GLOBAL BEHAVIORS FOR A CLASS OF MULTI-GROUP SIRS EPIDEMIC MODELS WITH NONLINEAR INCIDENCE RATE

In this paper, we study a class of multi-group SIRS epidemic models with nonlinear incidence rate which have cross patch infection between different groups. The basic reproduction number ℛ0is calculated. By using the method of Lyapunov functions, LaSalle’s invariance principle, the theory of the non...

Full description

Saved in:
Bibliographic Details
Published inTaiwanese journal of mathematics Vol. 19; no. 5; pp. 1509 - 1532
Main Authors Tang, Qian, Teng, Zhidong, Jiang, Haijun
Format Journal Article
LanguageEnglish
Published Mathematical Society of the Republic of China 01.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study a class of multi-group SIRS epidemic models with nonlinear incidence rate which have cross patch infection between different groups. The basic reproduction number ℛ0is calculated. By using the method of Lyapunov functions, LaSalle’s invariance principle, the theory of the nonnegative matrices and the theory of the persistence of dynamical systems, it is proved that if ℛ0≤ 1 then the disease-free equilibrium is globally asymptotically stable, and if ℛ0> 1 then the disease in the model is uniform persistent. Furthermore, when ℛ0> 1, by constructing new Lyapunov functions we establish the sufficient conditions of the global asymptotic stability for the endemic equilibrium. 2010Mathematics Subject Classification: 34D23, 92D30. Key words and phrases: Multi-group SIRS epidemic model, Nonlinear incidence rate, Basic reproduction number, Extinction and permanence, Global asymptotic stability, Lyapunov function.
AbstractList In this paper, we study a class of multi-group SIRS epidemic models with nonlinear incidence rate which have cross patch infection between different groups. The basic reproduction number ℛ0is calculated. By using the method of Lyapunov functions, LaSalle’s invariance principle, the theory of the nonnegative matrices and the theory of the persistence of dynamical systems, it is proved that if ℛ0≤ 1 then the disease-free equilibrium is globally asymptotically stable, and if ℛ0> 1 then the disease in the model is uniform persistent. Furthermore, when ℛ0> 1, by constructing new Lyapunov functions we establish the sufficient conditions of the global asymptotic stability for the endemic equilibrium. 2010Mathematics Subject Classification: 34D23, 92D30. Key words and phrases: Multi-group SIRS epidemic model, Nonlinear incidence rate, Basic reproduction number, Extinction and permanence, Global asymptotic stability, Lyapunov function.
Author Jiang, Haijun
Tang, Qian
Teng, Zhidong
Author_xml – sequence: 1
  givenname: Qian
  surname: Tang
  fullname: Tang, Qian
– sequence: 2
  givenname: Zhidong
  surname: Teng
  fullname: Teng, Zhidong
– sequence: 3
  givenname: Haijun
  surname: Jiang
  fullname: Jiang, Haijun
BookMark eNp9kM1Og0AYRSemJrbVB3A3SzfgfAPzw5JS2k5CoQGqOwnCECFtMUBifHupNS5cuLqLe89dnBmanNqTRugeiAnAGXkcmqMJjkkJMNOmhF2hKaXUNrhkMEFTIFQYzJbiBs36viGESg58il7WQbRwA7zwN-6TiuIEr6IYu9gL3CTB0Qpv90GqjHUc7Xc4UWPv79TS3yoPb6OlHyT4WaUbHEZhoELfjbEKvbEPPR_HburfousqP_T67ifnaL_yU29jBNFaeW5gFFTIwaCgOVABhEtBC8Z4VUpt20ISVr7aZc5LrgsJGizHyTWICpwKLItJySwudGXNkbj8Fl3b952usqIe8qFuT0OX14cMSPatKRs1ZeBkZ03ZWdNIwh_yvauPeff5L_NwYZp-aLtfYMjrj-aYD2_nNcuAEcf6ArWicoc
CitedBy_id crossref_primary_10_1016_j_isatra_2022_12_006
crossref_primary_10_1016_j_nonrwa_2019_05_008
crossref_primary_10_1016_j_physa_2019_121555
Cites_doi 10.1007/s11538-008-9352-z
10.1016/S0025-5564(99)00030-9
10.1016/j.nonrwa.2009.12.008
10.1016/j.nonrwa.2012.11.005
10.1016/j.jde.2009.09.003
10.1017/CBO9780511530043
10.1016/j.jmaa.2009.09.017
10.1016/B978-0-12-092250-5.50011-4
10.1090/S0002-9939-08-09341-6
10.1016/j.nonrwa.2009.01.040
10.1016/j.nonrwa.2011.11.016
10.1016/j.amc.2011.10.015
10.1016/j.camwa.2010.08.020
10.1007/BFb0080630
ContentType Journal Article
Copyright 2015 Mathematical Society of the Republic of China
Copyright_xml – notice: 2015 Mathematical Society of the Republic of China
DBID AAYXX
CITATION
DOI 10.11650/tjm.19.2015.4205
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2224-6851
EndPage 1532
ExternalDocumentID 10_11650_tjm_19_2015_4205
taiwjmath.19.5.1509
GroupedDBID -~X
123
29Q
2WC
AAFWJ
AAHSX
ABBHK
ABXSQ
ACHDO
ACIPV
ACMTB
ACTMH
ADULT
AEHFS
AELHJ
AENEX
AEUPB
AFBOV
AFFOW
AFOWJ
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALRMG
E3Z
EBS
ECEWR
EJD
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
OK1
OVT
RBV
RPE
SA0
XSB
AAYXX
CITATION
ID FETCH-LOGICAL-c278t-21e6127106872c556fd8e447805db4da6d6ec81e1399ae17f19f1335885367ef3
ISSN 1027-5487
IngestDate Tue Jul 01 02:33:54 EDT 2025
Thu Apr 24 23:02:46 EDT 2025
Thu Jul 03 21:19:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c278t-21e6127106872c556fd8e447805db4da6d6ec81e1399ae17f19f1335885367ef3
PageCount 24
ParticipantIDs crossref_citationtrail_10_11650_tjm_19_2015_4205
crossref_primary_10_11650_tjm_19_2015_4205
jstor_primary_taiwjmath_19_5_1509
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Taiwanese journal of mathematics
PublicationYear 2015
Publisher Mathematical Society of the Republic of China
Publisher_xml – name: Mathematical Society of the Republic of China
References 11
12
13
14
15
16
17
18
1
2
3
4
5
6
7
8
9
10
References_xml – ident: 3
  doi: 10.1007/s11538-008-9352-z
– ident: 15
  doi: 10.1016/S0025-5564(99)00030-9
– ident: 11
  doi: 10.1016/j.nonrwa.2009.12.008
– ident: 1
– ident: 2
  doi: 10.1016/j.nonrwa.2012.11.005
– ident: 12
– ident: 9
  doi: 10.1016/j.jde.2009.09.003
– ident: 16
  doi: 10.1017/CBO9780511530043
– ident: 7
  doi: 10.1016/j.jmaa.2009.09.017
– ident: 18
  doi: 10.1016/B978-0-12-092250-5.50011-4
– ident: 8
  doi: 10.1090/S0002-9939-08-09341-6
– ident: 10
  doi: 10.1016/j.nonrwa.2009.01.040
– ident: 13
– ident: 14
– ident: 4
  doi: 10.1016/j.nonrwa.2011.11.016
– ident: 5
  doi: 10.1016/j.amc.2011.10.015
– ident: 6
  doi: 10.1016/j.camwa.2010.08.020
– ident: 17
  doi: 10.1007/BFb0080630
SSID ssj0028616
Score 2.045755
Snippet In this paper, we study a class of multi-group SIRS epidemic models with nonlinear incidence rate which have cross patch infection between different groups....
SourceID crossref
jstor
SourceType Enrichment Source
Index Database
Publisher
StartPage 1509
SubjectTerms Disease models
Epidemics
Liapunov functions
Title GLOBAL BEHAVIORS FOR A CLASS OF MULTI-GROUP SIRS EPIDEMIC MODELS WITH NONLINEAR INCIDENCE RATE
URI https://www.jstor.org/stable/taiwjmath.19.5.1509
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dj5NAEN_U80UfjJ_x_Mqa-GRDZSnLxyNVTlBatKWXiw9HYHeJbbyeMTQm_vXOAN1yl9N4vhCyLBMy88vOb5aZHUJeMV-AV3CUIbA81xYCkwBkadiOkqZVeZZouihMZ060tD-c8JPB4GMva2lblyPx68q6kv-xKoyBXbFK9hqW1UJhAO7BvnAFC8P1n2z8PkknQTKchFFwHKfzxRBCOqwzT4JF05J8ukyy2GibeC5ieB5-ilvFT9N3YbKA8D2LhrN0lsSzMJhj5RI8xz2neZCFfd6aFaufBTar7B81caaPfNXEPOu2nz_3UJepduzL15U87xwl5uysurlRsVpvN_3tB8Z1IttuxYS41sCw58KS6vegw69eqYEagn7r9dmIYcEQ4yPbMvneLe1-xV_yVjqHsIleQEgOInLm5ygiRxE3yE0LYgZsZzGfHOvo23OaPrj6e7tf3CjizeWvuEBS-nmqDevI7pI7XbhAg9b298hAbe6T29O94h-Q0xYFVKOAAgpoQBsU0PSI9lBAEQV0hwLaooAiCqhGAdUooIiCh2R5FGZvI6PrmmEIy_Vqw2IKWCsQR8dzLcG5U0lP2Tb2rpClLQtHOkp4TAH19wvF3Ir5FRuPuQfEzXFVNX5EDjbnG_WY0EJ4lSxNWxT-2DYLWVTSlRI8RCkKJbg4JOZOTbnojpTHzibf8j8a55C81q98b89T-dvkl43u9cwawL5GcOM0nkMw4z-5jsCn5NYew8_IQf1jq54DqazLFw1YfgNGIGUX
linkProvider Project Euclid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GLOBAL+BEHAVIORS+FOR+A+CLASS+OF+MULTI-GROUP+SIRS+EPIDEMIC+MODELS+WITH+NONLINEAR+INCIDENCE+RATE&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Tang%2C+Qian&rft.au=Teng%2C+Zhidong&rft.au=Jiang%2C+Haijun&rft.date=2015-10-01&rft.issn=1027-5487&rft.volume=19&rft.issue=5&rft_id=info:doi/10.11650%2Ftjm.19.2015.4205&rft.externalDBID=n%2Fa&rft.externalDocID=10_11650_tjm_19_2015_4205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon