GLOBAL BEHAVIORS FOR A CLASS OF MULTI-GROUP SIRS EPIDEMIC MODELS WITH NONLINEAR INCIDENCE RATE
In this paper, we study a class of multi-group SIRS epidemic models with nonlinear incidence rate which have cross patch infection between different groups. The basic reproduction number ℛ0is calculated. By using the method of Lyapunov functions, LaSalle’s invariance principle, the theory of the non...
Saved in:
Published in | Taiwanese journal of mathematics Vol. 19; no. 5; pp. 1509 - 1532 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Mathematical Society of the Republic of China
01.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we study a class of multi-group SIRS epidemic models with nonlinear incidence rate which have cross patch infection between different groups. The basic reproduction number ℛ0is calculated. By using the method of Lyapunov functions, LaSalle’s invariance principle, the theory of the nonnegative matrices and the theory of the persistence of dynamical systems, it is proved that if ℛ0≤ 1 then the disease-free equilibrium is globally asymptotically stable, and if ℛ0> 1 then the disease in the model is uniform persistent. Furthermore, when ℛ0> 1, by constructing new Lyapunov functions we establish the sufficient conditions of the global asymptotic stability for the endemic equilibrium.
2010Mathematics Subject Classification: 34D23, 92D30.
Key words and phrases: Multi-group SIRS epidemic model, Nonlinear incidence rate, Basic reproduction number, Extinction and permanence, Global asymptotic stability, Lyapunov function. |
---|---|
AbstractList | In this paper, we study a class of multi-group SIRS epidemic models with nonlinear incidence rate which have cross patch infection between different groups. The basic reproduction number ℛ0is calculated. By using the method of Lyapunov functions, LaSalle’s invariance principle, the theory of the nonnegative matrices and the theory of the persistence of dynamical systems, it is proved that if ℛ0≤ 1 then the disease-free equilibrium is globally asymptotically stable, and if ℛ0> 1 then the disease in the model is uniform persistent. Furthermore, when ℛ0> 1, by constructing new Lyapunov functions we establish the sufficient conditions of the global asymptotic stability for the endemic equilibrium.
2010Mathematics Subject Classification: 34D23, 92D30.
Key words and phrases: Multi-group SIRS epidemic model, Nonlinear incidence rate, Basic reproduction number, Extinction and permanence, Global asymptotic stability, Lyapunov function. |
Author | Jiang, Haijun Tang, Qian Teng, Zhidong |
Author_xml | – sequence: 1 givenname: Qian surname: Tang fullname: Tang, Qian – sequence: 2 givenname: Zhidong surname: Teng fullname: Teng, Zhidong – sequence: 3 givenname: Haijun surname: Jiang fullname: Jiang, Haijun |
BookMark | eNp9kM1Og0AYRSemJrbVB3A3SzfgfAPzw5JS2k5CoQGqOwnCECFtMUBifHupNS5cuLqLe89dnBmanNqTRugeiAnAGXkcmqMJjkkJMNOmhF2hKaXUNrhkMEFTIFQYzJbiBs36viGESg58il7WQbRwA7zwN-6TiuIEr6IYu9gL3CTB0Qpv90GqjHUc7Xc4UWPv79TS3yoPb6OlHyT4WaUbHEZhoELfjbEKvbEPPR_HburfousqP_T67ifnaL_yU29jBNFaeW5gFFTIwaCgOVABhEtBC8Z4VUpt20ISVr7aZc5LrgsJGizHyTWICpwKLItJySwudGXNkbj8Fl3b952usqIe8qFuT0OX14cMSPatKRs1ZeBkZ03ZWdNIwh_yvauPeff5L_NwYZp-aLtfYMjrj-aYD2_nNcuAEcf6ArWicoc |
CitedBy_id | crossref_primary_10_1016_j_isatra_2022_12_006 crossref_primary_10_1016_j_nonrwa_2019_05_008 crossref_primary_10_1016_j_physa_2019_121555 |
Cites_doi | 10.1007/s11538-008-9352-z 10.1016/S0025-5564(99)00030-9 10.1016/j.nonrwa.2009.12.008 10.1016/j.nonrwa.2012.11.005 10.1016/j.jde.2009.09.003 10.1017/CBO9780511530043 10.1016/j.jmaa.2009.09.017 10.1016/B978-0-12-092250-5.50011-4 10.1090/S0002-9939-08-09341-6 10.1016/j.nonrwa.2009.01.040 10.1016/j.nonrwa.2011.11.016 10.1016/j.amc.2011.10.015 10.1016/j.camwa.2010.08.020 10.1007/BFb0080630 |
ContentType | Journal Article |
Copyright | 2015 Mathematical Society of the Republic of China |
Copyright_xml | – notice: 2015 Mathematical Society of the Republic of China |
DBID | AAYXX CITATION |
DOI | 10.11650/tjm.19.2015.4205 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2224-6851 |
EndPage | 1532 |
ExternalDocumentID | 10_11650_tjm_19_2015_4205 taiwjmath.19.5.1509 |
GroupedDBID | -~X 123 29Q 2WC AAFWJ AAHSX ABBHK ABXSQ ACHDO ACIPV ACMTB ACTMH ADULT AEHFS AELHJ AENEX AEUPB AFBOV AFFOW AFOWJ AGLNM AIHAF ALMA_UNASSIGNED_HOLDINGS ALRMG E3Z EBS ECEWR EJD IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST OK1 OVT RBV RPE SA0 XSB AAYXX CITATION |
ID | FETCH-LOGICAL-c278t-21e6127106872c556fd8e447805db4da6d6ec81e1399ae17f19f1335885367ef3 |
ISSN | 1027-5487 |
IngestDate | Tue Jul 01 02:33:54 EDT 2025 Thu Apr 24 23:02:46 EDT 2025 Thu Jul 03 21:19:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c278t-21e6127106872c556fd8e447805db4da6d6ec81e1399ae17f19f1335885367ef3 |
PageCount | 24 |
ParticipantIDs | crossref_citationtrail_10_11650_tjm_19_2015_4205 crossref_primary_10_11650_tjm_19_2015_4205 jstor_primary_taiwjmath_19_5_1509 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Taiwanese journal of mathematics |
PublicationYear | 2015 |
Publisher | Mathematical Society of the Republic of China |
Publisher_xml | – name: Mathematical Society of the Republic of China |
References | 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 10 |
References_xml | – ident: 3 doi: 10.1007/s11538-008-9352-z – ident: 15 doi: 10.1016/S0025-5564(99)00030-9 – ident: 11 doi: 10.1016/j.nonrwa.2009.12.008 – ident: 1 – ident: 2 doi: 10.1016/j.nonrwa.2012.11.005 – ident: 12 – ident: 9 doi: 10.1016/j.jde.2009.09.003 – ident: 16 doi: 10.1017/CBO9780511530043 – ident: 7 doi: 10.1016/j.jmaa.2009.09.017 – ident: 18 doi: 10.1016/B978-0-12-092250-5.50011-4 – ident: 8 doi: 10.1090/S0002-9939-08-09341-6 – ident: 10 doi: 10.1016/j.nonrwa.2009.01.040 – ident: 13 – ident: 14 – ident: 4 doi: 10.1016/j.nonrwa.2011.11.016 – ident: 5 doi: 10.1016/j.amc.2011.10.015 – ident: 6 doi: 10.1016/j.camwa.2010.08.020 – ident: 17 doi: 10.1007/BFb0080630 |
SSID | ssj0028616 |
Score | 2.045755 |
Snippet | In this paper, we study a class of multi-group SIRS epidemic models with nonlinear incidence rate which have cross patch infection between different groups.... |
SourceID | crossref jstor |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1509 |
SubjectTerms | Disease models Epidemics Liapunov functions |
Title | GLOBAL BEHAVIORS FOR A CLASS OF MULTI-GROUP SIRS EPIDEMIC MODELS WITH NONLINEAR INCIDENCE RATE |
URI | https://www.jstor.org/stable/taiwjmath.19.5.1509 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dj5NAEN_U80UfjJ_x_Mqa-GRDZSnLxyNVTlBatKWXiw9HYHeJbbyeMTQm_vXOAN1yl9N4vhCyLBMy88vOb5aZHUJeMV-AV3CUIbA81xYCkwBkadiOkqZVeZZouihMZ060tD-c8JPB4GMva2lblyPx68q6kv-xKoyBXbFK9hqW1UJhAO7BvnAFC8P1n2z8PkknQTKchFFwHKfzxRBCOqwzT4JF05J8ukyy2GibeC5ieB5-ilvFT9N3YbKA8D2LhrN0lsSzMJhj5RI8xz2neZCFfd6aFaufBTar7B81caaPfNXEPOu2nz_3UJepduzL15U87xwl5uysurlRsVpvN_3tB8Z1IttuxYS41sCw58KS6vegw69eqYEagn7r9dmIYcEQ4yPbMvneLe1-xV_yVjqHsIleQEgOInLm5ygiRxE3yE0LYgZsZzGfHOvo23OaPrj6e7tf3CjizeWvuEBS-nmqDevI7pI7XbhAg9b298hAbe6T29O94h-Q0xYFVKOAAgpoQBsU0PSI9lBAEQV0hwLaooAiCqhGAdUooIiCh2R5FGZvI6PrmmEIy_Vqw2IKWCsQR8dzLcG5U0lP2Tb2rpClLQtHOkp4TAH19wvF3Ir5FRuPuQfEzXFVNX5EDjbnG_WY0EJ4lSxNWxT-2DYLWVTSlRI8RCkKJbg4JOZOTbnojpTHzibf8j8a55C81q98b89T-dvkl43u9cwawL5GcOM0nkMw4z-5jsCn5NYew8_IQf1jq54DqazLFw1YfgNGIGUX |
linkProvider | Project Euclid |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GLOBAL+BEHAVIORS+FOR+A+CLASS+OF+MULTI-GROUP+SIRS+EPIDEMIC+MODELS+WITH+NONLINEAR+INCIDENCE+RATE&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Tang%2C+Qian&rft.au=Teng%2C+Zhidong&rft.au=Jiang%2C+Haijun&rft.date=2015-10-01&rft.issn=1027-5487&rft.volume=19&rft.issue=5&rft_id=info:doi/10.11650%2Ftjm.19.2015.4205&rft.externalDBID=n%2Fa&rft.externalDocID=10_11650_tjm_19_2015_4205 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon |