Medicinal Plant Identification in Real-Time Using Deep Learning Model

Medicinal plants have a long tradition of being cultivated and harvested in India. The Indian Forest is the principal repository for many useful medicinal herbs. As a result of their critical role in maintaining people's life, medicinal plants have traditionally been the subject of intensive re...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 5; no. 1; p. 73
Main Authors Kavitha, S., Kumar, T. Satish, Naresh, E., Kalmani, Vijay H., Bamane, Kalyan Devappa, Pareek, Piyush Kumar
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Medicinal plants have a long tradition of being cultivated and harvested in India. The Indian Forest is the principal repository for many useful medicinal herbs. As a result of their critical role in maintaining people's life, medicinal plants have traditionally been the subject of intensive research and consideration. Yet, correctly identifying plants used in medicine is a laborious process that takes a lot of time and expertise. Because of this, a vision-based approach may aid scientists and regular people in the rapid and precise identification of herb plants. Therefore, this research suggests a vision-based smart method to recognize herb plants by creating a deep learning (DL) model. Although there is a wide variety of useful plants, we limit ourselves to just six from the Kaggle database: betel, curry, tulsi, mint, neem, and Indian beech. For each medicinal plant, we collected 500 images. The data undergo a process of resizing and augmentation to increase the sample size. For the fully automatic identification of medicinal leaves, the MobileNet DL model is selected. To determine the model's effectiveness, it must first be trained, then validated, and ultimately tested. The DL model is evaluated using measures including accuracy, precision, and recall. For this reason, the DL model was able to correctly identify medicinal leaves at an accuracy rate of 98.3%. After being thoroughly investigated, the DL model is uploaded to the cloud, and a mobile app is created for the real-time identification of medicinal leaves. To recognize leaf images, the built mobile app accesses the DL model on the cloud. The automated recognition of plants represents an extremely promising option for filling the taxonomic gap and gaining a lot of interest from the fields of botany and machine vision.
AbstractList Medicinal plants have a long tradition of being cultivated and harvested in India. The Indian Forest is the principal repository for many useful medicinal herbs. As a result of their critical role in maintaining people's life, medicinal plants have traditionally been the subject of intensive research and consideration. Yet, correctly identifying plants used in medicine is a laborious process that takes a lot of time and expertise. Because of this, a vision-based approach may aid scientists and regular people in the rapid and precise identification of herb plants. Therefore, this research suggests a vision-based smart method to recognize herb plants by creating a deep learning (DL) model. Although there is a wide variety of useful plants, we limit ourselves to just six from the Kaggle database: betel, curry, tulsi, mint, neem, and Indian beech. For each medicinal plant, we collected 500 images. The data undergo a process of resizing and augmentation to increase the sample size. For the fully automatic identification of medicinal leaves, the MobileNet DL model is selected. To determine the model's effectiveness, it must first be trained, then validated, and ultimately tested. The DL model is evaluated using measures including accuracy, precision, and recall. For this reason, the DL model was able to correctly identify medicinal leaves at an accuracy rate of 98.3%. After being thoroughly investigated, the DL model is uploaded to the cloud, and a mobile app is created for the real-time identification of medicinal leaves. To recognize leaf images, the built mobile app accesses the DL model on the cloud. The automated recognition of plants represents an extremely promising option for filling the taxonomic gap and gaining a lot of interest from the fields of botany and machine vision.
Medicinal plants have a long tradition of being cultivated and harvested in India. The Indian Forest is the principal repository for many useful medicinal herbs. As a result of their critical role in maintaining people's life, medicinal plants have traditionally been the subject of intensive research and consideration. Yet, correctly identifying plants used in medicine is a laborious process that takes a lot of time and expertise. Because of this, a vision-based approach may aid scientists and regular people in the rapid and precise identification of herb plants. Therefore, this research suggests a vision-based smart method to recognize herb plants by creating a deep learning (DL) model. Although there is a wide variety of useful plants, we limit ourselves to just six from the Kaggle database: betel, curry, tulsi, mint, neem, and Indian beech. For each medicinal plant, we collected 500 images. The data undergo a process of resizing and augmentation to increase the sample size. For the fully automatic identification of medicinal leaves, the MobileNet DL model is selected. To determine the model's effectiveness, it must first be trained, then validated, and ultimately tested. The DL model is evaluated using measures including accuracy, precision, and recall. For this reason, the DL model was able to correctly identify medicinal leaves at an accuracy rate of 98.3%. After being thoroughly investigated, the DL model is uploaded to the cloud, and a mobile app is created for the real-time identification of medicinal leaves. To recognize leaf images, the built mobile app accesses the DL model on the cloud. The automated recognition of plants represents an extremely promising option for filling the taxonomic gap and gaining a lot of interest from the fields of botany and machine vision.
ArticleNumber 73
Author Kalmani, Vijay H.
Bamane, Kalyan Devappa
Kavitha, S.
Pareek, Piyush Kumar
Naresh, E.
Kumar, T. Satish
Author_xml – sequence: 1
  givenname: S.
  surname: Kavitha
  fullname: Kavitha, S.
  organization: Department of MCA, Nitte Meenakshi Institute of Technology
– sequence: 2
  givenname: T. Satish
  surname: Kumar
  fullname: Kumar, T. Satish
  organization: Department of Computer Science and Engineering, BMS Institute of Technology and Management
– sequence: 3
  givenname: E.
  orcidid: 0000-0002-8368-836X
  surname: Naresh
  fullname: Naresh, E.
  email: naresh.e@manipal.edu
  organization: Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education
– sequence: 4
  givenname: Vijay H.
  surname: Kalmani
  fullname: Kalmani, Vijay H.
  organization: Department of Computer Science and Information Technology, Rajarambapu Institute of Technology, Affiliated to Shivaji University
– sequence: 5
  givenname: Kalyan Devappa
  surname: Bamane
  fullname: Bamane, Kalyan Devappa
  organization: Department of Information Technology, D. Y. Patil College of Engineering
– sequence: 6
  givenname: Piyush Kumar
  surname: Pareek
  fullname: Pareek, Piyush Kumar
  organization: Department of AIML and IPR Cell, Nitte Meenakshi Institute of Technology
BookMark eNp9kM9LwzAUx4NMcM79A54KnqtJmjTJUebUwYYi2zmkzevI6NKZdAf_e9tVUDzs8Hjvwff7fnyu0cg3HhC6JfieYCweIqNKqBTTrA8lU36BxjTPSSoVFqM_9RWaxrjDGFOOGcv5GM1XYF3pvKmT99r4NllY8K2rXGla1_jE-eQDTJ2u3R6STXR-mzwBHJIlmOD7btVYqG_QZWXqCNOfPEGb5_l69pou314Ws8dlWlIheSpMASwvmaSZsCovubEELBVEECVZwUyRS1LmFfCMW6kKZkXBKWWEMgnW8GyC7oa5h9B8HiG2etccQ3d81FRlGeGC5rRTyUFVhibGAJUuXXt6pw3G1Zpg3XPTAzfdMdMnbrpfQP9ZD8HtTfg6b8oGU-zEfgvh96ozrm-aZoAK
CitedBy_id crossref_primary_10_26634_jfet_19_4_20869
crossref_primary_10_1016_j_jaim_2024_100987
crossref_primary_10_1016_j_teler_2024_100181
crossref_primary_10_1016_j_mex_2024_103126
Cites_doi 10.11591/eei.v9i5.2250
10.1186/s40537-019-0197-0
10.22214/ijraset.2022.41190
10.3390/plants11151952
10.36548/jaicn.2021.2.005
10.1002/jcop.21687
10.15562/tcp.41
10.1016/j.dcan.2021.06.001
10.1109/ICCES51350.2021.9488971
10.1007/978-1-4842-4470-8
10.1155/2020/8817849
10.1109/HNICEM.2018.8666300
10.1109/CSICC55295.2022.9780493
10.1007/978-3-030-95498-7_2
10.1109/JCSSE.2019.8864155
10.1109/IICAIET55139.2022.9936868
10.1109/ICCIDS.2019.8862126
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-023-02398-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Botany
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_023_02398_5
GeographicLocations Borneo
GeographicLocations_xml – name: Borneo
GrantInformation_xml – fundername: Manipal Academy of Higher Education, Manipal
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
C6C
CCPQU
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
BSONS
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2785-7abe46c48237d96c5ad1ed27171984b4ab681c6fe535d89b4d7b52241248eda53
IEDL.DBID BENPR
ISSN 2661-8907
2662-995X
IngestDate Fri Jul 25 22:53:41 EDT 2025
Tue Jul 01 00:17:53 EDT 2025
Thu Apr 24 22:51:31 EDT 2025
Fri Feb 21 02:41:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Augmentation
Deep learning
Medicine
Plant
Accuracy
Resize
Cloud
Mobile application
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2785-7abe46c48237d96c5ad1ed27171984b4ab681c6fe535d89b4d7b52241248eda53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8368-836X
OpenAccessLink https://doi.org/10.1007/s42979-023-02398-5
PQID 2933157262
PQPubID 6623307
ParticipantIDs proquest_journals_2933157262
crossref_citationtrail_10_1007_s42979_023_02398_5
crossref_primary_10_1007_s42979_023_02398_5
springer_journals_10_1007_s42979_023_02398_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Sachar, Kumar (CR12) 2022; 14
Rao, Lahari, Sri, Srujana, Yaswanth (CR4) 2022; 10
Singh, Misra (CR5) 2017; 4
CR8
CR19
CR7
CR18
CR17
Barimah, Akotia (CR3) 2015; 43
CR9
Manoharan (CR13) 2021; 3
CR15
CR14
Javid, Haghirosadat (CR2) 2017; 3
CR11
Wang, Wang, Zhang, Zhan, Guo, Zheng, Wang (CR22) 2022; 8
CR21
CR20
Malik, Ismail, Hussein, Yahya (CR6) 2022; 11
Zin, Ibrahim, Isa, Aliman, Sabri, Mangshor (CR10) 2020; 9
Chanyal, Yadav, Saini (CR1) 2022; 10
Shorten, Khoshgoftaar (CR16) 2019; 6
IAMd Zin (2398_CR10) 2020; 9
V Singh (2398_CR5) 2017; 4
2398_CR11
Y Wang (2398_CR22) 2022; 8
OA Malik (2398_CR6) 2022; 11
KB Barimah (2398_CR3) 2015; 43
2398_CR20
2398_CR21
A Javid (2398_CR2) 2017; 3
JS Manoharan (2398_CR13) 2021; 3
2398_CR19
RU Rao (2398_CR4) 2022; 10
2398_CR17
2398_CR18
2398_CR8
2398_CR15
H Chanyal (2398_CR1) 2022; 10
2398_CR9
2398_CR7
2398_CR14
C Shorten (2398_CR16) 2019; 6
S Sachar (2398_CR12) 2022; 14
References_xml – volume: 9
  start-page: 2198
  issue: 5
  year: 2020
  end-page: 2205
  ident: CR10
  article-title: Herbal plant recognition using deep convolutional neural network
  publication-title: Bull Electr Eng Inform
  doi: 10.11591/eei.v9i5.2250
– ident: CR21
– ident: CR19
– ident: CR18
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  end-page: 48
  ident: CR16
  article-title: A survey on image data augmentation for deep learning
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– ident: CR14
– ident: CR15
– volume: 10
  start-page: 306
  year: 2022
  end-page: 322
  ident: CR4
  article-title: Identification of medicinal plants using deep learning
  publication-title: Int J Res Appl Sci Eng Technol
  doi: 10.22214/ijraset.2022.41190
– volume: 4
  start-page: 41
  issue: 1
  year: 2017
  end-page: 49
  ident: CR5
  article-title: Detection of plant leaf diseases using image segmentation and soft computing techniques
  publication-title: Inf Process Agric
– ident: CR17
– ident: CR11
– ident: CR9
– volume: 11
  start-page: 1952
  issue: 15
  year: 2022
  ident: CR6
  article-title: Automated real-time identification of medicinal plants species in natural environment using deep learning models—a case study from Borneo Region
  publication-title: Plants
  doi: 10.3390/plants11151952
– volume: 3
  start-page: 125
  issue: 2
  year: 2021
  end-page: 139
  ident: CR13
  article-title: Flawless detection of herbal plant leaf by machine learning classifier through two stage authentication procedure
  publication-title: J Artif Intell Capsule Netw
  doi: 10.36548/jaicn.2021.2.005
– ident: CR7
– ident: CR8
– volume: 43
  start-page: 99
  issue: 1
  year: 2015
  end-page: 106
  ident: CR3
  article-title: The promotion of traditional medicine as enactment of community psychology in Ghana
  publication-title: J Community Psychol
  doi: 10.1002/jcop.21687
– volume: 14
  start-page: 3089
  issue: 6
  year: 2022
  end-page: 3097
  ident: CR12
  article-title: Deep ensemble learning for automatic medicinal leaf identification
  publication-title: Int J Inf Technol
– volume: 10
  start-page: 78
  issue: 4
  year: 2022
  end-page: 87
  ident: CR1
  article-title: Classification of medicinal plants leaves using deep learning technique: a review
  publication-title: Int J Intell Syst Appl Eng
– volume: 3
  start-page: 22
  issue: 1
  year: 2017
  end-page: 26
  ident: CR2
  article-title: A review of medicinal plants effective in the treatment or apoptosis of cancer cells
  publication-title: Cancer Press J
  doi: 10.15562/tcp.41
– ident: CR20
– volume: 8
  start-page: 1
  issue: 1
  year: 2022
  end-page: 17
  ident: CR22
  article-title: A survey on deploying mobile deep learning applications: a systemic and technical perspective
  publication-title: Digit Commun Netw
  doi: 10.1016/j.dcan.2021.06.001
– ident: 2398_CR11
  doi: 10.1109/ICCES51350.2021.9488971
– volume: 10
  start-page: 306
  year: 2022
  ident: 2398_CR4
  publication-title: Int J Res Appl Sci Eng Technol
  doi: 10.22214/ijraset.2022.41190
– ident: 2398_CR14
– ident: 2398_CR21
  doi: 10.1007/978-1-4842-4470-8
– ident: 2398_CR20
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 2398_CR16
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– ident: 2398_CR18
  doi: 10.1155/2020/8817849
– ident: 2398_CR19
  doi: 10.1109/HNICEM.2018.8666300
– volume: 3
  start-page: 125
  issue: 2
  year: 2021
  ident: 2398_CR13
  publication-title: J Artif Intell Capsule Netw
  doi: 10.36548/jaicn.2021.2.005
– volume: 11
  start-page: 1952
  issue: 15
  year: 2022
  ident: 2398_CR6
  publication-title: Plants
  doi: 10.3390/plants11151952
– volume: 9
  start-page: 2198
  issue: 5
  year: 2020
  ident: 2398_CR10
  publication-title: Bull Electr Eng Inform
  doi: 10.11591/eei.v9i5.2250
– volume: 14
  start-page: 3089
  issue: 6
  year: 2022
  ident: 2398_CR12
  publication-title: Int J Inf Technol
– volume: 8
  start-page: 1
  issue: 1
  year: 2022
  ident: 2398_CR22
  publication-title: Digit Commun Netw
  doi: 10.1016/j.dcan.2021.06.001
– volume: 10
  start-page: 78
  issue: 4
  year: 2022
  ident: 2398_CR1
  publication-title: Int J Intell Syst Appl Eng
– volume: 3
  start-page: 22
  issue: 1
  year: 2017
  ident: 2398_CR2
  publication-title: Cancer Press J
  doi: 10.15562/tcp.41
– volume: 4
  start-page: 41
  issue: 1
  year: 2017
  ident: 2398_CR5
  publication-title: Inf Process Agric
– ident: 2398_CR8
  doi: 10.1109/CSICC55295.2022.9780493
– ident: 2398_CR15
  doi: 10.1007/978-3-030-95498-7_2
– ident: 2398_CR17
  doi: 10.1109/JCSSE.2019.8864155
– volume: 43
  start-page: 99
  issue: 1
  year: 2015
  ident: 2398_CR3
  publication-title: J Community Psychol
  doi: 10.1002/jcop.21687
– ident: 2398_CR7
  doi: 10.1109/IICAIET55139.2022.9936868
– ident: 2398_CR9
  doi: 10.1109/ICCIDS.2019.8862126
SSID ssj0002504465
Score 2.3908384
Snippet Medicinal plants have a long tradition of being cultivated and harvested in India. The Indian Forest is the principal repository for many useful medicinal...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 73
SubjectTerms Accuracy
Analytics and Networks
Applications programs
Automation
Ayurvedic medicine
Botany
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Deep learning
Diverse Applications in Computing
Flowers & plants
Herbal medicine
Herbs
Information Systems and Communication Service
Leaves
Machine vision
Medical research
Medicinal herbs
Mobile computing
Original Research
Pattern Recognition and Graphics
Pharmaceuticals
Plant diseases
Quality control
Real time
Software Engineering/Programming and Operating Systems
Vision
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46L178LU6n5OBNg0vzs0eZG0OYB3GwW2mSVxFGHa7-_yZtuuFQwXNfSvmS9H15L-97CF17lwCpBUX6RjPCOQiimeuHdGGhDEjo1yKukyc5nvLHmZhFmZxQC7ORv79b-v-lSv3QkG1kqSZiG-0IymRYwQM5WMVTghQXlyLWxfw89LvvWRPKjRxo7VpGB2gvckJ830ziIdqC8gjtt_0WcNx-x2g4aRLh3jb0GqpwU2VbxLAbfivxs-d9JJR14PouAH4AWOCoofqKQ-Oz-QmajoYvgzGJbRCITZQWROUGuLQ8yMq4VFqROwou8ecwmmpueG6kplYWIJhwOjXcKSOCZ064BpcLdoo65XsJZwgXtuCmYNL5U6FHh-ZGUZdoZ3nulIaki2gLUGajRnhoVTHPVurGNaiZBzSrQc1EF92sxiwahYw_rXst7lncLcvMUw5GhUqk_4Dbdi7Wj39_2_n_zC_QbuI5SRNB6aFO9fEJl55TVOaqXkxfsxjAgg
  priority: 102
  providerName: Springer Nature
Title Medicinal Plant Identification in Real-Time Using Deep Learning Model
URI https://link.springer.com/article/10.1007/s42979-023-02398-5
https://www.proquest.com/docview/2933157262
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB7UevAiPrE-yh686WKz2VdOYmurCBYRhd5C9hERSlu1Hvz3zibbFgW9JpslzCTz3Pk-gFN0CT6zXtG20Snl3AuqU9cO7cJSGS99uwJxvR_I22d-NxTDWHD7iMcq5zaxMtRuYkON_ALdUpoIxSS7nL7RwBoVuquRQmMVGmiCNSZfjU5v8PC4qLIEgC5e8UmiI2I0y8QwTs5U83NojFWG7xVamWmmqfjpnZYh568uaeV8-luwGaNGclWreRtW_HgH1jsTjOy-dqF3XzfIcUXgIJqRevq2jOU48jomjxgP0jDuQaozAuTa-ymJ2KovJBCijfbgud976t7SSI9ALVNaUFUYz6XlAW7GZdKKwiXeMczPkkxzwwsjdWJl6UUqnM4Md8qI4LEZ194VIt2HtfFk7A-AlLbkpkylw2wRZZIURiWOaWd54ZT2rAnJXCy5jdjhgcJilC9QjytR5ijGvBJlLppwtnhmWiNn_Lv6eC7tPP5FH_lS5004n2tgefvv3Q7_3-0INhjGJnUl5RjWZu-f_gRji5lpwaru37SgcdXvdAat-Dnh1a7sfgNSscp0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6hFKm9IAqtGqDFh3ICq1mvvfYeUMUrhEI4VCDl5q4fW1VCm7QEIf5UfyNj724ikMiN83p9-Dyep2c-gK9oEnxuvaQ9o1LKuRdUpa4XyoWlND7zvTjEdXiZDa75j5EYLcH_thcmPKtsdWJU1G5sQ478G5qlNBGSZez75C8NrFGhutpSaNRice4f7jFku90_O8bz3WGsf3J1NKANqwC1TCpBZWE8zywPU1pcnllRuMQ7hmENxt_c8MJkKrFZ6UUqnMoNd9KIYOgYV94VgSUCVf4bnqZ5uFGqfzrL6YRxYDyyV6LZYzTPxajp04ndeqj6ZY4ohMJpmisqntrCuYP7rCYbTV1_FVYaH5Uc1EL1HpZ8tQbLh2P0Ix_W4WRYl-NxRWA8mpK617dskn_kT0V-ovdJQ3MJiS8SyLH3E9JMcv1NAv3azQe4fhXYPkKnGlf-E5DSltyUaeYwNkVMksLIxDHlLC-cVJ51IWlh0baZVB4IM270bMZyhFIjjDpCqUUXdmf_TOo5HQtXb7Vo6-bO3uq5hHVhrz2B-eeXd9tYvNs2vB1cDS_0xdnl-Sa8Y-gV1TmcLehM_935z-jVTM2XKEoEfr227D4CNHsBzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QXzxLk6n5sE3DVvb3PoouzAvGyIO9haaS0UYdWj9_yZpuqmo4HNPQjlpes7Jl-87AJzbkGBSZRjqSJ4gjA1BPNEdBxfmTBpqOl7EdTSmwwm-mZLpJxa_v-1eQ5IVp8GpNBVle67z9oL4Zv-iLLUTOgwySTkiq2DNVioeqO3S7uKUxQl0YUoCW-bnoV8j0jLN_IaM-oAz2AabIVOEV9XS7oAVU-yCrboLAwybcg_0RxU8bm1dB6ISVtzbPBzGwecCPthsEDmyB_Q3BGDPmDkMyqpP0LVDm-2DyaD_2B2i0BwBqZhxglgmDaYKO7EZnVJFMh0ZHdvqLEo5ljiTlEeK5oYkRPNUYs0kcfE6xtzojCQHoFG8FOYQwFzlWOYJ1bZWtN6JMskiHXOtcKYZN3ETRLWDhArK4a6BxUwsNI-9U4V1qPBOFaQJLhZj5pVuxp_WrdrvIuyhN2ETkSQiLKb2BS7rtVg-_n22o_-Zn4H1-95A3F2Pb4_BRmyTluqIpQUa5eu7ObFJRylP_Xf1Aarky7Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medicinal+Plant+Identification+in+Real-Time+Using+Deep+Learning+Model&rft.jtitle=SN+computer+science&rft.au=Kavitha%2C+S&rft.au=Kumar%2C+T.+Satish&rft.au=Naresh%2C+E&rft.au=Kalmani%2C+Vijay+H&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=5&rft.issue=1&rft.spage=73&rft_id=info:doi/10.1007%2Fs42979-023-02398-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon