Detecting sparse microbial association signals adaptively from longitudinal microbiome data based on generalized estimating equations
Abstract The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research addresses multiple domains, such as human disease and diet. Statistical methods for testing microbiome–phenotype associations have be...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 5 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
20.09.2022
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
ISSN | 1467-5463 1477-4054 1477-4054 |
DOI | 10.1093/bib/bbac149 |
Cover
Abstract | Abstract
The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research addresses multiple domains, such as human disease and diet. Statistical methods for testing microbiome–phenotype associations have been studied recently to determine their ability to assess longitudinal microbiome data. However, existing methods fail to detect sparse association signals in longitudinal microbiome data. In this paper, we developed a novel method, namely aGEEMIHC, which is a data-driven adaptive microbiome higher criticism analysis based on generalized estimating equations to detect sparse microbial association signals from longitudinal microbiome data. aGEEMiHC adopts generalized estimating equations framework that fully considers the correlation among different observations from the same subject in longitudinal data. To be robust to diverse correlation structures for longitudinal data, aGEEMiHC integrates multiple microbiome higher criticism analyses based on generalized estimating equations with different working correlation structures. Extensive simulation experiments demonstrate that aGEEMiHC can control the type I error correctly and achieve superior performance according to a statistical power comparison. We also applied it to longitudinal microbiome data with various types of host phenotypes to demonstrate the stability of our method. aGEEMiHC is also utilized for real longitudinal microbiome data, and we found a significant association between the gut microbiome and Crohn’s disease. In addition, our method ranks the significant factors associated with the host phenotype to provide potential biomarkers. |
---|---|
AbstractList | The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research addresses multiple domains, such as human disease and diet. Statistical methods for testing microbiome-phenotype associations have been studied recently to determine their ability to assess longitudinal microbiome data. However, existing methods fail to detect sparse association signals in longitudinal microbiome data. In this paper, we developed a novel method, namely aGEEMIHC, which is a data-driven adaptive microbiome higher criticism analysis based on generalized estimating equations to detect sparse microbial association signals from longitudinal microbiome data. aGEEMiHC adopts generalized estimating equations framework that fully considers the correlation among different observations from the same subject in longitudinal data. To be robust to diverse correlation structures for longitudinal data, aGEEMiHC integrates multiple microbiome higher criticism analyses based on generalized estimating equations with different working correlation structures. Extensive simulation experiments demonstrate that aGEEMiHC can control the type I error correctly and achieve superior performance according to a statistical power comparison. We also applied it to longitudinal microbiome data with various types of host phenotypes to demonstrate the stability of our method. aGEEMiHC is also utilized for real longitudinal microbiome data, and we found a significant association between the gut microbiome and Crohn's disease. In addition, our method ranks the significant factors associated with the host phenotype to provide potential biomarkers.The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research addresses multiple domains, such as human disease and diet. Statistical methods for testing microbiome-phenotype associations have been studied recently to determine their ability to assess longitudinal microbiome data. However, existing methods fail to detect sparse association signals in longitudinal microbiome data. In this paper, we developed a novel method, namely aGEEMIHC, which is a data-driven adaptive microbiome higher criticism analysis based on generalized estimating equations to detect sparse microbial association signals from longitudinal microbiome data. aGEEMiHC adopts generalized estimating equations framework that fully considers the correlation among different observations from the same subject in longitudinal data. To be robust to diverse correlation structures for longitudinal data, aGEEMiHC integrates multiple microbiome higher criticism analyses based on generalized estimating equations with different working correlation structures. Extensive simulation experiments demonstrate that aGEEMiHC can control the type I error correctly and achieve superior performance according to a statistical power comparison. We also applied it to longitudinal microbiome data with various types of host phenotypes to demonstrate the stability of our method. aGEEMiHC is also utilized for real longitudinal microbiome data, and we found a significant association between the gut microbiome and Crohn's disease. In addition, our method ranks the significant factors associated with the host phenotype to provide potential biomarkers. The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research addresses multiple domains, such as human disease and diet. Statistical methods for testing microbiome–phenotype associations have been studied recently to determine their ability to assess longitudinal microbiome data. However, existing methods fail to detect sparse association signals in longitudinal microbiome data. In this paper, we developed a novel method, namely aGEEMIHC, which is a data-driven adaptive microbiome higher criticism analysis based on generalized estimating equations to detect sparse microbial association signals from longitudinal microbiome data. aGEEMiHC adopts generalized estimating equations framework that fully considers the correlation among different observations from the same subject in longitudinal data. To be robust to diverse correlation structures for longitudinal data, aGEEMiHC integrates multiple microbiome higher criticism analyses based on generalized estimating equations with different working correlation structures. Extensive simulation experiments demonstrate that aGEEMiHC can control the type I error correctly and achieve superior performance according to a statistical power comparison. We also applied it to longitudinal microbiome data with various types of host phenotypes to demonstrate the stability of our method. aGEEMiHC is also utilized for real longitudinal microbiome data, and we found a significant association between the gut microbiome and Crohn’s disease. In addition, our method ranks the significant factors associated with the host phenotype to provide potential biomarkers. Abstract The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research addresses multiple domains, such as human disease and diet. Statistical methods for testing microbiome–phenotype associations have been studied recently to determine their ability to assess longitudinal microbiome data. However, existing methods fail to detect sparse association signals in longitudinal microbiome data. In this paper, we developed a novel method, namely aGEEMIHC, which is a data-driven adaptive microbiome higher criticism analysis based on generalized estimating equations to detect sparse microbial association signals from longitudinal microbiome data. aGEEMiHC adopts generalized estimating equations framework that fully considers the correlation among different observations from the same subject in longitudinal data. To be robust to diverse correlation structures for longitudinal data, aGEEMiHC integrates multiple microbiome higher criticism analyses based on generalized estimating equations with different working correlation structures. Extensive simulation experiments demonstrate that aGEEMiHC can control the type I error correctly and achieve superior performance according to a statistical power comparison. We also applied it to longitudinal microbiome data with various types of host phenotypes to demonstrate the stability of our method. aGEEMiHC is also utilized for real longitudinal microbiome data, and we found a significant association between the gut microbiome and Crohn’s disease. In addition, our method ranks the significant factors associated with the host phenotype to provide potential biomarkers. |
Author | Tan, Yuting Huang, Xiaoyun Huo, Ban He, Tingting Jiang, Xingpeng Sun, Han |
Author_xml | – sequence: 1 givenname: Han surname: Sun fullname: Sun, Han organization: School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China – sequence: 2 givenname: Xiaoyun surname: Huang fullname: Huang, Xiaoyun organization: Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China – sequence: 3 givenname: Ban surname: Huo fullname: Huo, Ban organization: Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China – sequence: 4 givenname: Yuting surname: Tan fullname: Tan, Yuting organization: School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China – sequence: 5 givenname: Tingting surname: He fullname: He, Tingting organization: Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China – sequence: 6 givenname: Xingpeng surname: Jiang fullname: Jiang, Xingpeng email: xpjiang@mail.ccnu.edu.cn organization: Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35561307$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3TAQhUVJaR7tqvsiKJRCcaKXJXtZ0lcg0E26NiNrfFGwLUeSA-m-_7u6j3QRaNBCEvrOGc2ZU3I0hxkJecvZOWetvLDeXlgLPVftC3LClTGVYrU62p61qWql5TE5TemWMcFMw1-RY1nXmktmTsifL5ixz37e0LRATEgn38dgPYwUUgq9h-zDTJPfzDAmCg6W7O9xfKBDDBMdw7zxeXW-vD5Kw4TUQQZqIaGjRb3BGSOM_ne5Ysp-gl1FvFt37uk1eTkUd3xz2M_Ir29fby5_VNc_v19dfr6uemGaXAnAZrCNGnjPmTACFRO6drpRYMtihpeOSwC1baS0A_ABsXWOmdZB63CQZ-Tj3neJ4W4tP-kmn3ocR5gxrKkTWivT1rqVBX3_BL0Na9xm0AnDjdTGCFWodwdqtRO6bomlt_jQPQZcgE97oCSTUsThH8JZtx1fV8bXHcZXaP6E7n3eRZQj-PE_mg97TViXZ83_AknOrx0 |
CitedBy_id | crossref_primary_10_1016_j_csbj_2023_03_044 crossref_primary_10_12688_gatesopenres_14041_1 crossref_primary_10_12688_gatesopenres_14041_2 crossref_primary_10_1093_bib_bbad012 |
Cites_doi | 10.1038/srep03814 10.1093/bioinformatics/btaa260 10.1016/j.jgg.2021.08.002 10.1093/molbev/msw054 10.1016/S1474-4422(19)30356-4 10.1371/journal.pcbi.1008108 10.1007/BF00994018 10.1093/bioinformatics/btz120 10.1016/j.ajhg.2019.01.002 10.1111/apt.14384 10.1111/j.1541-0420.2011.01678.x 10.1038/s41467-018-07641-9 10.1186/s12864-018-4599-8 10.1093/bioinformatics/btg412 10.1080/01621459.2016.1192039 10.1214/12-AOAS592 10.1093/bib/bbt021 10.32614/RJ-2009-001 10.1016/j.ajhg.2015.04.003 10.1214/09-AOS764 10.1023/A:1010933404324 10.1038/s41598-018-36355-7 10.1093/biomet/asu033 10.7554/eLife.01202 10.1007/s13238-020-00724-8 10.1016/j.immuni.2018.08.024 10.1002/gepi.22065 10.1038/s41586-018-0617-x 10.1214/10-AOS846 10.1053/j.gastro.2019.06.048 10.1186/s13073-016-0302-3 10.1093/biomet/73.3.751 10.1093/gigascience/giab005 10.1099/ijs.0.64483-0 10.1038/s41591-019-0377-7 10.1080/00031305.1992.10475879 10.3389/fmicb.2018.01683 10.1093/bioinformatics/btw308 10.1186/s40168-020-00834-9 10.1186/s40168-017-0262-x 10.1534/genetics.114.165035 10.1016/j.chom.2020.06.008 10.3389/fgene.2019.00458 10.3322/caac.21398 10.1101/gr.085464.108 10.1214/11-AOS910 10.1093/biomet/73.1.13 10.1136/gutjnl-2017-315352 10.3389/fmicb.2016.00459 10.1038/s41579-019-0213-6 10.1214/009053604000000265 10.1371/journal.pone.0015216 10.1371/journal.pcbi.1008913 10.1038/nature11234 10.1080/19490976.2020.1805281 10.1038/nature13738 10.1371/journal.pone.0043052 10.1002/hep.27819 10.1007/s10852-005-9022-1 10.1016/S0140-6736(16)31711-1 10.1023/B:EJEP.0000036572.00663.f2 10.1016/j.bbi.2015.03.016 10.1186/s12859-019-2882-6 10.1017/CBO9781139342834 10.1002/gepi.22160 10.1111/j.1467-9868.2004.05741.x 10.1038/nature11553 10.1126/science.aau4735 10.1186/s13059-021-02400-4 10.1136/thoraxjnl-2017-210408 10.1002/gepi.22030 10.1001/jamadermatol.2017.5440 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbac149 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Statistics |
EISSN | 1477-4054 |
ExternalDocumentID | 35561307 10_1093_bib_bbac149 10.1093/bib/bbac149 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Key Research and Development Program of Hubei Province grantid: 2020BAB017 – fundername: National Natural Science Foundation of China grantid: 61872157 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 77I 7X8 |
ID | FETCH-LOGICAL-c278t-2ae8fb84f1c10272e40265d684ababa0711461475b833bfa1fee9dd079da9def3 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Sep 05 14:40:14 EDT 2025 Mon Jun 30 08:54:51 EDT 2025 Mon Jul 21 05:46:28 EDT 2025 Thu Apr 24 23:07:20 EDT 2025 Tue Jul 01 03:39:40 EDT 2025 Wed Aug 28 03:18:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | longitudinal microbiome data microbiome-based association test higher criticism sparse microbial association signals generalized estimating equations |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c278t-2ae8fb84f1c10272e40265d684ababa0711461475b833bfa1fee9dd079da9def3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 35561307 |
PQID | 2717367724 |
PQPubID | 26846 |
ParticipantIDs | proquest_miscellaneous_2664795693 proquest_journals_2717367724 pubmed_primary_35561307 crossref_primary_10_1093_bib_bbac149 crossref_citationtrail_10_1093_bib_bbac149 oup_primary_10_1093_bib_bbac149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-20 |
PublicationDateYYYYMMDD | 2022-09-20 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2022 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Wu (2022092013192996700_ref23) 2016; 8 Scher (2022092013192996700_ref5) 2013; 2 Jiang (2022092013192996700_ref26) 2015; 48 Stewart (2022092013192996700_ref37) 2018; 562 Zhan (2022092013192996700_ref72) 2017; 41 Bhatt (2022092013192996700_ref10) 2017; 67 Zhan (2022092013192996700_ref42) 2018; 42 Fang (2022092013192996700_ref7) 2020; 28 Jovel (2022092013192996700_ref15) 2016; 7 Hsiao (2022092013192996700_ref13) 2014; 515 (2022092013192996700_ref62) 1992; 46 Wang (2022092013192996700_ref17) 2012; 68 Goris (2022092013192996700_ref70) 2007; 57 Patuzzi (2022092013192996700_ref68) 2019; 20 Torres (2022092013192996700_ref59) 2017; 389 (2022092013192996700_ref63) 2001; 45 Twisk (2022092013192996700_ref51) 2004; 19 Magruder (2022092013192996700_ref28) 2020; 12 Charlson (2022092013192996700_ref54) 2010; 5 Paradis (2022092013192996700_ref56) 2004; 20 Yi-Juan (2022092013192996700_ref18) 2020; 36 Clausen (2022092013192996700_ref73) 2018; 154 Jain (2022092013192996700_ref71) 2018; 9 Mejía-León (2022092013192996700_ref29) 2015; 4 Zhang (2022092013192996700_ref39) 2017; 41 Wang (2022092013192996700_ref46) 2011; 39 Chaganty (2022092013192996700_ref47) 2004; 66 Arias-Castro (2022092013192996700_ref49) 2011; 39 Liang (2022092013192996700_ref45) 1986; 73 Mi (2022092013192996700_ref57) 2009; 1 Zhao (2022092013192996700_ref21) 2015; 96 Zhang (2022092013192996700_ref40) 2018; 9 Kumar (2022092013192996700_ref60) 2016; 33 Koh (2022092013192996700_ref22) 2018; 8 Koh (2022092013192996700_ref24) 2017; 5 Rong (2022092013192996700_ref67) 2021; 10 Chen (2022092013192996700_ref55) 2013; 7 McIlroy (2022092013192996700_ref3) 2018; 47 Anderson (2022092013192996700_ref19) 2001; 26 Simes (2022092013192996700_ref35) 1986; 73 Vázquez-Baeza (2022092013192996700_ref58) 2018; 67 Mayhew (2022092013192996700_ref38) 2018; 73 Liu (2022092013192996700_ref66) 2019; 104 Song (2022092013192996700_ref6) 2020; 158 (2022092013192996700_ref64) 1995; 20 Weinstock (2022092013192996700_ref11) 2012; 489 Zupancic (2022092013192996700_ref4) 2012; 7 Hamady (2022092013192996700_ref16) 2009; 19 Barnett (2022092013192996700_ref32) 2014; 101 Plantinga (2022092013192996700_ref44) 2019; 35 Koh (2022092013192996700_ref34) 2020; 8 Malik (2022092013192996700_ref14) 2018; 49 Jiang (2022092013192996700_ref65) 2021; 22 Helmink (2022092013192996700_ref2) 2019; 25 Pan (2022092013192996700_ref25) 2014; 197 Koh (2022092013192996700_ref43) 2019; 10 Liu (2022092013192996700_ref12) 2021; 12 Twisk (2022092013192996700_ref48) 2013 Chen (2022092013192996700_ref41) 2020; 16 Cryan (2022092013192996700_ref8) 2020; 19 Hall (2022092013192996700_ref53) 2010; 38 Koh (2022092013192996700_ref52) 2018; 19 Ma (2022092013192996700_ref69) 2021; 17 Bajaj (2022092013192996700_ref27) 2015; 62 Chen (2022092013192996700_ref20) 2016; 32 Schirmer (2022092013192996700_ref61) 2019; 17 Raman (2022092013192996700_ref9) 2019; 365 Secrier (2022092013192996700_ref36) 2014; 15 Donoho (2022092013192996700_ref31) 2004; 32 Sun (2022092013192996700_ref30) 2021; 48 Barnett (2022092013192996700_ref33) 2017; 112 Reynolds (2022092013192996700_ref50) 2006; 5 Human Microbiome Project Consortium (2022092013192996700_ref1) 2012; 486 |
References_xml | – volume: 4 start-page: 3814 year: 2015 ident: 2022092013192996700_ref29 article-title: Fecal microbiota imbalance in Mexican children with type 1 diabetes publication-title: Sci Rep doi: 10.1038/srep03814 – volume: 36 start-page: 4106 year: 2020 ident: 2022092013192996700_ref18 article-title: Testing hypotheses about the microbiome using the linear decomposition model (LDM) publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa260 – volume: 48 start-page: 851 year: 2021 ident: 2022092013192996700_ref30 article-title: A powerful adaptive microbiome-based association test for microbial association signals with diverse sparsity levels publication-title: J Genet Genomics doi: 10.1016/j.jgg.2021.08.002 – volume: 33 start-page: 1870 year: 2016 ident: 2022092013192996700_ref60 article-title: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets publication-title: Mol Biol Evol doi: 10.1093/molbev/msw054 – volume: 19 start-page: 179 year: 2020 ident: 2022092013192996700_ref8 article-title: The gut microbiome in neurological disorders publication-title: Lancet Neurol doi: 10.1016/S1474-4422(19)30356-4 – volume: 16 year: 2020 ident: 2022092013192996700_ref41 article-title: Generalized estimating equation modeling on correlated microbiome sequencing data with longitudinal measures publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1008108 – volume: 20 start-page: 273 year: 1995 ident: 2022092013192996700_ref64 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 35 start-page: 3567 year: 2019 ident: 2022092013192996700_ref44 article-title: pldist: ecological dissimilarities for paired and longitudinal microbiome association analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz120 – volume: 104 start-page: 410 year: 2019 ident: 2022092013192996700_ref66 article-title: ACAT: a fast and powerful p value combination method for rare-variant analysis in sequencing studies publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2019.01.002 – volume: 47 start-page: 26 year: 2018 ident: 2022092013192996700_ref3 article-title: Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management publication-title: Aliment Pharmacol Ther doi: 10.1111/apt.14384 – volume: 68 start-page: 353 year: 2012 ident: 2022092013192996700_ref17 article-title: Penalized generalized estimating equations for high-dimensional longitudinal data analysis publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01678.x – volume: 9 start-page: 5114 year: 2018 ident: 2022092013192996700_ref71 article-title: High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries publication-title: Nat Commun doi: 10.1038/s41467-018-07641-9 – volume: 19 start-page: 210 year: 2018 ident: 2022092013192996700_ref52 article-title: A highly adaptive microbiome-based association test for survival traits publication-title: BMC Genomics doi: 10.1186/s12864-018-4599-8 – volume: 20 start-page: 289 year: 2004 ident: 2022092013192996700_ref56 article-title: APE: analyses of phylogenetics and evolution in R language publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg412 – volume: 112 start-page: 64 year: 2017 ident: 2022092013192996700_ref33 article-title: The generalized higher criticism for testing SNP-set effects in genetic association studies publication-title: J Am Stat Assoc doi: 10.1080/01621459.2016.1192039 – volume: 7 year: 2013 ident: 2022092013192996700_ref55 article-title: Variable selection for sparse Dirichlet-multinomial regression with an application to microbiome data analysis publication-title: Ann Appl Stat doi: 10.1214/12-AOAS592 – volume: 15 start-page: 771 year: 2014 ident: 2022092013192996700_ref36 article-title: Visualizing time-related data in biology, a review publication-title: Brief Bioinform doi: 10.1093/bib/bbt021 – volume: 1 start-page: 37 year: 2009 ident: 2022092013192996700_ref57 article-title: New numerical algorithm for multivariate normal probabilities in package mvtnorm publication-title: R J doi: 10.32614/RJ-2009-001 – volume: 26 start-page: 32 year: 2001 ident: 2022092013192996700_ref19 article-title: A new method for non-parametric multivariate analysis of variance: non-parametric MANOVA for ecology publication-title: Austral Ecol – volume: 96 start-page: 797 year: 2015 ident: 2022092013192996700_ref21 article-title: Testing in microbiome-profiling studies with MiRKAT, the microbiome regression-based kernel association test publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2015.04.003 – volume: 38 start-page: 1686 year: 2010 ident: 2022092013192996700_ref53 article-title: Innovated higher criticism for detecting sparse signals in correlated noise publication-title: Ann Statist doi: 10.1214/09-AOS764 – volume: 45 start-page: 5 year: 2001 ident: 2022092013192996700_ref63 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 8 start-page: 18026 year: 2018 ident: 2022092013192996700_ref22 article-title: An adaptive microbiome $\alpha$-diversity-based association analysis method publication-title: Sci Rep doi: 10.1038/s41598-018-36355-7 – volume: 101 start-page: 964 year: 2014 ident: 2022092013192996700_ref32 article-title: Analytical p-value calculation for the higher criticism test in finite-d problems publication-title: Biometrika doi: 10.1093/biomet/asu033 – volume: 2 year: 2013 ident: 2022092013192996700_ref5 article-title: Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis publication-title: Elife doi: 10.7554/eLife.01202 – volume: 12 start-page: 315 year: 2021 ident: 2022092013192996700_ref12 article-title: A practical guide to amplicon and metagenomic analysis of microbiome data publication-title: Protein Cell doi: 10.1007/s13238-020-00724-8 – volume: 49 start-page: 515 year: 2018 ident: 2022092013192996700_ref14 article-title: SYK-CARD9 signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer publication-title: Immunity doi: 10.1016/j.immuni.2018.08.024 – volume: 41 start-page: 769 year: 2017 ident: 2022092013192996700_ref39 article-title: A multivariate distance-based analytic framework for microbial interdependence association test in longitudinal study publication-title: Genet Epidemiol doi: 10.1002/gepi.22065 – volume: 562 start-page: 583 year: 2018 ident: 2022092013192996700_ref37 article-title: Temporal development of the gut microbiome in early childhood from the TEDDY study publication-title: Nature doi: 10.1038/s41586-018-0617-x – volume: 39 start-page: 389 year: 2011 ident: 2022092013192996700_ref46 article-title: GEE analysis of clustered binary data with diverging number of covariates publication-title: Ann Statist doi: 10.1214/10-AOS846 – volume: 158 start-page: 322 year: 2020 ident: 2022092013192996700_ref6 article-title: Influence of the gut microbiome, diet, and environment on risk of colorectal cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.06.048 – volume: 8 start-page: 56 year: 2016 ident: 2022092013192996700_ref23 article-title: An adaptive association test for microbiome data publication-title: Genome Med doi: 10.1186/s13073-016-0302-3 – volume: 73 start-page: 751 year: 1986 ident: 2022092013192996700_ref35 article-title: An improved Bonferroni procedure for multiple tests of significance publication-title: Biometrika doi: 10.1093/biomet/73.3.751 – volume: 10 year: 2021 ident: 2022092013192996700_ref67 article-title: MB-GAN: microbiome simulation via generative adversarial network publication-title: GigaScience doi: 10.1093/gigascience/giab005 – volume: 57 start-page: 81 year: 2007 ident: 2022092013192996700_ref70 article-title: DNA-DNA hybridization values and their relationship to whole-genome sequence similarities publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.64483-0 – volume: 25 start-page: 377 year: 2019 ident: 2022092013192996700_ref2 article-title: The microbiome, cancer, and cancer therapy publication-title: Nat Med doi: 10.1038/s41591-019-0377-7 – volume: 46 start-page: 175 year: 1992 ident: 2022092013192996700_ref62 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Am Stat doi: 10.1080/00031305.1992.10475879 – volume: 9 start-page: 1683 year: 2018 ident: 2022092013192996700_ref40 article-title: Negative binomial mixed models for analyzing longitudinal microbiome data publication-title: Front Microbiol doi: 10.3389/fmicb.2018.01683 – volume: 32 start-page: 2611 year: 2016 ident: 2022092013192996700_ref20 article-title: A two-part mixed-effects model for analyzing longitudinal microbiome compositional data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw308 – volume: 8 start-page: 63 year: 2020 ident: 2022092013192996700_ref34 article-title: A powerful microbial group association test based on the higher criticism analysis for sparse microbial association signals publication-title: Microbiome doi: 10.1186/s40168-020-00834-9 – volume: 5 start-page: 45 year: 2017 ident: 2022092013192996700_ref24 article-title: A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping publication-title: Microbiome doi: 10.1186/s40168-017-0262-x – volume: 197 start-page: 1081 year: 2014 ident: 2022092013192996700_ref25 article-title: A powerful and adaptive association test for rare variants publication-title: Genetics doi: 10.1534/genetics.114.165035 – volume: 28 start-page: 201 year: 2020 ident: 2022092013192996700_ref7 article-title: The microbiome as a modifier of neurodegenerative disease risk publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.06.008 – volume: 10 start-page: 458 year: 2019 ident: 2022092013192996700_ref43 article-title: A distance-based kernel association test based on the generalized linear mixed model for correlated microbiome studies publication-title: Front Genet doi: 10.3389/fgene.2019.00458 – volume: 67 start-page: 326 year: 2017 ident: 2022092013192996700_ref10 article-title: The role of the microbiome in cancer development and therapy: microbiome and cancer publication-title: CA Cancer J Clin doi: 10.3322/caac.21398 – volume: 19 start-page: 1141 year: 2009 ident: 2022092013192996700_ref16 article-title: Microbial community profiling for human microbiome projects: tools, techniques, and challenges publication-title: Genome Res doi: 10.1101/gr.085464.108 – volume: 39 start-page: 2533 year: 2011 ident: 2022092013192996700_ref49 article-title: Global testing under sparse alternatives: ANOVA, multiple comparisons and the higher criticism publication-title: Ann Statist doi: 10.1214/11-AOS910 – volume: 73 start-page: 13 year: 1986 ident: 2022092013192996700_ref45 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika doi: 10.1093/biomet/73.1.13 – volume: 67 start-page: 1743 year: 2018 ident: 2022092013192996700_ref58 article-title: Guiding longitudinal sampling in IBD cohorts publication-title: Gut doi: 10.1136/gutjnl-2017-315352 – volume: 7 year: 2016 ident: 2022092013192996700_ref15 article-title: Characterization of the gut microbiome using 16S or shotgun metagenomics publication-title: Front Microbiol doi: 10.3389/fmicb.2016.00459 – volume: 17 start-page: 497 year: 2019 ident: 2022092013192996700_ref61 article-title: Microbial genes and pathways in inflammatory bowel disease publication-title: Nat Rev Microbiol doi: 10.1038/s41579-019-0213-6 – volume: 32 start-page: 962 year: 2004 ident: 2022092013192996700_ref31 article-title: Higher criticism for detecting sparse heterogeneous mixtures publication-title: Ann Statist doi: 10.1214/009053604000000265 – volume: 5 year: 2010 ident: 2022092013192996700_ref54 article-title: Disordered microbial communities in the upper respiratory tract of cigarette smokers publication-title: PLoS One doi: 10.1371/journal.pone.0015216 – volume: 17 year: 2021 ident: 2022092013192996700_ref69 article-title: A statistical model for describing and simulating microbial community profiles publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1008913 – volume: 486 start-page: 207 year: 2012 ident: 2022092013192996700_ref1 article-title: Structure, function and diversity of the healthy human microbiome publication-title: Nature doi: 10.1038/nature11234 – volume: 12 start-page: 1805281 year: 2020 ident: 2022092013192996700_ref28 article-title: Gut commensal microbiota and decreased risk for Enterobacteriaceae bacteriuria and urinary tract infection publication-title: Gut Microbes doi: 10.1080/19490976.2020.1805281 – volume: 515 start-page: 423 year: 2014 ident: 2022092013192996700_ref13 article-title: Members of the human gut microbiota involved in recovery from Vibrio cholerae infection publication-title: Nature doi: 10.1038/nature13738 – volume: 7 year: 2012 ident: 2022092013192996700_ref4 article-title: Analysis of the gut microbiota in the old order Amish and its relation to the metabolic syndrome publication-title: PLoS One doi: 10.1371/journal.pone.0043052 – volume: 62 start-page: 1260 year: 2015 ident: 2022092013192996700_ref27 article-title: Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy publication-title: Hepatology doi: 10.1002/hep.27819 – volume: 5 start-page: 475 year: 2006 ident: 2022092013192996700_ref50 article-title: Clustering rules: a comparison of partitioning and hierarchical clustering algorithms publication-title: J Math Model Algor doi: 10.1007/s10852-005-9022-1 – volume: 389 start-page: 1741 year: 2017 ident: 2022092013192996700_ref59 article-title: Crohn’s disease publication-title: Lancet doi: 10.1016/S0140-6736(16)31711-1 – volume: 19 start-page: 769 year: 2004 ident: 2022092013192996700_ref51 article-title: Longitudinal data analysis. A comparison between generalized estimating equations and random coefficient analysis publication-title: Eur J Epidemiol doi: 10.1023/B:EJEP.0000036572.00663.f2 – volume: 48 start-page: 186 year: 2015 ident: 2022092013192996700_ref26 article-title: Altered fecal microbiota composition in patients with major depressive disorder publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2015.03.016 – volume: 20 start-page: 416 year: 2019 ident: 2022092013192996700_ref68 article-title: metaSPARSim: a 16S rRNA gene sequencing count data simulator publication-title: BMC Bioinform doi: 10.1186/s12859-019-2882-6 – volume-title: Applied Longitudinal Data Analysis for Epidemiology year: 2013 ident: 2022092013192996700_ref48 doi: 10.1017/CBO9781139342834 – volume: 42 start-page: 772 year: 2018 ident: 2022092013192996700_ref42 article-title: A small-sample kernel association test for correlated data with application to microbiome association studies publication-title: Genet Epidemiol doi: 10.1002/gepi.22160 – volume: 66 start-page: 851 year: 2004 ident: 2022092013192996700_ref47 article-title: Efficiency of generalized estimating equations for binary responses publication-title: J Royal Statistical Soc B doi: 10.1111/j.1467-9868.2004.05741.x – volume: 489 start-page: 250 year: 2012 ident: 2022092013192996700_ref11 article-title: Genomic approaches to studying the human microbiota publication-title: Nature doi: 10.1038/nature11553 – volume: 365 year: 2019 ident: 2022092013192996700_ref9 article-title: A sparse covarying unit that describes healthy and impaired human gut microbiota development publication-title: Science doi: 10.1126/science.aau4735 – volume: 22 start-page: 192 year: 2021 ident: 2022092013192996700_ref65 article-title: mbImpute: an accurate and robust imputation method for microbiome data publication-title: Genome Biol doi: 10.1186/s13059-021-02400-4 – volume: 73 start-page: 422 year: 2018 ident: 2022092013192996700_ref38 article-title: Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations publication-title: Thorax doi: 10.1136/thoraxjnl-2017-210408 – volume: 41 start-page: 210 year: 2017 ident: 2022092013192996700_ref72 article-title: A small-sample multivariate kernel machine test for microbiome association studies publication-title: Genet Epidemiol doi: 10.1002/gepi.22030 – volume: 154 start-page: 293 year: 2018 ident: 2022092013192996700_ref73 article-title: Association of disease severity with skin microbiome and filaggrin gene mutations in adult atopic dermatitis publication-title: JAMA Dermatol doi: 10.1001/jamadermatol.2017.5440 |
SSID | ssj0020781 |
Score | 2.3567533 |
Snippet | Abstract
The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association... The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Biomarkers Crohn's disease Error correction Intestinal microflora Mathematical analysis Microbial activity Microbiomes Microorganisms Phenotypes Statistical methods Statistics |
Title | Detecting sparse microbial association signals adaptively from longitudinal microbiome data based on generalized estimating equations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35561307 https://www.proquest.com/docview/2717367724 https://www.proquest.com/docview/2664795693 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kIngR39ZHXaEnIWiSzW5y9FVEUC8t9BZ2s7NS6MumPdS7_9uZJK34QMkpZIaFndmdmczjY6zprAx8lykPQk0QZlQEYDLnJVKjNpsY_ALr8PFJ3nfEQzfqVgWy-S8p_CS8MD1zYYzO0JfHqxbNL6lz-7m7jKtoXk3ZRKQ8mu5eteF94_1ieL40s_3wKQvb0tpkG5VTyK9KKW6xFRhus7USJnK-w95vgX71o5HheP4nOfBBr5ifhDz6c3s51WKgNnFt9Zhusf6cU_cI748IlGhmCQBrwToaAKfqUE5mzHLkfikHUPfe8JVGb5AriyvCazkMPN9lndZd--beq-ATvCxQ8dQLNMTOxML5GXoRKgAMFWVkZSy0wQd9C8L0FioycRgap30HkFh7qRKrEwsu3GO14WgIB4xTrkYoMFliA2GEjTV6Jdo6qYUvwJk6O1_sbZpVs8UJ4qKfljnuMEVBpJUg6qy5JB6XIzV-JztFIf1NcbwQYFqdvDwNqKxAYswg6uxs-RnPDCVC9BBGM6SRUigMDJOwzvZLwS_XCaMipFKH_y5_xNYD6oWgFNXlMatNJzM4QQ9lahps9er69rrVKPT0A31G6Ps |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+sparse+microbial+association+signals+adaptively+from+longitudinal+microbiome+data+based+on+generalized+estimating+equations&rft.jtitle=Briefings+in+bioinformatics&rft.au=Sun%2C+Han&rft.au=Huang%2C+Xiaoyun&rft.au=Huo%2C+Ban&rft.au=Tan%2C+Yuting&rft.date=2022-09-20&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbac149&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |