Detecting sparse microbial association signals adaptively from longitudinal microbiome data based on generalized estimating equations

Abstract The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research addresses multiple domains, such as human disease and diet. Statistical methods for testing microbiome–phenotype associations have be...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 5
Main Authors Sun, Han, Huang, Xiaoyun, Huo, Ban, Tan, Yuting, He, Tingting, Jiang, Xingpeng
Format Journal Article
LanguageEnglish
Published England Oxford University Press 20.09.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1467-5463
1477-4054
1477-4054
DOI10.1093/bib/bbac149

Cover

Abstract Abstract The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research addresses multiple domains, such as human disease and diet. Statistical methods for testing microbiome–phenotype associations have been studied recently to determine their ability to assess longitudinal microbiome data. However, existing methods fail to detect sparse association signals in longitudinal microbiome data. In this paper, we developed a novel method, namely aGEEMIHC, which is a data-driven adaptive microbiome higher criticism analysis based on generalized estimating equations to detect sparse microbial association signals from longitudinal microbiome data. aGEEMiHC adopts generalized estimating equations framework that fully considers the correlation among different observations from the same subject in longitudinal data. To be robust to diverse correlation structures for longitudinal data, aGEEMiHC integrates multiple microbiome higher criticism analyses based on generalized estimating equations with different working correlation structures. Extensive simulation experiments demonstrate that aGEEMiHC can control the type I error correctly and achieve superior performance according to a statistical power comparison. We also applied it to longitudinal microbiome data with various types of host phenotypes to demonstrate the stability of our method. aGEEMiHC is also utilized for real longitudinal microbiome data, and we found a significant association between the gut microbiome and Crohn’s disease. In addition, our method ranks the significant factors associated with the host phenotype to provide potential biomarkers.
AbstractList The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research addresses multiple domains, such as human disease and diet. Statistical methods for testing microbiome-phenotype associations have been studied recently to determine their ability to assess longitudinal microbiome data. However, existing methods fail to detect sparse association signals in longitudinal microbiome data. In this paper, we developed a novel method, namely aGEEMIHC, which is a data-driven adaptive microbiome higher criticism analysis based on generalized estimating equations to detect sparse microbial association signals from longitudinal microbiome data. aGEEMiHC adopts generalized estimating equations framework that fully considers the correlation among different observations from the same subject in longitudinal data. To be robust to diverse correlation structures for longitudinal data, aGEEMiHC integrates multiple microbiome higher criticism analyses based on generalized estimating equations with different working correlation structures. Extensive simulation experiments demonstrate that aGEEMiHC can control the type I error correctly and achieve superior performance according to a statistical power comparison. We also applied it to longitudinal microbiome data with various types of host phenotypes to demonstrate the stability of our method. aGEEMiHC is also utilized for real longitudinal microbiome data, and we found a significant association between the gut microbiome and Crohn's disease. In addition, our method ranks the significant factors associated with the host phenotype to provide potential biomarkers.The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research addresses multiple domains, such as human disease and diet. Statistical methods for testing microbiome-phenotype associations have been studied recently to determine their ability to assess longitudinal microbiome data. However, existing methods fail to detect sparse association signals in longitudinal microbiome data. In this paper, we developed a novel method, namely aGEEMIHC, which is a data-driven adaptive microbiome higher criticism analysis based on generalized estimating equations to detect sparse microbial association signals from longitudinal microbiome data. aGEEMiHC adopts generalized estimating equations framework that fully considers the correlation among different observations from the same subject in longitudinal data. To be robust to diverse correlation structures for longitudinal data, aGEEMiHC integrates multiple microbiome higher criticism analyses based on generalized estimating equations with different working correlation structures. Extensive simulation experiments demonstrate that aGEEMiHC can control the type I error correctly and achieve superior performance according to a statistical power comparison. We also applied it to longitudinal microbiome data with various types of host phenotypes to demonstrate the stability of our method. aGEEMiHC is also utilized for real longitudinal microbiome data, and we found a significant association between the gut microbiome and Crohn's disease. In addition, our method ranks the significant factors associated with the host phenotype to provide potential biomarkers.
The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research addresses multiple domains, such as human disease and diet. Statistical methods for testing microbiome–phenotype associations have been studied recently to determine their ability to assess longitudinal microbiome data. However, existing methods fail to detect sparse association signals in longitudinal microbiome data. In this paper, we developed a novel method, namely aGEEMIHC, which is a data-driven adaptive microbiome higher criticism analysis based on generalized estimating equations to detect sparse microbial association signals from longitudinal microbiome data. aGEEMiHC adopts generalized estimating equations framework that fully considers the correlation among different observations from the same subject in longitudinal data. To be robust to diverse correlation structures for longitudinal data, aGEEMiHC integrates multiple microbiome higher criticism analyses based on generalized estimating equations with different working correlation structures. Extensive simulation experiments demonstrate that aGEEMiHC can control the type I error correctly and achieve superior performance according to a statistical power comparison. We also applied it to longitudinal microbiome data with various types of host phenotypes to demonstrate the stability of our method. aGEEMiHC is also utilized for real longitudinal microbiome data, and we found a significant association between the gut microbiome and Crohn’s disease. In addition, our method ranks the significant factors associated with the host phenotype to provide potential biomarkers.
Abstract The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research addresses multiple domains, such as human disease and diet. Statistical methods for testing microbiome–phenotype associations have been studied recently to determine their ability to assess longitudinal microbiome data. However, existing methods fail to detect sparse association signals in longitudinal microbiome data. In this paper, we developed a novel method, namely aGEEMIHC, which is a data-driven adaptive microbiome higher criticism analysis based on generalized estimating equations to detect sparse microbial association signals from longitudinal microbiome data. aGEEMiHC adopts generalized estimating equations framework that fully considers the correlation among different observations from the same subject in longitudinal data. To be robust to diverse correlation structures for longitudinal data, aGEEMiHC integrates multiple microbiome higher criticism analyses based on generalized estimating equations with different working correlation structures. Extensive simulation experiments demonstrate that aGEEMiHC can control the type I error correctly and achieve superior performance according to a statistical power comparison. We also applied it to longitudinal microbiome data with various types of host phenotypes to demonstrate the stability of our method. aGEEMiHC is also utilized for real longitudinal microbiome data, and we found a significant association between the gut microbiome and Crohn’s disease. In addition, our method ranks the significant factors associated with the host phenotype to provide potential biomarkers.
Author Tan, Yuting
Huang, Xiaoyun
Huo, Ban
He, Tingting
Jiang, Xingpeng
Sun, Han
Author_xml – sequence: 1
  givenname: Han
  surname: Sun
  fullname: Sun, Han
  organization: School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
– sequence: 2
  givenname: Xiaoyun
  surname: Huang
  fullname: Huang, Xiaoyun
  organization: Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
– sequence: 3
  givenname: Ban
  surname: Huo
  fullname: Huo, Ban
  organization: Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
– sequence: 4
  givenname: Yuting
  surname: Tan
  fullname: Tan, Yuting
  organization: School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
– sequence: 5
  givenname: Tingting
  surname: He
  fullname: He, Tingting
  organization: Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
– sequence: 6
  givenname: Xingpeng
  surname: Jiang
  fullname: Jiang, Xingpeng
  email: xpjiang@mail.ccnu.edu.cn
  organization: Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35561307$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3TAQhUVJaR7tqvsiKJRCcaKXJXtZ0lcg0E26NiNrfFGwLUeSA-m-_7u6j3QRaNBCEvrOGc2ZU3I0hxkJecvZOWetvLDeXlgLPVftC3LClTGVYrU62p61qWql5TE5TemWMcFMw1-RY1nXmktmTsifL5ixz37e0LRATEgn38dgPYwUUgq9h-zDTJPfzDAmCg6W7O9xfKBDDBMdw7zxeXW-vD5Kw4TUQQZqIaGjRb3BGSOM_ne5Ysp-gl1FvFt37uk1eTkUd3xz2M_Ir29fby5_VNc_v19dfr6uemGaXAnAZrCNGnjPmTACFRO6drpRYMtihpeOSwC1baS0A_ABsXWOmdZB63CQZ-Tj3neJ4W4tP-kmn3ocR5gxrKkTWivT1rqVBX3_BL0Na9xm0AnDjdTGCFWodwdqtRO6bomlt_jQPQZcgE97oCSTUsThH8JZtx1fV8bXHcZXaP6E7n3eRZQj-PE_mg97TViXZ83_AknOrx0
CitedBy_id crossref_primary_10_1016_j_csbj_2023_03_044
crossref_primary_10_12688_gatesopenres_14041_1
crossref_primary_10_12688_gatesopenres_14041_2
crossref_primary_10_1093_bib_bbad012
Cites_doi 10.1038/srep03814
10.1093/bioinformatics/btaa260
10.1016/j.jgg.2021.08.002
10.1093/molbev/msw054
10.1016/S1474-4422(19)30356-4
10.1371/journal.pcbi.1008108
10.1007/BF00994018
10.1093/bioinformatics/btz120
10.1016/j.ajhg.2019.01.002
10.1111/apt.14384
10.1111/j.1541-0420.2011.01678.x
10.1038/s41467-018-07641-9
10.1186/s12864-018-4599-8
10.1093/bioinformatics/btg412
10.1080/01621459.2016.1192039
10.1214/12-AOAS592
10.1093/bib/bbt021
10.32614/RJ-2009-001
10.1016/j.ajhg.2015.04.003
10.1214/09-AOS764
10.1023/A:1010933404324
10.1038/s41598-018-36355-7
10.1093/biomet/asu033
10.7554/eLife.01202
10.1007/s13238-020-00724-8
10.1016/j.immuni.2018.08.024
10.1002/gepi.22065
10.1038/s41586-018-0617-x
10.1214/10-AOS846
10.1053/j.gastro.2019.06.048
10.1186/s13073-016-0302-3
10.1093/biomet/73.3.751
10.1093/gigascience/giab005
10.1099/ijs.0.64483-0
10.1038/s41591-019-0377-7
10.1080/00031305.1992.10475879
10.3389/fmicb.2018.01683
10.1093/bioinformatics/btw308
10.1186/s40168-020-00834-9
10.1186/s40168-017-0262-x
10.1534/genetics.114.165035
10.1016/j.chom.2020.06.008
10.3389/fgene.2019.00458
10.3322/caac.21398
10.1101/gr.085464.108
10.1214/11-AOS910
10.1093/biomet/73.1.13
10.1136/gutjnl-2017-315352
10.3389/fmicb.2016.00459
10.1038/s41579-019-0213-6
10.1214/009053604000000265
10.1371/journal.pone.0015216
10.1371/journal.pcbi.1008913
10.1038/nature11234
10.1080/19490976.2020.1805281
10.1038/nature13738
10.1371/journal.pone.0043052
10.1002/hep.27819
10.1007/s10852-005-9022-1
10.1016/S0140-6736(16)31711-1
10.1023/B:EJEP.0000036572.00663.f2
10.1016/j.bbi.2015.03.016
10.1186/s12859-019-2882-6
10.1017/CBO9781139342834
10.1002/gepi.22160
10.1111/j.1467-9868.2004.05741.x
10.1038/nature11553
10.1126/science.aau4735
10.1186/s13059-021-02400-4
10.1136/thoraxjnl-2017-210408
10.1002/gepi.22030
10.1001/jamadermatol.2017.5440
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbac149
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
EISSN 1477-4054
ExternalDocumentID 35561307
10_1093_bib_bbac149
10.1093/bib/bbac149
Genre Journal Article
GrantInformation_xml – fundername: Key Research and Development Program of Hubei Province
  grantid: 2020BAB017
– fundername: National Natural Science Foundation of China
  grantid: 61872157
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
77I
7X8
ID FETCH-LOGICAL-c278t-2ae8fb84f1c10272e40265d684ababa0711461475b833bfa1fee9dd079da9def3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Sep 05 14:40:14 EDT 2025
Mon Jun 30 08:54:51 EDT 2025
Mon Jul 21 05:46:28 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
Tue Jul 01 03:39:40 EDT 2025
Wed Aug 28 03:18:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords longitudinal microbiome data
microbiome-based association test
higher criticism
sparse microbial association signals
generalized estimating equations
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c278t-2ae8fb84f1c10272e40265d684ababa0711461475b833bfa1fee9dd079da9def3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 35561307
PQID 2717367724
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2664795693
proquest_journals_2717367724
pubmed_primary_35561307
crossref_primary_10_1093_bib_bbac149
crossref_citationtrail_10_1093_bib_bbac149
oup_primary_10_1093_bib_bbac149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-20
PublicationDateYYYYMMDD 2022-09-20
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-20
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Wu (2022092013192996700_ref23) 2016; 8
Scher (2022092013192996700_ref5) 2013; 2
Jiang (2022092013192996700_ref26) 2015; 48
Stewart (2022092013192996700_ref37) 2018; 562
Zhan (2022092013192996700_ref72) 2017; 41
Bhatt (2022092013192996700_ref10) 2017; 67
Zhan (2022092013192996700_ref42) 2018; 42
Fang (2022092013192996700_ref7) 2020; 28
Jovel (2022092013192996700_ref15) 2016; 7
Hsiao (2022092013192996700_ref13) 2014; 515
(2022092013192996700_ref62) 1992; 46
Wang (2022092013192996700_ref17) 2012; 68
Goris (2022092013192996700_ref70) 2007; 57
Patuzzi (2022092013192996700_ref68) 2019; 20
Torres (2022092013192996700_ref59) 2017; 389
(2022092013192996700_ref63) 2001; 45
Twisk (2022092013192996700_ref51) 2004; 19
Magruder (2022092013192996700_ref28) 2020; 12
Charlson (2022092013192996700_ref54) 2010; 5
Paradis (2022092013192996700_ref56) 2004; 20
Yi-Juan (2022092013192996700_ref18) 2020; 36
Clausen (2022092013192996700_ref73) 2018; 154
Jain (2022092013192996700_ref71) 2018; 9
Mejía-León (2022092013192996700_ref29) 2015; 4
Zhang (2022092013192996700_ref39) 2017; 41
Wang (2022092013192996700_ref46) 2011; 39
Chaganty (2022092013192996700_ref47) 2004; 66
Arias-Castro (2022092013192996700_ref49) 2011; 39
Liang (2022092013192996700_ref45) 1986; 73
Mi (2022092013192996700_ref57) 2009; 1
Zhao (2022092013192996700_ref21) 2015; 96
Zhang (2022092013192996700_ref40) 2018; 9
Kumar (2022092013192996700_ref60) 2016; 33
Koh (2022092013192996700_ref22) 2018; 8
Koh (2022092013192996700_ref24) 2017; 5
Rong (2022092013192996700_ref67) 2021; 10
Chen (2022092013192996700_ref55) 2013; 7
McIlroy (2022092013192996700_ref3) 2018; 47
Anderson (2022092013192996700_ref19) 2001; 26
Simes (2022092013192996700_ref35) 1986; 73
Vázquez-Baeza (2022092013192996700_ref58) 2018; 67
Mayhew (2022092013192996700_ref38) 2018; 73
Liu (2022092013192996700_ref66) 2019; 104
Song (2022092013192996700_ref6) 2020; 158
(2022092013192996700_ref64) 1995; 20
Weinstock (2022092013192996700_ref11) 2012; 489
Zupancic (2022092013192996700_ref4) 2012; 7
Hamady (2022092013192996700_ref16) 2009; 19
Barnett (2022092013192996700_ref32) 2014; 101
Plantinga (2022092013192996700_ref44) 2019; 35
Koh (2022092013192996700_ref34) 2020; 8
Malik (2022092013192996700_ref14) 2018; 49
Jiang (2022092013192996700_ref65) 2021; 22
Helmink (2022092013192996700_ref2) 2019; 25
Pan (2022092013192996700_ref25) 2014; 197
Koh (2022092013192996700_ref43) 2019; 10
Liu (2022092013192996700_ref12) 2021; 12
Twisk (2022092013192996700_ref48) 2013
Chen (2022092013192996700_ref41) 2020; 16
Cryan (2022092013192996700_ref8) 2020; 19
Hall (2022092013192996700_ref53) 2010; 38
Koh (2022092013192996700_ref52) 2018; 19
Ma (2022092013192996700_ref69) 2021; 17
Bajaj (2022092013192996700_ref27) 2015; 62
Chen (2022092013192996700_ref20) 2016; 32
Schirmer (2022092013192996700_ref61) 2019; 17
Raman (2022092013192996700_ref9) 2019; 365
Secrier (2022092013192996700_ref36) 2014; 15
Donoho (2022092013192996700_ref31) 2004; 32
Sun (2022092013192996700_ref30) 2021; 48
Barnett (2022092013192996700_ref33) 2017; 112
Reynolds (2022092013192996700_ref50) 2006; 5
Human Microbiome Project Consortium (2022092013192996700_ref1) 2012; 486
References_xml – volume: 4
  start-page: 3814
  year: 2015
  ident: 2022092013192996700_ref29
  article-title: Fecal microbiota imbalance in Mexican children with type 1 diabetes
  publication-title: Sci Rep
  doi: 10.1038/srep03814
– volume: 36
  start-page: 4106
  year: 2020
  ident: 2022092013192996700_ref18
  article-title: Testing hypotheses about the microbiome using the linear decomposition model (LDM)
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa260
– volume: 48
  start-page: 851
  year: 2021
  ident: 2022092013192996700_ref30
  article-title: A powerful adaptive microbiome-based association test for microbial association signals with diverse sparsity levels
  publication-title: J Genet Genomics
  doi: 10.1016/j.jgg.2021.08.002
– volume: 33
  start-page: 1870
  year: 2016
  ident: 2022092013192996700_ref60
  article-title: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msw054
– volume: 19
  start-page: 179
  year: 2020
  ident: 2022092013192996700_ref8
  article-title: The gut microbiome in neurological disorders
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(19)30356-4
– volume: 16
  year: 2020
  ident: 2022092013192996700_ref41
  article-title: Generalized estimating equation modeling on correlated microbiome sequencing data with longitudinal measures
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008108
– volume: 20
  start-page: 273
  year: 1995
  ident: 2022092013192996700_ref64
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 35
  start-page: 3567
  year: 2019
  ident: 2022092013192996700_ref44
  article-title: pldist: ecological dissimilarities for paired and longitudinal microbiome association analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz120
– volume: 104
  start-page: 410
  year: 2019
  ident: 2022092013192996700_ref66
  article-title: ACAT: a fast and powerful p value combination method for rare-variant analysis in sequencing studies
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2019.01.002
– volume: 47
  start-page: 26
  year: 2018
  ident: 2022092013192996700_ref3
  article-title: Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management
  publication-title: Aliment Pharmacol Ther
  doi: 10.1111/apt.14384
– volume: 68
  start-page: 353
  year: 2012
  ident: 2022092013192996700_ref17
  article-title: Penalized generalized estimating equations for high-dimensional longitudinal data analysis
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01678.x
– volume: 9
  start-page: 5114
  year: 2018
  ident: 2022092013192996700_ref71
  article-title: High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07641-9
– volume: 19
  start-page: 210
  year: 2018
  ident: 2022092013192996700_ref52
  article-title: A highly adaptive microbiome-based association test for survival traits
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4599-8
– volume: 20
  start-page: 289
  year: 2004
  ident: 2022092013192996700_ref56
  article-title: APE: analyses of phylogenetics and evolution in R language
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg412
– volume: 112
  start-page: 64
  year: 2017
  ident: 2022092013192996700_ref33
  article-title: The generalized higher criticism for testing SNP-set effects in genetic association studies
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2016.1192039
– volume: 7
  year: 2013
  ident: 2022092013192996700_ref55
  article-title: Variable selection for sparse Dirichlet-multinomial regression with an application to microbiome data analysis
  publication-title: Ann Appl Stat
  doi: 10.1214/12-AOAS592
– volume: 15
  start-page: 771
  year: 2014
  ident: 2022092013192996700_ref36
  article-title: Visualizing time-related data in biology, a review
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbt021
– volume: 1
  start-page: 37
  year: 2009
  ident: 2022092013192996700_ref57
  article-title: New numerical algorithm for multivariate normal probabilities in package mvtnorm
  publication-title: R J
  doi: 10.32614/RJ-2009-001
– volume: 26
  start-page: 32
  year: 2001
  ident: 2022092013192996700_ref19
  article-title: A new method for non-parametric multivariate analysis of variance: non-parametric MANOVA for ecology
  publication-title: Austral Ecol
– volume: 96
  start-page: 797
  year: 2015
  ident: 2022092013192996700_ref21
  article-title: Testing in microbiome-profiling studies with MiRKAT, the microbiome regression-based kernel association test
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2015.04.003
– volume: 38
  start-page: 1686
  year: 2010
  ident: 2022092013192996700_ref53
  article-title: Innovated higher criticism for detecting sparse signals in correlated noise
  publication-title: Ann Statist
  doi: 10.1214/09-AOS764
– volume: 45
  start-page: 5
  year: 2001
  ident: 2022092013192996700_ref63
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 8
  start-page: 18026
  year: 2018
  ident: 2022092013192996700_ref22
  article-title: An adaptive microbiome $\alpha$-diversity-based association analysis method
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-36355-7
– volume: 101
  start-page: 964
  year: 2014
  ident: 2022092013192996700_ref32
  article-title: Analytical p-value calculation for the higher criticism test in finite-d problems
  publication-title: Biometrika
  doi: 10.1093/biomet/asu033
– volume: 2
  year: 2013
  ident: 2022092013192996700_ref5
  article-title: Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis
  publication-title: Elife
  doi: 10.7554/eLife.01202
– volume: 12
  start-page: 315
  year: 2021
  ident: 2022092013192996700_ref12
  article-title: A practical guide to amplicon and metagenomic analysis of microbiome data
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00724-8
– volume: 49
  start-page: 515
  year: 2018
  ident: 2022092013192996700_ref14
  article-title: SYK-CARD9 signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.08.024
– volume: 41
  start-page: 769
  year: 2017
  ident: 2022092013192996700_ref39
  article-title: A multivariate distance-based analytic framework for microbial interdependence association test in longitudinal study
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.22065
– volume: 562
  start-page: 583
  year: 2018
  ident: 2022092013192996700_ref37
  article-title: Temporal development of the gut microbiome in early childhood from the TEDDY study
  publication-title: Nature
  doi: 10.1038/s41586-018-0617-x
– volume: 39
  start-page: 389
  year: 2011
  ident: 2022092013192996700_ref46
  article-title: GEE analysis of clustered binary data with diverging number of covariates
  publication-title: Ann Statist
  doi: 10.1214/10-AOS846
– volume: 158
  start-page: 322
  year: 2020
  ident: 2022092013192996700_ref6
  article-title: Influence of the gut microbiome, diet, and environment on risk of colorectal cancer
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.06.048
– volume: 8
  start-page: 56
  year: 2016
  ident: 2022092013192996700_ref23
  article-title: An adaptive association test for microbiome data
  publication-title: Genome Med
  doi: 10.1186/s13073-016-0302-3
– volume: 73
  start-page: 751
  year: 1986
  ident: 2022092013192996700_ref35
  article-title: An improved Bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
  doi: 10.1093/biomet/73.3.751
– volume: 10
  year: 2021
  ident: 2022092013192996700_ref67
  article-title: MB-GAN: microbiome simulation via generative adversarial network
  publication-title: GigaScience
  doi: 10.1093/gigascience/giab005
– volume: 57
  start-page: 81
  year: 2007
  ident: 2022092013192996700_ref70
  article-title: DNA-DNA hybridization values and their relationship to whole-genome sequence similarities
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.64483-0
– volume: 25
  start-page: 377
  year: 2019
  ident: 2022092013192996700_ref2
  article-title: The microbiome, cancer, and cancer therapy
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0377-7
– volume: 46
  start-page: 175
  year: 1992
  ident: 2022092013192996700_ref62
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am Stat
  doi: 10.1080/00031305.1992.10475879
– volume: 9
  start-page: 1683
  year: 2018
  ident: 2022092013192996700_ref40
  article-title: Negative binomial mixed models for analyzing longitudinal microbiome data
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.01683
– volume: 32
  start-page: 2611
  year: 2016
  ident: 2022092013192996700_ref20
  article-title: A two-part mixed-effects model for analyzing longitudinal microbiome compositional data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw308
– volume: 8
  start-page: 63
  year: 2020
  ident: 2022092013192996700_ref34
  article-title: A powerful microbial group association test based on the higher criticism analysis for sparse microbial association signals
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00834-9
– volume: 5
  start-page: 45
  year: 2017
  ident: 2022092013192996700_ref24
  article-title: A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0262-x
– volume: 197
  start-page: 1081
  year: 2014
  ident: 2022092013192996700_ref25
  article-title: A powerful and adaptive association test for rare variants
  publication-title: Genetics
  doi: 10.1534/genetics.114.165035
– volume: 28
  start-page: 201
  year: 2020
  ident: 2022092013192996700_ref7
  article-title: The microbiome as a modifier of neurodegenerative disease risk
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.06.008
– volume: 10
  start-page: 458
  year: 2019
  ident: 2022092013192996700_ref43
  article-title: A distance-based kernel association test based on the generalized linear mixed model for correlated microbiome studies
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00458
– volume: 67
  start-page: 326
  year: 2017
  ident: 2022092013192996700_ref10
  article-title: The role of the microbiome in cancer development and therapy: microbiome and cancer
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21398
– volume: 19
  start-page: 1141
  year: 2009
  ident: 2022092013192996700_ref16
  article-title: Microbial community profiling for human microbiome projects: tools, techniques, and challenges
  publication-title: Genome Res
  doi: 10.1101/gr.085464.108
– volume: 39
  start-page: 2533
  year: 2011
  ident: 2022092013192996700_ref49
  article-title: Global testing under sparse alternatives: ANOVA, multiple comparisons and the higher criticism
  publication-title: Ann Statist
  doi: 10.1214/11-AOS910
– volume: 73
  start-page: 13
  year: 1986
  ident: 2022092013192996700_ref45
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
– volume: 67
  start-page: 1743
  year: 2018
  ident: 2022092013192996700_ref58
  article-title: Guiding longitudinal sampling in IBD cohorts
  publication-title: Gut
  doi: 10.1136/gutjnl-2017-315352
– volume: 7
  year: 2016
  ident: 2022092013192996700_ref15
  article-title: Characterization of the gut microbiome using 16S or shotgun metagenomics
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2016.00459
– volume: 17
  start-page: 497
  year: 2019
  ident: 2022092013192996700_ref61
  article-title: Microbial genes and pathways in inflammatory bowel disease
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-019-0213-6
– volume: 32
  start-page: 962
  year: 2004
  ident: 2022092013192996700_ref31
  article-title: Higher criticism for detecting sparse heterogeneous mixtures
  publication-title: Ann Statist
  doi: 10.1214/009053604000000265
– volume: 5
  year: 2010
  ident: 2022092013192996700_ref54
  article-title: Disordered microbial communities in the upper respiratory tract of cigarette smokers
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0015216
– volume: 17
  year: 2021
  ident: 2022092013192996700_ref69
  article-title: A statistical model for describing and simulating microbial community profiles
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008913
– volume: 486
  start-page: 207
  year: 2012
  ident: 2022092013192996700_ref1
  article-title: Structure, function and diversity of the healthy human microbiome
  publication-title: Nature
  doi: 10.1038/nature11234
– volume: 12
  start-page: 1805281
  year: 2020
  ident: 2022092013192996700_ref28
  article-title: Gut commensal microbiota and decreased risk for Enterobacteriaceae bacteriuria and urinary tract infection
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2020.1805281
– volume: 515
  start-page: 423
  year: 2014
  ident: 2022092013192996700_ref13
  article-title: Members of the human gut microbiota involved in recovery from Vibrio cholerae infection
  publication-title: Nature
  doi: 10.1038/nature13738
– volume: 7
  year: 2012
  ident: 2022092013192996700_ref4
  article-title: Analysis of the gut microbiota in the old order Amish and its relation to the metabolic syndrome
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0043052
– volume: 62
  start-page: 1260
  year: 2015
  ident: 2022092013192996700_ref27
  article-title: Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy
  publication-title: Hepatology
  doi: 10.1002/hep.27819
– volume: 5
  start-page: 475
  year: 2006
  ident: 2022092013192996700_ref50
  article-title: Clustering rules: a comparison of partitioning and hierarchical clustering algorithms
  publication-title: J Math Model Algor
  doi: 10.1007/s10852-005-9022-1
– volume: 389
  start-page: 1741
  year: 2017
  ident: 2022092013192996700_ref59
  article-title: Crohn’s disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)31711-1
– volume: 19
  start-page: 769
  year: 2004
  ident: 2022092013192996700_ref51
  article-title: Longitudinal data analysis. A comparison between generalized estimating equations and random coefficient analysis
  publication-title: Eur J Epidemiol
  doi: 10.1023/B:EJEP.0000036572.00663.f2
– volume: 48
  start-page: 186
  year: 2015
  ident: 2022092013192996700_ref26
  article-title: Altered fecal microbiota composition in patients with major depressive disorder
  publication-title: Brain Behav Immun
  doi: 10.1016/j.bbi.2015.03.016
– volume: 20
  start-page: 416
  year: 2019
  ident: 2022092013192996700_ref68
  article-title: metaSPARSim: a 16S rRNA gene sequencing count data simulator
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-019-2882-6
– volume-title: Applied Longitudinal Data Analysis for Epidemiology
  year: 2013
  ident: 2022092013192996700_ref48
  doi: 10.1017/CBO9781139342834
– volume: 42
  start-page: 772
  year: 2018
  ident: 2022092013192996700_ref42
  article-title: A small-sample kernel association test for correlated data with application to microbiome association studies
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.22160
– volume: 66
  start-page: 851
  year: 2004
  ident: 2022092013192996700_ref47
  article-title: Efficiency of generalized estimating equations for binary responses
  publication-title: J Royal Statistical Soc B
  doi: 10.1111/j.1467-9868.2004.05741.x
– volume: 489
  start-page: 250
  year: 2012
  ident: 2022092013192996700_ref11
  article-title: Genomic approaches to studying the human microbiota
  publication-title: Nature
  doi: 10.1038/nature11553
– volume: 365
  year: 2019
  ident: 2022092013192996700_ref9
  article-title: A sparse covarying unit that describes healthy and impaired human gut microbiota development
  publication-title: Science
  doi: 10.1126/science.aau4735
– volume: 22
  start-page: 192
  year: 2021
  ident: 2022092013192996700_ref65
  article-title: mbImpute: an accurate and robust imputation method for microbiome data
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02400-4
– volume: 73
  start-page: 422
  year: 2018
  ident: 2022092013192996700_ref38
  article-title: Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2017-210408
– volume: 41
  start-page: 210
  year: 2017
  ident: 2022092013192996700_ref72
  article-title: A small-sample multivariate kernel machine test for microbiome association studies
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.22030
– volume: 154
  start-page: 293
  year: 2018
  ident: 2022092013192996700_ref73
  article-title: Association of disease severity with skin microbiome and filaggrin gene mutations in adult atopic dermatitis
  publication-title: JAMA Dermatol
  doi: 10.1001/jamadermatol.2017.5440
SSID ssj0020781
Score 2.3567533
Snippet Abstract The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association...
The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Biomarkers
Crohn's disease
Error correction
Intestinal microflora
Mathematical analysis
Microbial activity
Microbiomes
Microorganisms
Phenotypes
Statistical methods
Statistics
Title Detecting sparse microbial association signals adaptively from longitudinal microbiome data based on generalized estimating equations
URI https://www.ncbi.nlm.nih.gov/pubmed/35561307
https://www.proquest.com/docview/2717367724
https://www.proquest.com/docview/2664795693
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kIngR39ZHXaEnIWiSzW5y9FVEUC8t9BZ2s7NS6MumPdS7_9uZJK34QMkpZIaFndmdmczjY6zprAx8lykPQk0QZlQEYDLnJVKjNpsY_ALr8PFJ3nfEQzfqVgWy-S8p_CS8MD1zYYzO0JfHqxbNL6lz-7m7jKtoXk3ZRKQ8mu5eteF94_1ieL40s_3wKQvb0tpkG5VTyK9KKW6xFRhus7USJnK-w95vgX71o5HheP4nOfBBr5ifhDz6c3s51WKgNnFt9Zhusf6cU_cI748IlGhmCQBrwToaAKfqUE5mzHLkfikHUPfe8JVGb5AriyvCazkMPN9lndZd--beq-ATvCxQ8dQLNMTOxML5GXoRKgAMFWVkZSy0wQd9C8L0FioycRgap30HkFh7qRKrEwsu3GO14WgIB4xTrkYoMFliA2GEjTV6Jdo6qYUvwJk6O1_sbZpVs8UJ4qKfljnuMEVBpJUg6qy5JB6XIzV-JztFIf1NcbwQYFqdvDwNqKxAYswg6uxs-RnPDCVC9BBGM6SRUigMDJOwzvZLwS_XCaMipFKH_y5_xNYD6oWgFNXlMatNJzM4QQ9lahps9er69rrVKPT0A31G6Ps
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+sparse+microbial+association+signals+adaptively+from+longitudinal+microbiome+data+based+on+generalized+estimating+equations&rft.jtitle=Briefings+in+bioinformatics&rft.au=Sun%2C+Han&rft.au=Huang%2C+Xiaoyun&rft.au=Huo%2C+Ban&rft.au=Tan%2C+Yuting&rft.date=2022-09-20&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbac149&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon