Security enhancement and attack detection using optimized hybrid deep learning and improved encryption algorithm over Internet of Things
Exponential increases in smart devices and reduced costs of sensors have increased applications using IoT (Internet of Things). There has been an extensive analysis on the Internet traffic detection and classification in the past decade, however this is still a trending subject with respect to IoT....
Saved in:
Published in | Measurement. Sensors Vol. 30; p. 100917 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exponential increases in smart devices and reduced costs of sensors have increased applications using IoT (Internet of Things). There has been an extensive analysis on the Internet traffic detection and classification in the past decade, however this is still a trending subject with respect to IoT. The objective of this work is to enhance attack detection rates in a timely fashion. The security and accuracy of attack detection rates an IDS (Intrusion Detection System) that uses HCNN (Hybrid Convolutional Neural Networks) for identifying IoT attacks in a city. After completion of pre-processing stages, FS (Feature Selection) using EHOA (Entropy-Hummingbird Optimization Algorithm) is used. Subsequently, classifications that use optimizations are carried out for IoT attack detections and classification results evaluated. KH-AES (Krill Herd-Advanced Encryption Standard) algorithm in data exchanges for security. The NSL-KDD dataset is utilised in this research to implement IDS. The data was classified based on six types of attacks: U2R, DoS, R2L, Probing, normal, and unknown. The weights in HCNN layers have significant impacts on classification outcomes. The proposed scheme is compared with popular approaches in terms of FS, classifications and security of data shares where it was found that proposed approach yields commendable outcomes. |
---|---|
AbstractList | Exponential increases in smart devices and reduced costs of sensors have increased applications using IoT (Internet of Things). There has been an extensive analysis on the Internet traffic detection and classification in the past decade, however this is still a trending subject with respect to IoT. The objective of this work is to enhance attack detection rates in a timely fashion. The security and accuracy of attack detection rates an IDS (Intrusion Detection System) that uses HCNN (Hybrid Convolutional Neural Networks) for identifying IoT attacks in a city. After completion of pre-processing stages, FS (Feature Selection) using EHOA (Entropy-Hummingbird Optimization Algorithm) is used. Subsequently, classifications that use optimizations are carried out for IoT attack detections and classification results evaluated. KH-AES (Krill Herd-Advanced Encryption Standard) algorithm in data exchanges for security. The NSL-KDD dataset is utilised in this research to implement IDS. The data was classified based on six types of attacks: U2R, DoS, R2L, Probing, normal, and unknown. The weights in HCNN layers have significant impacts on classification outcomes. The proposed scheme is compared with popular approaches in terms of FS, classifications and security of data shares where it was found that proposed approach yields commendable outcomes. |
ArticleNumber | 100917 |
Author | Akshaya, V. Anilkumar, Chunduru VishnuRaja, P. Aarthi, R. M, Syed Shahul Hameed Mandala, Vishwanadham |
Author_xml | – sequence: 1 givenname: Syed Shahul Hameed surname: M fullname: M, Syed Shahul Hameed – sequence: 2 givenname: V. surname: Akshaya fullname: Akshaya, V. – sequence: 3 givenname: Vishwanadham surname: Mandala fullname: Mandala, Vishwanadham – sequence: 4 givenname: Chunduru surname: Anilkumar fullname: Anilkumar, Chunduru – sequence: 5 givenname: P. surname: VishnuRaja fullname: VishnuRaja, P. – sequence: 6 givenname: R. surname: Aarthi fullname: Aarthi, R. |
BookMark | eNp9kcFu1DAQhi1UJErpG3DwC-wydpzE4YYqoCtV6oG9WxN7suslsSPHRVqegMfG6YKEeuA0o5n5_pnR_5ZdhRiIsfcCtgJE8-G0nQgXClsJsiol6ET7il3Lpqk3JVVX_-Rv2O2ynABA6sJKdc1-fSP7lHw-cwpHDJYmCpljcBxzRvudO8pks4-BPy0-HHics5_8T3L8eO6Td2WAZj4SprC2V9JPc4o_ygQFm87zM4zjIZY1x4mXTuK7kCkFyjwOfH8s4PKOvR5wXOj2T7xh-y-f93f3m4fHr7u7Tw8bK1vdbhzovukc2FrULVTS1QgEpPUwKEmuQqVtb6mGDoRtRFMpKfWgtWppUKKvbtjuIusinsyc_ITpbCJ681yI6WAwZW9HMtR2NXXSSlfVqleuEzg0PbR1ox1pwKL18aJlU1yWRIOxPuP6bk7oRyPArA6Zk7k4ZFaHzMWhAqsX8N9j_ov9BinrnHw |
CitedBy_id | crossref_primary_10_46632_bmes_2_3_4 crossref_primary_10_46632_bmes_2_3_5 crossref_primary_10_3390_su162411040 crossref_primary_10_3390_ai5040112 crossref_primary_10_46632_jmc_2_3_4 crossref_primary_10_46632_jemm_10_1_4 crossref_primary_10_46632_bmes_2_1_3 crossref_primary_10_3390_s23218686 crossref_primary_10_1007_s11831_024_10135_1 crossref_primary_10_1080_0954898X_2024_2443605 crossref_primary_10_46632_jacp_2_4_2 crossref_primary_10_46632_jemm_9_4_1 crossref_primary_10_46632_jacp_2_3_4 crossref_primary_10_46632_jacp_2_4_3 crossref_primary_10_46632_jeae_2_4_4 crossref_primary_10_46632_aae_1_4_1 |
Cites_doi | 10.1109/ACCESS.2019.2919494 10.21629/JSEE.2018.02.19 10.1016/j.adhoc.2018.09.007 10.1016/j.future.2020.05.020 10.1016/j.cma.2021.114194 10.1016/j.compchemeng.2017.10.013 10.19026/rjaset.6.3638 10.1016/j.asoc.2018.05.049 10.4018/IJACI.2021010105 10.1049/iet-net.2018.5206 10.1016/j.comcom.2021.05.024 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.measen.2023.100917 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2665-9174 |
ExternalDocumentID | oai_doaj_org_article_e795e92c2d354b4d91af6b07568de80a 10_1016_j_measen_2023_100917 |
GroupedDBID | 0R~ 53G AAEDW AALRI AAXUO AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP CITATION EBS EJD FDB GROUPED_DOAJ M41 M~E OK1 ROL |
ID | FETCH-LOGICAL-c2787-d08b69d0c5157032d5a0e0e88ff42ed3a48cbce50901c61634228f8847ef41b3 |
IEDL.DBID | DOA |
ISSN | 2665-9174 |
IngestDate | Wed Aug 27 01:20:49 EDT 2025 Tue Jul 01 01:06:26 EDT 2025 Thu Apr 24 22:51:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2787-d08b69d0c5157032d5a0e0e88ff42ed3a48cbce50901c61634228f8847ef41b3 |
OpenAccessLink | https://doaj.org/article/e795e92c2d354b4d91af6b07568de80a |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e795e92c2d354b4d91af6b07568de80a crossref_citationtrail_10_1016_j_measen_2023_100917 crossref_primary_10_1016_j_measen_2023_100917 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Measurement. Sensors |
PublicationYear | 2023 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Bu (10.1016/j.measen.2023.100917_bib7) 2019; 92 Sahu (10.1016/j.measen.2023.100917_bib5) 2021; 176 Zhao (10.1016/j.measen.2023.100917_bib11) 2022; 388 Rafie-Majd (10.1016/j.measen.2023.100917_bib18) 2018; 109 Zhuoran (10.1016/j.measen.2023.100917_bib12) 2018; 29 Mafarja (10.1016/j.measen.2023.100917_bib3) 2020; 112 Bhayo (10.1016/j.measen.2023.100917_bib16) 2023; 123 Ahmed (10.1016/j.measen.2023.100917_bib17) 2021; 12 Dawoud (10.1016/j.measen.2023.100917_bib6) 2018; 3 Rathore (10.1016/j.measen.2023.100917_bib2) 2018; 72 Roopak (10.1016/j.measen.2023.100917_bib4) 2020; 9 Parwez (10.1016/j.measen.2023.100917_bib13) 2019; 7 Bhunia (10.1016/j.measen.2023.100917_bib1) 2017 Kan (10.1016/j.measen.2023.100917_bib9) 2021; 568 Mohamad (10.1016/j.measen.2023.100917_bib10) 2013; 6 Teng (10.1016/j.measen.2023.100917_bib14) 2020; 22 Ghosh (10.1016/j.measen.2023.100917_bib8) 2020; 17 Saremi (10.1016/j.measen.2023.100917_bib15) 2014; 12 |
References_xml | – volume: 7 start-page: 68678 year: 2019 ident: 10.1016/j.measen.2023.100917_bib13 article-title: Multi-label classification of microblogging texts using convolution neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919494 – volume: 3 start-page: 82 year: 2018 ident: 10.1016/j.measen.2023.100917_bib6 – volume: 29 start-page: 386 issue: 2 year: 2018 ident: 10.1016/j.measen.2023.100917_bib12 article-title: An optimization method: hummingbirds optimization algorithm publication-title: J. Syst. Eng. Electron. doi: 10.21629/JSEE.2018.02.19 – volume: 12 start-page: 180 year: 2014 ident: 10.1016/j.measen.2023.100917_bib15 – volume: 92 start-page: 1 year: 2019 ident: 10.1016/j.measen.2023.100917_bib7 article-title: A secure and robust scheme for sharing confidential information in IoT systems publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2018.09.007 – volume: 123 year: 2023 ident: 10.1016/j.measen.2023.100917_bib16 – volume: 112 start-page: 18 year: 2020 ident: 10.1016/j.measen.2023.100917_bib3 article-title: Augmented whale feature selection for IoT attacks: structure, analysis and applications publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2020.05.020 – volume: 388 start-page: 1 year: 2022 ident: 10.1016/j.measen.2023.100917_bib11 article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114194 – volume: 109 start-page: 9 year: 2018 ident: 10.1016/j.measen.2023.100917_bib18 article-title: Modelling and solving the integrated inventory-location-routing problem in a multi-period and multi-perishable product supply chain with uncertainty: Lagrangian relaxation algorithm publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.10.013 – volume: 6 start-page: 3299 issue: 17 year: 2013 ident: 10.1016/j.measen.2023.100917_bib10 article-title: Standardization and its effects on K-means clustering algorithm publication-title: Res. J. Appl. Sci. Eng. Technol. doi: 10.19026/rjaset.6.3638 – volume: 72 start-page: 79 year: 2018 ident: 10.1016/j.measen.2023.100917_bib2 article-title: Semi-supervised learning based distributed attack detection framework for IoT publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.05.049 – volume: 12 start-page: 114 issue: 1 year: 2021 ident: 10.1016/j.measen.2023.100917_bib17 article-title: DADEM: distributed attack detection model based on big data analytics for the enhancement of the security of internet of things (IoT) publication-title: Int. J. Ambient Comput. Intell. (IJACI) doi: 10.4018/IJACI.2021010105 – start-page: 1 year: 2017 ident: 10.1016/j.measen.2023.100917_bib1 article-title: Dynamic attack detection and mitigation in IoT using SDN – volume: 9 start-page: 120 issue: 3 year: 2020 ident: 10.1016/j.measen.2023.100917_bib4 article-title: Multi‐objective‐based feature selection for DDoS attack detection in IoT networks publication-title: IET Netw. doi: 10.1049/iet-net.2018.5206 – volume: 17 start-page: 2191 issue: 3 year: 2020 ident: 10.1016/j.measen.2023.100917_bib8 article-title: Edge-cloud computing for Internet of Things data analytics: embedding intelligence in the edge with deep learning publication-title: IEEE Trans. Ind. Inf. – volume: 176 start-page: 146 year: 2021 ident: 10.1016/j.measen.2023.100917_bib5 article-title: Internet of things attack detection using hybrid deep learning model publication-title: Comput. Commun. doi: 10.1016/j.comcom.2021.05.024 – volume: 568 start-page: 147 year: 2021 ident: 10.1016/j.measen.2023.100917_bib9 – volume: 22 start-page: 112 issue: 1 year: 2020 ident: 10.1016/j.measen.2023.100917_bib14 article-title: A modified advanced encryption standard for data security publication-title: Int. J. Netw. Secur. |
SSID | ssj0002810124 |
Score | 2.26104 |
Snippet | Exponential increases in smart devices and reduced costs of sensors have increased applications using IoT (Internet of Things). There has been an extensive... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 100917 |
SubjectTerms | Attack detection Entropy-hummingbird optimization algorithm (EHOA) Hybrid convolutional neural network (HCNN) IoT Krill herd-advanced encryption standard (KH-AES) Security enhancement |
Title | Security enhancement and attack detection using optimized hybrid deep learning and improved encryption algorithm over Internet of Things |
URI | https://doaj.org/article/e795e92c2d354b4d91af6b07568de80a |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIp3jLA2tEGjuJMwIqqpBgAaRukR_nlkdTVIWhDMz8bO7sFLqxsHiIzonlO_s7X87fMXZmEdaM0ioxeSYTCdhoRKUEEAxLnZeZLem-8-1dMXiUN8N8uFTqi3LCIj1wnLhzKKscqsxmTuTSSFf1tC8MAl2hHKg0uEaIeUuHqecQMiLeKrm4KxcSuib0v4MoTzNBuQFVqFH2i0VLlP0BW6432UbnFPKLOJgttgLNNltfogrcYV_3XaE5Ds2YNEVRPa4bx3XbavvCHbQhq6rhlMo-4lPcCyZPH-D4eE63slAA3nhXJGIUej6FgAJKoKXO5mHv4Pp1NMXPjCeccjt5DBhCy6eexxKfu-zhuv9wNUi6KgqJzXA1Ji5VpqhcatFzweWduVynkIJS3ssMnNBSWWMBHYe0Zwt0z4gUzCtELfCyZ8QeW22mDewzrvC0KFyvLA0eQrwA7b0STlgwrnCllgdMLKazth3DOBW6eK0XqWTPdVRCTUqooxIOWPLT6y0ybPwhf0ma-pElfuzwAK2m7qym_stqDv_jJUdsjcYVk1uO2Wo7e4cTdFFacxqsEdvbz_43pT3ohA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Security+enhancement+and+attack+detection+using+optimized+hybrid+deep+learning+and+improved+encryption+algorithm+over+Internet+of+Things&rft.jtitle=Measurement.+Sensors&rft.au=Syed+Shahul+Hameed+M&rft.au=V.+Akshaya&rft.au=Vishwanadham+Mandala&rft.au=Chunduru+Anilkumar&rft.date=2023-12-01&rft.pub=Elsevier&rft.eissn=2665-9174&rft.volume=30&rft.spage=100917&rft_id=info:doi/10.1016%2Fj.measen.2023.100917&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e795e92c2d354b4d91af6b07568de80a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2665-9174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2665-9174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2665-9174&client=summon |