  organization: Department of Electronics Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30010, Taiwan
– sequence: 5
  givenname: Chao-Hsin
  surname: Chien
  fullname: Chien, Chao-Hsin
  email: chchien@faculty.nctu.edu.tw
  organization: Department of Electronics Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30010, Taiwan
BookMark eNqNkcFuGyEURVGVSnXSfkNZdjNTmBnAXnQRRW1TKVI23iMMjxhrDO6DiTr5jf5wmLrKIptWQkLw7rlPuveSXMQUgZCPnLWccfn50MIItph62o7xrmWi5UK9ISu-Vn3Tr8XmgqwY430zyLV8Ry5zPjDGlFRsRX7fzg5T2QMezUgtzrmYcQxPpoQUqYmOHpMLPtjzR_I0T-iNBbpfwF_zSB8wTae8jEys2idwdBvuOxrrs0w7aAyimTP1CasZAgVf_QLEQk_7VBJEwIeZ2hQfAXPd8p689WbM8OHvfUW2375ub26bu_vvP26u7xrbqXVpBraRwnZeWKfA9buNcc5LIXZSglK-F3UKA4jBdDAYB7wTwhvXDxzMxvr-inw6254w_ZwgF30M2cI4mghpyppLxftODWyoUnWWWkw5I3h9wnA0OGvO9NKCPuiXFvTSgmZC1xYq-eUVaUP5k2VBE8b_4K_PPNQgHgOgzkt0FlzAqtcuhX96PAOAQbF7
CitedBy_id crossref_primary_10_1016_j_jpowsour_2017_05_009
crossref_primary_10_1016_j_jpowsour_2015_02_150
crossref_primary_10_1149_2_0821712jes
crossref_primary_10_1007_s10800_014_0725_8
crossref_primary_10_1021_cr500201c
crossref_primary_10_1186_1556_276X_9_272
crossref_primary_10_1016_j_ceramint_2022_06_086
crossref_primary_10_1016_j_molcata_2014_11_026
crossref_primary_10_1016_j_elecom_2019_106501
crossref_primary_10_1080_09593330_2017_1287223
crossref_primary_10_1016_j_electacta_2013_01_002
crossref_primary_10_1016_j_jallcom_2019_01_147
crossref_primary_10_1021_acsbiomaterials_0c00187
crossref_primary_10_1016_j_electacta_2017_09_080
crossref_primary_10_1016_j_jpowsour_2019_227076
crossref_primary_10_20964_2017_03_50
crossref_primary_10_1016_j_matchar_2015_09_012
crossref_primary_10_1016_j_susc_2018_10_012
crossref_primary_10_1177_0885328213516821
crossref_primary_10_1016_j_msec_2014_11_030
crossref_primary_10_1116_1_4902350
crossref_primary_10_1016_j_jelechem_2016_04_025
crossref_primary_10_1016_j_ijhydene_2019_11_213
crossref_primary_10_3740_MRSK_2024_34_8_377
crossref_primary_10_1016_j_electacta_2016_05_117
crossref_primary_10_1016_j_aca_2022_339808
crossref_primary_10_1016_j_jallcom_2018_01_014
crossref_primary_10_1021_acs_jpcc_0c03744
crossref_primary_10_1016_j_jallcom_2013_04_040
crossref_primary_10_1016_j_cplett_2020_137950
crossref_primary_10_3390_coatings13061079
Cites_doi 10.1021/jp106324x
10.1021/la971060u
10.1021/nl062000o
10.1016/j.susc.2009.07.041
10.1021/nl070264k
10.1016/S0927-0248(98)00023-3
10.1021/nn201169u
10.1021/la100137u
10.1007/s00339-009-5369-x
10.1021/jp105780v
10.1088/0957-4484/18/6/065707
10.1166/jnn.2011.4323
10.1021/cm011625e
10.1021/jp1116118
10.1016/j.apcatb.2008.03.009
10.1149/1.2908188
10.1063/1.479551
10.1021/jp806281r
10.1021/jp0525282
10.1021/jp064020k
10.1021/cm903164k
10.1021/nl070678d
10.1021/nl052099j
10.1016/j.elecom.2010.05.027
10.1021/la902807g
10.1002/adma.200701619
10.1002/adfm.200902063
10.1111/j.1551-2916.2009.03047.x
10.1021/jp109869z
10.1021/jp900336e
10.1021/j100289a025
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright_xml – notice: 2012 Elsevier Ltd
DBID AAYXX
CITATION
7QQ
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2012.05.157
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
EndPage 243
ExternalDocumentID 10_1016_j_electacta_2012_05_157
S0013468612009942
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
H~9
LPU
R2-
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7QQ
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c278t-40965c2f5cd7ed3b9addf655b66e77f3565ce4e54a2e4ade1255fad341ea9cf3
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Fri Jul 11 06:50:06 EDT 2025
Thu Apr 24 22:56:44 EDT 2025
Tue Jul 01 01:44:47 EDT 2025
Fri Feb 23 02:17:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydroxyl group
TiO2 nanotube
Dye-sensitized solar cells
Hydrothermal
Crystallization
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c278t-40965c2f5cd7ed3b9addf655b66e77f3565ce4e54a2e4ade1255fad341ea9cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671327404
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1671327404
crossref_primary_10_1016_j_electacta_2012_05_157
crossref_citationtrail_10_1016_j_electacta_2012_05_157
elsevier_sciencedirect_doi_10_1016_j_electacta_2012_05_157
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
2012-9-00
20120901
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Electrochimica acta
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Simmons, Beard (bib0140) 1987; 91
Wang, Lin (bib0055) 2010; 22
Zheng, Zhou, Bai, Li, Jin, Zhang, Li, Liu, Cai, Zhu (bib0010) 2008; 20
Yu, Dai, Cheng (bib0090) 2010; 114
Chen, Zhao, Li, Han, Song (bib0105) 2009; 92
Zhu, Neale, Miedaner, Frank (bib0080) 2007; 7
Yu, Yu, Kuo, Liou, Chien (bib0035) 2008; 84
Mor, Shankar, Paulose, Varghese, Grimes (bib0015) 2006; 6
Lin, Chen, Chen (bib0060) 2010; 12
Zhang, Cha, Kang (bib0100) 2011; 11
Lee, Gomez, Regier, Hu, Demopoulos (bib0145) 2011; 115
Shankar, Mor, Prakasam, Yoriya, Paulose, Varghese, Grimes (bib0020) 2007; 18
Lei, Liao, Zhang, Wang, Su, Kuang (bib0070) 2010; 114
Albu, Ghicov, Macak, Hahn, Schmuki (bib0005) 2007; 7
Chen, Chung, Chen, Lu, Lan, Chen, Luo, Hung, Diau (bib0050) 2008; 112
Minella, Giulia, Maurino, Minero, Pelizzetti, Coluccia, Martra (bib0130) 2010; 26
Foong, Shen, Hu, Sellinger (bib0025) 2010; 20
Hirose, Kuribayashi, Suzuki, Narita, Kimura, Niwano (bib0135) 2008; 11
Chen, Xu (bib0065) 2009; 113
Bandura, Evarestov (bib0110) 2009; 603
Rensmo, Westermark, Södergren, Kohle, Persson, Lunell, Siegbahn (bib0150) 1999; 111
Jung, Kobayashi, Kjeld, van Bommel, Shinkai, Shimizu (bib0030) 2002; 14
Lee, Gomez, Elouatik, Demopoulos (bib0120) 2010; 26
Park, Bauer, von der Mark, Schmuki (bib0045) 2007; 7
Zheng, Kang, Yun, Lee, Park, Baik (bib0075) 2011; 5
Wang, Liu, Li, Huang, Zhong, Shen (bib0095) 2009; 97
Finnie, Bartlett, Woolfrey (bib0125) 1998; 14
Johansson, Hedlund, Siegbahn, Rensmo (bib0155) 2005; 109
Sun, Yan, Wang, Guo, Ma (bib0085) 2011; 115
Paulose, Shankar, Yoriya, Prakasam, Varghese, Mor, Latempa, Fitzgerald, Grimes (bib0040) 2006; 110
Falaras (bib0115) 1998; 53
Finnie (10.1016/j.electacta.2012.05.157_bib0125) 1998; 14
Jung (10.1016/j.electacta.2012.05.157_bib0030) 2002; 14
Zheng (10.1016/j.electacta.2012.05.157_bib0075) 2011; 5
Yu (10.1016/j.electacta.2012.05.157_bib0090) 2010; 114
Park (10.1016/j.electacta.2012.05.157_bib0045) 2007; 7
Zheng (10.1016/j.electacta.2012.05.157_bib0010) 2008; 20
Wang (10.1016/j.electacta.2012.05.157_bib0095) 2009; 97
Foong (10.1016/j.electacta.2012.05.157_bib0025) 2010; 20
Chen (10.1016/j.electacta.2012.05.157_bib0050) 2008; 112
Zhang (10.1016/j.electacta.2012.05.157_bib0100) 2011; 11
Yu (10.1016/j.electacta.2012.05.157_bib0035) 2008; 84
Albu (10.1016/j.electacta.2012.05.157_bib0005) 2007; 7
Minella (10.1016/j.electacta.2012.05.157_bib0130) 2010; 26
Wang (10.1016/j.electacta.2012.05.157_bib0055) 2010; 22
Hirose (10.1016/j.electacta.2012.05.157_bib0135) 2008; 11
Sun (10.1016/j.electacta.2012.05.157_bib0085) 2011; 115
Lee (10.1016/j.electacta.2012.05.157_bib0120) 2010; 26
Lin (10.1016/j.electacta.2012.05.157_bib0060) 2010; 12
Lee (10.1016/j.electacta.2012.05.157_bib0145) 2011; 115
Rensmo (10.1016/j.electacta.2012.05.157_bib0150) 1999; 111
Paulose (10.1016/j.electacta.2012.05.157_bib0040) 2006; 110
Lei (10.1016/j.electacta.2012.05.157_bib0070) 2010; 114
Shankar (10.1016/j.electacta.2012.05.157_bib0020) 2007; 18
Chen (10.1016/j.electacta.2012.05.157_bib0105) 2009; 92
Mor (10.1016/j.electacta.2012.05.157_bib0015) 2006; 6
Johansson (10.1016/j.electacta.2012.05.157_bib0155) 2005; 109
Zhu (10.1016/j.electacta.2012.05.157_bib0080) 2007; 7
Falaras (10.1016/j.electacta.2012.05.157_bib0115) 1998; 53
Simmons (10.1016/j.electacta.2012.05.157_bib0140) 1987; 91
Chen (10.1016/j.electacta.2012.05.157_bib0065) 2009; 113
Bandura (10.1016/j.electacta.2012.05.157_bib0110) 2009; 603
References_xml – volume: 22
  start-page: 579
  year: 2010
  ident: bib0055
  publication-title: Chem. Mater.
– volume: 20
  start-page: 1044
  year: 2008
  ident: bib0010
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5088
  year: 2011
  ident: bib0075
  publication-title: ACS Nano
– volume: 6
  start-page: 215
  year: 2006
  ident: bib0015
  publication-title: Nano Lett.
– volume: 92
  start-page: 1024
  year: 2009
  ident: bib0105
  publication-title: J. Am. Ceram. Soc.
– volume: 84
  start-page: 112
  year: 2008
  ident: bib0035
  publication-title: Appl. Catal. B: Environ.
– volume: 97
  start-page: 25
  year: 2009
  ident: bib0095
  publication-title: Appl. Phys A: Mater. Sci. Process.
– volume: 7
  start-page: 1686
  year: 2007
  ident: bib0045
  publication-title: Nano Lett.
– volume: 115
  start-page: 5692
  year: 2011
  ident: bib0145
  publication-title: J. Phys. Chem. C
– volume: 114
  start-page: 15228
  year: 2010
  ident: bib0070
  publication-title: J. Phys. Chem. C
– volume: 603
  start-page: L117
  year: 2009
  ident: bib0110
  publication-title: Surf. Sci.
– volume: 53
  start-page: 163
  year: 1998
  ident: bib0115
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 26
  start-page: 2521
  year: 2010
  ident: bib0130
  publication-title: Langmuir
– volume: 114
  start-page: 19378
  year: 2010
  ident: bib0090
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: A109
  year: 2008
  ident: bib0135
  publication-title: Electrochem. Solid-State Lett.
– volume: 113
  start-page: 6310
  year: 2009
  ident: bib0065
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 69
  year: 2007
  ident: bib0080
  publication-title: Nano Lett.
– volume: 18
  start-page: 065707
  year: 2007
  ident: bib0020
  publication-title: Nanotechnology
– volume: 26
  start-page: 9575
  year: 2010
  ident: bib0120
  publication-title: Langmuir
– volume: 110
  start-page: 16179
  year: 2006
  ident: bib0040
  publication-title: J. Phys. Chem. B
– volume: 12
  start-page: 1062
  year: 2010
  ident: bib0060
  publication-title: Electrochem. Commun.
– volume: 14
  start-page: 2744
  year: 1998
  ident: bib0125
  publication-title: Langmuir
– volume: 115
  start-page: 12844
  year: 2011
  ident: bib0085
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 1286
  year: 2007
  ident: bib0005
  publication-title: Nano Lett.
– volume: 91
  start-page: 1143
  year: 1987
  ident: bib0140
  publication-title: J. Phys. Chem.
– volume: 14
  start-page: 1445
  year: 2002
  ident: bib0030
  publication-title: Chem. Mater.
– volume: 20
  start-page: 1390
  year: 2010
  ident: bib0025
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 6007
  year: 2011
  ident: bib0100
  publication-title: J. Nanosci. Nanotechnol.
– volume: 111
  start-page: 2744
  year: 1999
  ident: bib0150
  publication-title: J. Chem. Phys.
– volume: 109
  start-page: 22256
  year: 2005
  ident: bib0155
  publication-title: J. Phys. Chem. B
– volume: 112
  start-page: 19151
  year: 2008
  ident: bib0050
  publication-title: J. Phys. Chem. C
– volume: 114
  start-page: 19378
  year: 2010
  ident: 10.1016/j.electacta.2012.05.157_bib0090
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp106324x
– volume: 14
  start-page: 2744
  year: 1998
  ident: 10.1016/j.electacta.2012.05.157_bib0125
  publication-title: Langmuir
  doi: 10.1021/la971060u
– volume: 7
  start-page: 69
  year: 2007
  ident: 10.1016/j.electacta.2012.05.157_bib0080
  publication-title: Nano Lett.
  doi: 10.1021/nl062000o
– volume: 603
  start-page: L117
  year: 2009
  ident: 10.1016/j.electacta.2012.05.157_bib0110
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2009.07.041
– volume: 7
  start-page: 1286
  year: 2007
  ident: 10.1016/j.electacta.2012.05.157_bib0005
  publication-title: Nano Lett.
  doi: 10.1021/nl070264k
– volume: 53
  start-page: 163
  year: 1998
  ident: 10.1016/j.electacta.2012.05.157_bib0115
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(98)00023-3
– volume: 5
  start-page: 5088
  year: 2011
  ident: 10.1016/j.electacta.2012.05.157_bib0075
  publication-title: ACS Nano
  doi: 10.1021/nn201169u
– volume: 26
  start-page: 9575
  year: 2010
  ident: 10.1016/j.electacta.2012.05.157_bib0120
  publication-title: Langmuir
  doi: 10.1021/la100137u
– volume: 97
  start-page: 25
  year: 2009
  ident: 10.1016/j.electacta.2012.05.157_bib0095
  publication-title: Appl. Phys A: Mater. Sci. Process.
  doi: 10.1007/s00339-009-5369-x
– volume: 114
  start-page: 15228
  year: 2010
  ident: 10.1016/j.electacta.2012.05.157_bib0070
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp105780v
– volume: 18
  start-page: 065707
  year: 2007
  ident: 10.1016/j.electacta.2012.05.157_bib0020
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/6/065707
– volume: 11
  start-page: 6007
  year: 2011
  ident: 10.1016/j.electacta.2012.05.157_bib0100
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2011.4323
– volume: 14
  start-page: 1445
  year: 2002
  ident: 10.1016/j.electacta.2012.05.157_bib0030
  publication-title: Chem. Mater.
  doi: 10.1021/cm011625e
– volume: 115
  start-page: 12844
  year: 2011
  ident: 10.1016/j.electacta.2012.05.157_bib0085
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1116118
– volume: 84
  start-page: 112
  year: 2008
  ident: 10.1016/j.electacta.2012.05.157_bib0035
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2008.03.009
– volume: 11
  start-page: A109
  year: 2008
  ident: 10.1016/j.electacta.2012.05.157_bib0135
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.2908188
– volume: 111
  start-page: 2744
  year: 1999
  ident: 10.1016/j.electacta.2012.05.157_bib0150
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479551
– volume: 112
  start-page: 19151
  year: 2008
  ident: 10.1016/j.electacta.2012.05.157_bib0050
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp806281r
– volume: 109
  start-page: 22256
  year: 2005
  ident: 10.1016/j.electacta.2012.05.157_bib0155
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0525282
– volume: 110
  start-page: 16179
  year: 2006
  ident: 10.1016/j.electacta.2012.05.157_bib0040
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp064020k
– volume: 22
  start-page: 579
  year: 2010
  ident: 10.1016/j.electacta.2012.05.157_bib0055
  publication-title: Chem. Mater.
  doi: 10.1021/cm903164k
– volume: 7
  start-page: 1686
  year: 2007
  ident: 10.1016/j.electacta.2012.05.157_bib0045
  publication-title: Nano Lett.
  doi: 10.1021/nl070678d
– volume: 6
  start-page: 215
  year: 2006
  ident: 10.1016/j.electacta.2012.05.157_bib0015
  publication-title: Nano Lett.
  doi: 10.1021/nl052099j
– volume: 12
  start-page: 1062
  year: 2010
  ident: 10.1016/j.electacta.2012.05.157_bib0060
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.05.027
– volume: 26
  start-page: 2521
  year: 2010
  ident: 10.1016/j.electacta.2012.05.157_bib0130
  publication-title: Langmuir
  doi: 10.1021/la902807g
– volume: 20
  start-page: 1044
  year: 2008
  ident: 10.1016/j.electacta.2012.05.157_bib0010
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701619
– volume: 20
  start-page: 1390
  year: 2010
  ident: 10.1016/j.electacta.2012.05.157_bib0025
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200902063
– volume: 92
  start-page: 1024
  year: 2009
  ident: 10.1016/j.electacta.2012.05.157_bib0105
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03047.x
– volume: 115
  start-page: 5692
  year: 2011
  ident: 10.1016/j.electacta.2012.05.157_bib0145
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp109869z
– volume: 113
  start-page: 6310
  year: 2009
  ident: 10.1016/j.electacta.2012.05.157_bib0065
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp900336e
– volume: 91
  start-page: 1143
  year: 1987
  ident: 10.1016/j.electacta.2012.05.157_bib0140
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100289a025
SSID ssj0007670
Score 2.2215605
Snippet [Display omitted] ► Hydrothermally crystallized nanotubes show improved cyrstallinity. ► Basic hydrothermal pH induces morphological transformation of the...
This paper describes a crystallization method for anodized TiO2 nanotube-array using a hydrothermal process. Pre-sintered TiO2 nanotube-array could further...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 236
SubjectTerms Anodizing
Crystallization
Dye-sensitized solar cells
Hydrothermal
Hydroxyl group
Nanocomposites
Nanomaterials
Nanostructure
Nanotubes
TiO2 nanotube
Titanium
Titanium dioxide
Title Hydrothermal crystallization and modification of surface hydroxyl groups of anodized TiO2 nanotube-arrays for more efficient photoenergy conversion
URI https://dx.doi.org/10.1016/j.electacta.2012.05.157
https://www.proquest.com/docview/1671327404
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQHEoPFaVF5SlX6jUlD9vZcEMr0AIqvWwlbpZjT8SiJVlls1KXA3-CP8yMk0CpkDgg5WLHIyeeyczY-WaGsR8ZKn3rrAsGKsoDYUMZZIDfY-xSsCoPEyMoOPnXpRr9EedX8mqFDftYGIJVdrq_1eleW3c9h91qHs4mE4rxjRKhcA464M8E6WEhUpLyn_fPMI9UpWFfxYBGv8B4-VIzBi_CeMWUwjMiO_W6hfpPV3sDdLrBPnWeIz9uH-4zW4Fyk30Y9gXbNtnHf3ILfmEPo6WrfXjVLVLZeolu4HTaRV1yUzp-WznCCbUdVcHni7owFvg1Ef5dTrmP-JjTLVPi2DtwfDz5HfMSm80ih8DUtVnOOfq9nPC6HHw-CjRjfHZdNRX4uELuge3-VO4rG5-ejIejoKvAENg4HTS4ucyUtHEhLbLOJXmG2rBQUuZKQZoWCXqDFgRIYWIQxgF6S7IwDi0jmMwWyRZbLasSvjFeWCNNlMLAZOihhWBIEwwS5xLrcGOcbzPVL7q2XXZyKpIx1T0M7UY_cUsTt3QoNXJrm4VPhLM2QcfbJEc9V_ULWdNoRt4m_t7LgUb-0u8VU0K1mOtI4YYf3yUUO--ZYJetU6vFse2x1aZewD46Pk1-4CX7gK0dn12MLh8Bq_AJtw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBVhc0h7KGna0iRNq0KvJv6Q5HVvYUlwmmR72UJuQpbGZMvGXrxe6OZv9A93RraXpBRyKPhiyYNtjfxmJL-ZYexLhqBvnXXBWEVFIGwogwzwe4xdClYVYWIEBSffTFX-Q3y7lbc7bDLEwhCtssf-DtM9Wvctp_1oni7nc4rxjRKh8B60wZ8JxOFdyk4lR2z37PIqn24BOVVpOBQyIIEnNC9fbcbgQTSvmLJ4RmSq_m2k_oJrb4Mu9tmr3nnkZ93zvWY7UB2wvclQs-2AvXyUXvAN-51vXOMjrO5RyjYb9AQXiz7wkpvK8fvaEVWoa6hLvlo3pbHA70jw12bBfdDHirpMhdc-gOOz-feYV3jargsITNOYzYqj68uJssvBp6RAS8aXd3Vbgw8t5J7b7jfm3rLZxflskgd9EYbAxum4xfVlpqSNS2lRey4pMgTEUklZKAVpWiboEFoQIIWJQRgH6DDJ0jg0jmAyWybv2KiqK3jPeGmNNFEKY5OhkxaCITAYJ84l1uHauDhkahh0bfsE5VQnY6EHJtpPvdWWJm3pUGrU1iELt4LLLkfH8yJfB63qJ9NNoyV5XvjzMA806pf-sJgK6vVKRwrX_PguoTj6nxt8Ynv57OZaX19Or47ZC-rpaG0f2Kht1nCCflBbfOzn-R-szAxo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrothermal+crystallization+and+modification+of+surface+hydroxyl+groups+of+anodized+TiO2+nanotube-arrays+for+more+efficient+photoenergy+conversion&rft.jtitle=Electrochimica+acta&rft.au=Kuo%2C+Yu-Yen&rft.au=Li%2C+Tze-Huei&rft.au=Yao%2C+Jing-Neng&rft.au=Lin%2C+Chiung-Yuan&rft.date=2012-09-01&rft.issn=0013-4686&rft.volume=78&rft.spage=236&rft.epage=243&rft_id=info:doi/10.1016%2Fj.electacta.2012.05.157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2012_05_157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon