Security enhancement and attack detection using optimized hybrid deep learning and improved encryption algorithm over Internet of Things

Exponential increases in smart devices and reduced costs of sensors have increased applications using IoT (Internet of Things). There has been an extensive analysis on the Internet traffic detection and classification in the past decade, however this is still a trending subject with respect to IoT....

Full description

Saved in:
Bibliographic Details
Published inMeasurement. Sensors Vol. 30; p. 100917
Main Authors M, Syed Shahul Hameed, Akshaya, V., Mandala, Vishwanadham, Anilkumar, Chunduru, VishnuRaja, P., Aarthi, R.
Format Journal Article
LanguageEnglish
Published Elsevier 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exponential increases in smart devices and reduced costs of sensors have increased applications using IoT (Internet of Things). There has been an extensive analysis on the Internet traffic detection and classification in the past decade, however this is still a trending subject with respect to IoT. The objective of this work is to enhance attack detection rates in a timely fashion. The security and accuracy of attack detection rates an IDS (Intrusion Detection System) that uses HCNN (Hybrid Convolutional Neural Networks) for identifying IoT attacks in a city. After completion of pre-processing stages, FS (Feature Selection) using EHOA (Entropy-Hummingbird Optimization Algorithm) is used. Subsequently, classifications that use optimizations are carried out for IoT attack detections and classification results evaluated. KH-AES (Krill Herd-Advanced Encryption Standard) algorithm in data exchanges for security. The NSL-KDD dataset is utilised in this research to implement IDS. The data was classified based on six types of attacks: U2R, DoS, R2L, Probing, normal, and unknown. The weights in HCNN layers have significant impacts on classification outcomes. The proposed scheme is compared with popular approaches in terms of FS, classifications and security of data shares where it was found that proposed approach yields commendable outcomes.
AbstractList Exponential increases in smart devices and reduced costs of sensors have increased applications using IoT (Internet of Things). There has been an extensive analysis on the Internet traffic detection and classification in the past decade, however this is still a trending subject with respect to IoT. The objective of this work is to enhance attack detection rates in a timely fashion. The security and accuracy of attack detection rates an IDS (Intrusion Detection System) that uses HCNN (Hybrid Convolutional Neural Networks) for identifying IoT attacks in a city. After completion of pre-processing stages, FS (Feature Selection) using EHOA (Entropy-Hummingbird Optimization Algorithm) is used. Subsequently, classifications that use optimizations are carried out for IoT attack detections and classification results evaluated. KH-AES (Krill Herd-Advanced Encryption Standard) algorithm in data exchanges for security. The NSL-KDD dataset is utilised in this research to implement IDS. The data was classified based on six types of attacks: U2R, DoS, R2L, Probing, normal, and unknown. The weights in HCNN layers have significant impacts on classification outcomes. The proposed scheme is compared with popular approaches in terms of FS, classifications and security of data shares where it was found that proposed approach yields commendable outcomes.
ArticleNumber 100917
Author Akshaya, V.
Anilkumar, Chunduru
VishnuRaja, P.
Aarthi, R.
M, Syed Shahul Hameed
Mandala, Vishwanadham
Author_xml – sequence: 1
  givenname: Syed Shahul Hameed
  surname: M
  fullname: M, Syed Shahul Hameed
– sequence: 2
  givenname: V.
  surname: Akshaya
  fullname: Akshaya, V.
– sequence: 3
  givenname: Vishwanadham
  surname: Mandala
  fullname: Mandala, Vishwanadham
– sequence: 4
  givenname: Chunduru
  surname: Anilkumar
  fullname: Anilkumar, Chunduru
– sequence: 5
  givenname: P.
  surname: VishnuRaja
  fullname: VishnuRaja, P.
– sequence: 6
  givenname: R.
  surname: Aarthi
  fullname: Aarthi, R.
BookMark eNp9kcFu1DAQhi1UJErpG3DwC-wydpzE4YYqoCtV6oG9WxN7suslsSPHRVqegMfG6YKEeuA0o5n5_pnR_5ZdhRiIsfcCtgJE8-G0nQgXClsJsiol6ET7il3Lpqk3JVVX_-Rv2O2ynABA6sJKdc1-fSP7lHw-cwpHDJYmCpljcBxzRvudO8pks4-BPy0-HHics5_8T3L8eO6Td2WAZj4SprC2V9JPc4o_ygQFm87zM4zjIZY1x4mXTuK7kCkFyjwOfH8s4PKOvR5wXOj2T7xh-y-f93f3m4fHr7u7Tw8bK1vdbhzovukc2FrULVTS1QgEpPUwKEmuQqVtb6mGDoRtRFMpKfWgtWppUKKvbtjuIusinsyc_ITpbCJ681yI6WAwZW9HMtR2NXXSSlfVqleuEzg0PbR1ox1pwKL18aJlU1yWRIOxPuP6bk7oRyPArA6Zk7k4ZFaHzMWhAqsX8N9j_ov9BinrnHw
CitedBy_id crossref_primary_10_46632_bmes_2_3_4
crossref_primary_10_46632_bmes_2_3_5
crossref_primary_10_3390_su162411040
crossref_primary_10_3390_ai5040112
crossref_primary_10_46632_jmc_2_3_4
crossref_primary_10_46632_jemm_10_1_4
crossref_primary_10_46632_bmes_2_1_3
crossref_primary_10_3390_s23218686
crossref_primary_10_1007_s11831_024_10135_1
crossref_primary_10_1080_0954898X_2024_2443605
crossref_primary_10_46632_jacp_2_4_2
crossref_primary_10_46632_jemm_9_4_1
crossref_primary_10_46632_jacp_2_3_4
crossref_primary_10_46632_jacp_2_4_3
crossref_primary_10_46632_jeae_2_4_4
crossref_primary_10_46632_aae_1_4_1
Cites_doi 10.1109/ACCESS.2019.2919494
10.21629/JSEE.2018.02.19
10.1016/j.adhoc.2018.09.007
10.1016/j.future.2020.05.020
10.1016/j.cma.2021.114194
10.1016/j.compchemeng.2017.10.013
10.19026/rjaset.6.3638
10.1016/j.asoc.2018.05.049
10.4018/IJACI.2021010105
10.1049/iet-net.2018.5206
10.1016/j.comcom.2021.05.024
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.measen.2023.100917
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2665-9174
ExternalDocumentID oai_doaj_org_article_e795e92c2d354b4d91af6b07568de80a
10_1016_j_measen_2023_100917
GroupedDBID 0R~
53G
AAEDW
AALRI
AAXUO
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
ID FETCH-LOGICAL-c2787-d08b69d0c5157032d5a0e0e88ff42ed3a48cbce50901c61634228f8847ef41b3
IEDL.DBID DOA
ISSN 2665-9174
IngestDate Wed Aug 27 01:20:49 EDT 2025
Tue Jul 01 01:06:26 EDT 2025
Thu Apr 24 22:51:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2787-d08b69d0c5157032d5a0e0e88ff42ed3a48cbce50901c61634228f8847ef41b3
OpenAccessLink https://doaj.org/article/e795e92c2d354b4d91af6b07568de80a
ParticipantIDs doaj_primary_oai_doaj_org_article_e795e92c2d354b4d91af6b07568de80a
crossref_citationtrail_10_1016_j_measen_2023_100917
crossref_primary_10_1016_j_measen_2023_100917
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-00
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Measurement. Sensors
PublicationYear 2023
Publisher Elsevier
Publisher_xml – name: Elsevier
References Bu (10.1016/j.measen.2023.100917_bib7) 2019; 92
Sahu (10.1016/j.measen.2023.100917_bib5) 2021; 176
Zhao (10.1016/j.measen.2023.100917_bib11) 2022; 388
Rafie-Majd (10.1016/j.measen.2023.100917_bib18) 2018; 109
Zhuoran (10.1016/j.measen.2023.100917_bib12) 2018; 29
Mafarja (10.1016/j.measen.2023.100917_bib3) 2020; 112
Bhayo (10.1016/j.measen.2023.100917_bib16) 2023; 123
Ahmed (10.1016/j.measen.2023.100917_bib17) 2021; 12
Dawoud (10.1016/j.measen.2023.100917_bib6) 2018; 3
Rathore (10.1016/j.measen.2023.100917_bib2) 2018; 72
Roopak (10.1016/j.measen.2023.100917_bib4) 2020; 9
Parwez (10.1016/j.measen.2023.100917_bib13) 2019; 7
Bhunia (10.1016/j.measen.2023.100917_bib1) 2017
Kan (10.1016/j.measen.2023.100917_bib9) 2021; 568
Mohamad (10.1016/j.measen.2023.100917_bib10) 2013; 6
Teng (10.1016/j.measen.2023.100917_bib14) 2020; 22
Ghosh (10.1016/j.measen.2023.100917_bib8) 2020; 17
Saremi (10.1016/j.measen.2023.100917_bib15) 2014; 12
References_xml – volume: 7
  start-page: 68678
  year: 2019
  ident: 10.1016/j.measen.2023.100917_bib13
  article-title: Multi-label classification of microblogging texts using convolution neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919494
– volume: 3
  start-page: 82
  year: 2018
  ident: 10.1016/j.measen.2023.100917_bib6
– volume: 29
  start-page: 386
  issue: 2
  year: 2018
  ident: 10.1016/j.measen.2023.100917_bib12
  article-title: An optimization method: hummingbirds optimization algorithm
  publication-title: J. Syst. Eng. Electron.
  doi: 10.21629/JSEE.2018.02.19
– volume: 12
  start-page: 180
  year: 2014
  ident: 10.1016/j.measen.2023.100917_bib15
– volume: 92
  start-page: 1
  year: 2019
  ident: 10.1016/j.measen.2023.100917_bib7
  article-title: A secure and robust scheme for sharing confidential information in IoT systems
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2018.09.007
– volume: 123
  year: 2023
  ident: 10.1016/j.measen.2023.100917_bib16
– volume: 112
  start-page: 18
  year: 2020
  ident: 10.1016/j.measen.2023.100917_bib3
  article-title: Augmented whale feature selection for IoT attacks: structure, analysis and applications
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2020.05.020
– volume: 388
  start-page: 1
  year: 2022
  ident: 10.1016/j.measen.2023.100917_bib11
  article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114194
– volume: 109
  start-page: 9
  year: 2018
  ident: 10.1016/j.measen.2023.100917_bib18
  article-title: Modelling and solving the integrated inventory-location-routing problem in a multi-period and multi-perishable product supply chain with uncertainty: Lagrangian relaxation algorithm
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.10.013
– volume: 6
  start-page: 3299
  issue: 17
  year: 2013
  ident: 10.1016/j.measen.2023.100917_bib10
  article-title: Standardization and its effects on K-means clustering algorithm
  publication-title: Res. J. Appl. Sci. Eng. Technol.
  doi: 10.19026/rjaset.6.3638
– volume: 72
  start-page: 79
  year: 2018
  ident: 10.1016/j.measen.2023.100917_bib2
  article-title: Semi-supervised learning based distributed attack detection framework for IoT
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.049
– volume: 12
  start-page: 114
  issue: 1
  year: 2021
  ident: 10.1016/j.measen.2023.100917_bib17
  article-title: DADEM: distributed attack detection model based on big data analytics for the enhancement of the security of internet of things (IoT)
  publication-title: Int. J. Ambient Comput. Intell. (IJACI)
  doi: 10.4018/IJACI.2021010105
– start-page: 1
  year: 2017
  ident: 10.1016/j.measen.2023.100917_bib1
  article-title: Dynamic attack detection and mitigation in IoT using SDN
– volume: 9
  start-page: 120
  issue: 3
  year: 2020
  ident: 10.1016/j.measen.2023.100917_bib4
  article-title: Multi‐objective‐based feature selection for DDoS attack detection in IoT networks
  publication-title: IET Netw.
  doi: 10.1049/iet-net.2018.5206
– volume: 17
  start-page: 2191
  issue: 3
  year: 2020
  ident: 10.1016/j.measen.2023.100917_bib8
  article-title: Edge-cloud computing for Internet of Things data analytics: embedding intelligence in the edge with deep learning
  publication-title: IEEE Trans. Ind. Inf.
– volume: 176
  start-page: 146
  year: 2021
  ident: 10.1016/j.measen.2023.100917_bib5
  article-title: Internet of things attack detection using hybrid deep learning model
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.05.024
– volume: 568
  start-page: 147
  year: 2021
  ident: 10.1016/j.measen.2023.100917_bib9
– volume: 22
  start-page: 112
  issue: 1
  year: 2020
  ident: 10.1016/j.measen.2023.100917_bib14
  article-title: A modified advanced encryption standard for data security
  publication-title: Int. J. Netw. Secur.
SSID ssj0002810124
Score 2.26104
Snippet Exponential increases in smart devices and reduced costs of sensors have increased applications using IoT (Internet of Things). There has been an extensive...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 100917
SubjectTerms Attack detection
Entropy-hummingbird optimization algorithm (EHOA)
Hybrid convolutional neural network (HCNN)
IoT
Krill herd-advanced encryption standard (KH-AES)
Security enhancement
Title Security enhancement and attack detection using optimized hybrid deep learning and improved encryption algorithm over Internet of Things
URI https://doaj.org/article/e795e92c2d354b4d91af6b07568de80a
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIp3jLA2tEGjuJMwIqqpBgAaRukR_nlkdTVIWhDMz8bO7sFLqxsHiIzonlO_s7X87fMXZmEdaM0ioxeSYTCdhoRKUEEAxLnZeZLem-8-1dMXiUN8N8uFTqi3LCIj1wnLhzKKscqsxmTuTSSFf1tC8MAl2hHKg0uEaIeUuHqecQMiLeKrm4KxcSuib0v4MoTzNBuQFVqFH2i0VLlP0BW6432UbnFPKLOJgttgLNNltfogrcYV_3XaE5Ds2YNEVRPa4bx3XbavvCHbQhq6rhlMo-4lPcCyZPH-D4eE63slAA3nhXJGIUej6FgAJKoKXO5mHv4Pp1NMXPjCeccjt5DBhCy6eexxKfu-zhuv9wNUi6KgqJzXA1Ji5VpqhcatFzweWduVynkIJS3ssMnNBSWWMBHYe0Zwt0z4gUzCtELfCyZ8QeW22mDewzrvC0KFyvLA0eQrwA7b0STlgwrnCllgdMLKazth3DOBW6eK0XqWTPdVRCTUqooxIOWPLT6y0ybPwhf0ma-pElfuzwAK2m7qym_stqDv_jJUdsjcYVk1uO2Wo7e4cTdFFacxqsEdvbz_43pT3ohA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Security+enhancement+and+attack+detection+using+optimized+hybrid+deep+learning+and+improved+encryption+algorithm+over+Internet+of+Things&rft.jtitle=Measurement.+Sensors&rft.au=Syed+Shahul+Hameed+M&rft.au=V.+Akshaya&rft.au=Vishwanadham+Mandala&rft.au=Chunduru+Anilkumar&rft.date=2023-12-01&rft.pub=Elsevier&rft.eissn=2665-9174&rft.volume=30&rft.spage=100917&rft_id=info:doi/10.1016%2Fj.measen.2023.100917&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e795e92c2d354b4d91af6b07568de80a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2665-9174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2665-9174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2665-9174&client=summon