Partitioning subjects based on high-dimensional fMRI data: comparison of several clustering methods and studying the influence of ICA data reduction in big data

In neuroscience, clustering subjects based on brain dysfunctions is a promising avenue to subtype mental disorders as it may enhance the development of a brain-based categorization system for mental disorders that transcends and is biologically more valid than current symptom-based categorization sy...

Full description

Saved in:
Bibliographic Details
Published inBehaviormetrika Vol. 46; no. 2; pp. 271 - 311
Main Authors Durieux, Jeffrey, Wilderjans, Tom F.
Format Journal Article
LanguageEnglish
Published Tokyo Springer Japan 01.10.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In neuroscience, clustering subjects based on brain dysfunctions is a promising avenue to subtype mental disorders as it may enhance the development of a brain-based categorization system for mental disorders that transcends and is biologically more valid than current symptom-based categorization systems. As changes in functional connectivity (FC) patterns have been demonstrated to be associated with various mental disorders, one appealing approach in this regard is to cluster patients based on similarities and differences in FC patterns. To this end, researchers collect three-way fMRI data measuring neural activation over time for different patients at several brain locations and apply Independent Component Analysis (ICA) to extract FC patterns from the data. However, due to the three-way nature and huge size of fMRI data, classical (two-way) clustering methods are inadequate to cluster patients based on these FC patterns. Therefore, a two-step procedure is proposed where, first, ICA is applied to each patient’s fMRI data and, next, a clustering algorithm is used to cluster the patients into homogeneous groups in terms of FC patterns. As some clustering methods used operate on similarity data, the modified RV-coefficient is adopted to compute the similarity between patient specific FC patterns. An extensive simulation study demonstrated that performing ICA before clustering enhances the cluster recovery and that hierarchical clustering using Ward’s method outperforms complete linkage hierarchical clustering, Affinity Propagation and Partitioning Around Medoids. Moreover, the proposed two-step procedure appears to recover the underlying clustering better than (1) a two-step procedure that combines PCA with clustering and (2) Clusterwise SCA-ECP, which performs PCA and clustering in a simultaneous fashion. Additionally, the good performance of the proposed two-step procedure using ICA and Ward’s hierarchical clustering is illustrated in an empirical fMRI data set regarding dementia patients.
AbstractList In neuroscience, clustering subjects based on brain dysfunctions is a promising avenue to subtype mental disorders as it may enhance the development of a brain-based categorization system for mental disorders that transcends and is biologically more valid than current symptom-based categorization systems. As changes in functional connectivity (FC) patterns have been demonstrated to be associated with various mental disorders, one appealing approach in this regard is to cluster patients based on similarities and differences in FC patterns. To this end, researchers collect three-way fMRI data measuring neural activation over time for different patients at several brain locations and apply Independent Component Analysis (ICA) to extract FC patterns from the data. However, due to the three-way nature and huge size of fMRI data, classical (two-way) clustering methods are inadequate to cluster patients based on these FC patterns. Therefore, a two-step procedure is proposed where, first, ICA is applied to each patient’s fMRI data and, next, a clustering algorithm is used to cluster the patients into homogeneous groups in terms of FC patterns. As some clustering methods used operate on similarity data, the modified RV-coefficient is adopted to compute the similarity between patient specific FC patterns. An extensive simulation study demonstrated that performing ICA before clustering enhances the cluster recovery and that hierarchical clustering using Ward’s method outperforms complete linkage hierarchical clustering, Affinity Propagation and Partitioning Around Medoids. Moreover, the proposed two-step procedure appears to recover the underlying clustering better than (1) a two-step procedure that combines PCA with clustering and (2) Clusterwise SCA-ECP, which performs PCA and clustering in a simultaneous fashion. Additionally, the good performance of the proposed two-step procedure using ICA and Ward’s hierarchical clustering is illustrated in an empirical fMRI data set regarding dementia patients.
Author Wilderjans, Tom F.
Durieux, Jeffrey
Author_xml – sequence: 1
  givenname: Jeffrey
  orcidid: 0000-0001-7888-8386
  surname: Durieux
  fullname: Durieux, Jeffrey
  email: j.durieux@fsw.leidenuniv.nl
  organization: Methodology and Statistics Unit, Institute of Psychology, Faculty of Social and Behavioural Science, Leiden University, Leiden Institute for Brain and Cognition (LIBC)
– sequence: 2
  givenname: Tom F.
  surname: Wilderjans
  fullname: Wilderjans, Tom F.
  organization: Methodology and Statistics Unit, Institute of Psychology, Faculty of Social and Behavioural Science, Leiden University, Leiden Institute for Brain and Cognition (LIBC), Research Group of Quantitative Psychology and Individual Differences, Faculty of Psychology and Educational Sciences, KU Leuven
BookMark eNp9kctqHDEQRUVwIGMnP5CVIGvFUuvR3dkFk4fBISHYa6GWSjMaeqSJpA74b_KpUc8YAll4VVB1z6Wq7iW6iCkCQm8Zfc8o7a-LYB3vCWUjoZQOiogXaMO4GIkalbhAG8oHSXrB-lfospQ9pVzynm_Qnx8m11BDiiFucVmmPdha8GQKOJwi3oXtjrhwgFiaxszYf_t5i52p5gO26XA0OZQmSx4X-A25Cey8lAp5tTtA3SVXsIkOl7q4x7VZd4BD9PMC0cIK3t58PBniDG6x6yptjqewPXVfo5fezAXePNUr9PD50_3NV3L3_Usj74jt-kEQCYYxBj0zyjIKqpMTldYr5xkHD35iA4NuNHYwTElqpx5G6yyFQRnpqONX6N3Z95jTrwVK1fu05HZx0d3IuRykEKqpurPK5lRKBq-PORxMftSM6jUJfU5CtyT0KQktGjT8B9lQzXpozSbMz6P8jJbj-lHI_7Z6hvoLQq2iyw
CitedBy_id crossref_primary_10_1002_hbm_26472
crossref_primary_10_1016_j_jbi_2025_104799
crossref_primary_10_1002_hbm_26234
crossref_primary_10_1038_s41539_021_00088_6
crossref_primary_10_1155_2023_4830716
crossref_primary_10_1016_j_ins_2023_118948
crossref_primary_10_1007_s10750_020_04220_2
crossref_primary_10_1016_j_neuroimage_2022_119250
crossref_primary_10_1080_00222933_2020_1871522
Cites_doi 10.1016/j.jpsychires.2014.02.001
10.1037/1082-989X.9.4.510
10.1126/science.1136800
10.1016/0377-0427(87)90125-7
10.1109/72.761722
10.1007/BF02294245
10.1523/JNEUROSCI.0333-10.2010
10.1016/j.neuroimage.2008.10.057
10.1056/NEJMp1500523
10.1136/jmg.2005.030718
10.1002/9780470238004.ch16
10.1038/nn1770
10.1111/j.2044-8317.2012.02040.x
10.1016/j.neurobiolaging.2011.06.024
10.1016/0165-1684(91)90079-X
10.1007/s00357-013-9120-0
10.1007/s11336-008-9069-9
10.1001/jamapsychiatry.2015.1376
10.1080/0094965031000136012
10.1176/appi.books.9780890425596
10.1038/nrd3628
10.1073/pnas.0811879106
10.1007/s11336-012-9275-3
10.1002/9780470977811
10.1214/11-BA622
10.3758/s13428-011-0166-9
10.1016/j.chemolab.2013.09.010
10.1007/s00357-015-9187-x
10.1002/hbm.1048
10.3758/s13428-011-0129-1
10.3389/fnhum.2015.00474
10.1038/nrneurol.2009.198
10.1016/j.neuroimage.2007.11.001
10.1186/1741-7015-10-156
10.1027/1614-2241.2.2.57
10.1016/j.neuroimage.2008.12.015
10.21236/AD0047524
10.1037/a0022679
10.1093/brain/awr066
10.1016/S0893-6080(00)00026-5
10.1098/rstb.2001.0915
10.1109/TPAMI.1983.4767342
10.1016/S1474-4422(11)70158-2
10.1002/hbm.20359
10.1198/016214502760047131
10.1016/j.neuroimage.2004.10.042
10.1111/1467-9868.00293
10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
10.1016/j.neuron.2009.03.024
10.1016/j.neuron.2014.08.034
10.1007/BF02289823
10.1037/a0018535
10.1007/3-540-49257-7_15
10.1002/wps.20087
10.1002/9780470316801
10.1126/science.aab2358
10.1080/10255841003766829
10.1007/978-3-642-79999-0_1
10.1037/1082-989X.8.3.294
10.1002/hbm.20160
10.1038/nrn3155
10.1080/00273171.2012.673952
10.1038/nrn2201
10.18637/jss.v044.i10
10.1002/hbm.22379
10.1016/j.biopsych.2013.10.026
10.1348/000711005X64817
10.1016/j.biopsych.2014.01.023
10.1093/comjnl/20.4.359
10.1002/hbm.21170
10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
10.1109/TMI.2003.822821
10.1007/s11336-007-9000-9
10.1016/S0167-9473(00)00064-5
10.1093/bioinformatics/btr406
10.1007/978-3-642-51175-2_24
10.3389/fnhum.2017.00418
10.2307/2532201
10.1007/978-3-642-02172-5_57
10.1080/01621459.1963.10500845
10.1073/pnas.0905267106
10.1016/j.neuroimage.2011.09.015
10.1176/appi.ajp.2010.09091379
10.1212/WNL.0b013e31829a33f8
10.1073/pnas.0308627101
10.1016/j.csda.2010.02.009
10.1016/j.brainres.2009.11.057
10.1038/nm.4246
10.3389/fncir.2013.00185
10.1016/j.neuroimage.2017.11.025
10.1109/iscas.2009.5118290
10.1001/jamapsychiatry.2013.143
10.1148/radiol.14132388
10.1016/j.neuroimage.2011.05.074
10.1007/BF01908075
10.1002/0471221317
10.1016/0165-1684(94)90029-9
10.1186/s12916-017-0849-x
10.1093/bioinformatics/btn634
10.1007/s00357-014-9161-z
10.3758/s13428-012-0238-5
10.1016/j.neuroimage.2012.02.020
10.1016/j.csda.2006.11.025
10.1037/a0025385
10.1111/1467-9868.00196
10.3758/BF03192707
10.1016/j.euroneuro.2012.04.018
10.1016/j.euroneuro.2013.09.010
10.1098/rstb.2005.1634
10.1097/WCO.0b013e328306f2c5
10.1001/jamapsychiatry.2015.0071
10.1037/1082-989X.8.4.434
10.1038/s41598-018-32521-z
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
PHGZM
PHGZT
PKEHL
PSYQQ
DOI 10.1007/s41237-019-00086-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Psychology
DatabaseTitle CrossRef
ProQuest One Psychology
ProQuest One Academic Middle East (New)
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList ProQuest One Psychology

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Psychology
Physics
Computer Science
EISSN 1349-6964
EndPage 311
ExternalDocumentID 10_1007_s41237_019_00086_4
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  grantid: 406.16.563
  funderid: http://dx.doi.org/10.13039/501100003246
GroupedDBID -EM
0R~
23N
2WC
406
5GY
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYQN
ABAKF
ABDZT
ABECU
ABFTV
ABIVO
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADBBV
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ASPBG
AXYYD
BAWUL
BGNMA
BKOMP
C6C
CS3
CSCUP
DIK
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EJD
F5P
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
GX1
HG6
IKXTQ
IWAJR
J-C
JSF
JSI
JSP
JZLTJ
KOV
KQ8
LLZTM
M4Y
MOJWN
M~E
NPVJJ
NQJWS
NU0
O9J
OK1
P6G
PKN
PSYQQ
PT4
RJT
RLLFE
RNS
ROL
RSV
RZJ
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TKC
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
XSB
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
OVT
PHGZM
PHGZT
ABRTQ
PKEHL
ID FETCH-LOGICAL-c2784-5ea111e71a6c10e625b05cf6df13efefb181e29ac8a1650cb7e9cdc0e86a5d0d3
IEDL.DBID C6C
ISSN 0385-7417
IngestDate Fri Jul 25 21:11:05 EDT 2025
Thu Apr 24 22:52:09 EDT 2025
Tue Jul 01 01:31:31 EDT 2025
Fri Feb 21 02:38:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords High-dimensional data
ICA
Affinity propagation
Big data
Clustering
Hierarchical clustering
PAM
Data reduction
FMRI
three-way data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2784-5ea111e71a6c10e625b05cf6df13efefb181e29ac8a1650cb7e9cdc0e86a5d0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7888-8386
OpenAccessLink https://doi.org/10.1007/s41237-019-00086-4
PQID 2933585446
PQPubID 2039330
PageCount 41
ParticipantIDs proquest_journals_2933585446
crossref_primary_10_1007_s41237_019_00086_4
crossref_citationtrail_10_1007_s41237_019_00086_4
springer_journals_10_1007_s41237_019_00086_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191000
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 20191000
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Behaviormetrika
PublicationTitleAbbrev Behaviormetrika
PublicationYear 2019
Publisher Springer Japan
Springer Nature B.V
Publisher_xml – name: Springer Japan
– name: Springer Nature B.V
References De RooverKCeulemansETimmermanMEVansteelandtKStoutenJOnghenaPClusterwise simultaneous component analysis for analyzing structural differences in multivariate multiblock dataPsychol Methods201217100119
Steinley D, Brusco M J (2011) K-means clustering and mixture model clustering: Reply to mclachlan (2011) and vermunt (2011)
DrzezgaABeckerJAVan DijkKRSreenivasanATalukdarTSullivanCSperlingRANeuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burdenBrain2011134616351646
DrysdaleATGrosenickLDownarJDunlopKMansouriFMengYListonCResting-state connectivity biomarkers define neurophysiological subtypes of depressionNat Med201723128
ArabiePHubertLGaulWPfeiferDAdvances in cluster analysis relevant to marketing researchFrom data to knowledge: Theoretical and practical aspects of classification, data analysis, and knowledge organization1996Berlin, HeidelbergSpringer319
Lorenzo-SevaUTen BergeJMTucker’s congruence coefficient as a meaningful index of factor similarityMethodology2006225764
RousseeuwPJSilhouettes: a graphical aid to the interpretation and validation of cluster analysisJ Comput Appl Math19872053650636.62059
SokalRMichenerCA statistical method for evaluating systematic relationshipsUniv Kansas Sci Bull19583814091438
BarkhofFHallerSRomboutsSARBResting-state functional MR imaging: a new window to the brainRadiology201427212949
FernandesBSWilliamsLMSteinerJLeboyerMCarvalhoAFBerkMThe new field of ’precision psychiatry’BMC Med201715180
Lee T W, Lewicki M S, Sejnowski T J (1999) Unsupervised classification with non-gaussian mixture models using ica. In: Advances in neural information processing systems (pp 508–514)
Insel T, Cuthbert B , Garvey M, Heinssen R, Pine D S , Quinn K, Wang P (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. American Psychiatric Association
De SoeteGCarrollJDDidayELechevallierYSchaderMBertrandPBurtschyBK-means clustering in a low-dimensional euclidean spaceNew approaches in classiffication and data analysis1994Berlin, HeidelbergSpringer212219
VeerIMBeckmannCVan TolM-JFerrariniLMillesJVeltmanDRomboutsSAWhole brain resting-state analysis reveals decreased functional connectivity in major depressionFront Syst Neurosci2010441
BakemanRRecommended effect size statistics for repeated measures designsBehav Res Methods2005373379384
CraddockNO’DonovanMOwenMThe genetics of schizophrenia and bipolar disorder: dissecting psychosisJ Med Genet2005423193204
SchumannGBinderEBHolteAde KloetEROedegaardKJRobbinsTWStratified medicine for mental disordersEur Neuropsychopharmacol2014241550
CuthbertBNThe rdoc framework: facilitating transition from icd/dsm to dimensional approaches that integrate neuroscience and psychopathologyWorld Psychiatry20141312835
MojenaRHierarchical grouping methods and stopping rules: an evaluationComput J19772043593630364.62065
BeyerKGoldsteinJRamakrishnanRShaftUBeeriCBunemanPWhen is “nearest neighbor” meaningful?Database theory – ICDT’991999Berlin, HeidelbergSpringer217235
HyvärinenAOjaEIndependent component analysis: algorithms and applicationsNeural Netw2000134–5411430
FilippiniNMacIntoshBJHoughMGGoodwinGMFrisoniGBSmithSMMackayCEDistinct patterns of brain activity in young carriers of the apoe-e4 alleleProc Natl Acad Sci20091061772097214
MarínOInterneuron dysfunction in psychiatric disordersNat Rev Neurosci2012132107
MazziottaJTogaAEvansAFoxPLancasterJZillesKA probabilistic atlas and reference system for the human brain: International consortium for brain mapping (icbm)Philos Trans R Soc Lond B Biol Sci2001356141212931322
TibshiraniRWaltherGHastieTEstimating the number of clusters in a data set via the gap statisticJ R Stat Soc Ser B (Statistical Methodology)200163241142318415030979.62046
De RooverKCeulemansETimmermanMEHow to perform multiblock component analysis in practiceBehav Res Methods2012444156
Hennig C (2018) fpc: Flexible procedures for clustering [Computer software manual]. https://CRAN.R-project.org/package=fpc (R package version 2.1-11.1)
Indahl U G , Næs T, Liland K H (2016) A similarity index for comparing coupled matrices [Computer software manual]. https://cran.r-project.org/web/packages/MatrixCorrelation
ViroliCModel based clustering for three-way data structuresBayesian Anal20116457360228699581330.62262
DamoiseauxJSPraterKEMillerBLGreiciusMDFunctional connectivity tracks clinical deterioration in Alzheimer’s diseaseNeurobiol Aging2012334828-e19
SeeleyWWCrawfordRKZhouJMillerBLGreiciusMDNeurodegenerative diseases target large-scale human brain networksNeuron20096214252
MilliganGWCooperMCAn examination of procedures for determining the number of clusters in a data setPsychometrika1985502159179
KroonenbergPMKroonenbergPThree-mode clusteringApplied multiway data analysis2008HobokenWiley4034321160.62002
LynallM-EBassettDSKerwinRMcKennaPJKitzbichlerMMullerUBullmoreEFunctional connectivity and brain networks in schizophreniaJ Neurosci2010302894779487
WilderjansTFCeulemansEKuppensPClusterwise HICLAS: a generic modeling strategy to trace similarities and differences in multiblock binary dataBehav Res Methods2012442532545
KiersHALTowards a standardized notation and terminology in multiway analysisJ Chemom2000143105122
Agosta F, Sala S, Valsasina P, Meani A, Canu E, Magnani G, Filippi M (2013) Brain network connectivity assessed using graph theory in frontotemporal dementia. Neurology 1-10
de VosFKoiniMSchoutenTMSeilerSGrondJLechnerARomboutsSARBA comprehensive analysis of resting state fmri measures to classify individual patients with Alzheimer’s diseaseNeuroImage20181676272
SantanaRMcGarryLBielzaCLarrañagaPYusteRClassification of neocortical interneurons using affinity propagationFront Neural Circuits20137113
MillerCHHamiltonJPSacchetMDGotlibIHMeta-analysis of functional neuroimaging of major depressive disorder in youthJAMA Psychiatry2015721010451053
VichiMKiersHALFactorial K-means analysis for two-way dataComput Stat Data Anal2001371496418624791051.62056
EspositoFScarabinoTHyvarinenAHimbergJFormisanoEComaniSDi SalleFIndependent component analysis of fMRI group studies by self-organizing clusteringNeuroImage2005251193205
MckeownMJMakeigSBrownGGJungT-PKindermannSSBellAJSejnowskiTJAnalysis of fmri data by blind separation into independent spatial componentsHum Brain Mapp199863160188
PannekoekJNVeerIMvan TolM-Jvan der WerffSJDemenescuLRAlemanAvan der WeeNJResting-state functional connectivity abnormalities in limbic and salience networks in social anxiety disorder without comorbidityEur Neuropsychopharmacol2013233186195
GreiciusMDResting-state functional connectivity in neuropsychiatric disordersCurr Opin Neurol2008214424430
CeulemansEKiersHALSelecting among three-mode principal component models of different types and complexities: a numerical convex hull based methodBr J Math Stat Psychol20065911331502246998
LeeYParkB-YJamesOKimS-GParkHAutism spectrum disorder related functional connectivity changes in the language network in children, adolescents and adultsFront Hum Neurosci201711418
TimmermanMECeulemansEKiersHALVichiMFactorial and reduced K-means reconsideredComput Stat Data Anal20105471858187126089791284.62396
WengS-JWigginsJLPeltierSJCarrascoMRisiSLordCMonkCSAlterations of resting state functional connectivity in the default network in adolescents with autism spectrum disordersBrain Res20101313202214
BanfieldJDRafteryAEModel-based Gaussian and non-Gaussian clusteringBiometrics19934980382112434940794.62034
Core Team R (2017). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. https://www.R-project.org
KaufmanLRousseeuwPFinding groups in data: an introduction to cluster analysis1990HobokenWiley1345.62009
ComonPIndependent component analysis, a new concept?Signal Process1994362873140791.62004
HennigCCluster-wise assessment of cluster stabilityComput Stat Data Anal2007521258271240998005560156
WardJHJHierarchical grouping to optimize an objective functionJ Am Stat Assoc196358301236244148188
SmithSMFoxPTMillerKLGlahnDCFoxPMMackayCEBeckmannCFCorrespondence of the brain’s functional architecture during activation and restProc Natl Acad Sci2009106311304013045
WilderjansTFCeulemansEVan MechelenIThe CHIC model: a global model for coupled binary dataPsychometrika200873472975124697901284.62767
TuckerLRA method for synthesis of factor analysis studies (Personnel Research Section Rapport # 984)1951Washington, DCDepartment of the Army
VeerIMOeiNYSpinhovenPvan BuchemMAElzingaBMRomboutsSABeyond acute social stress: increased functional connectivity between amygdala and cortical midline structuresNeuroImage201157415341541
McLachlanGJBasfordKEMixture models: Inference and applications to clustering (Vol 84)1988New YorkMarcel Dekker0697.62050
Li G , Guo L, Liu T (2009 May) Grouping of brain MR images via Affinity Propagation. The ... Midwest symposium on circuits and systems conference proceedings : MWSCAS. Midwest symposium on circuits and systems 2009, pp 2425-2428. http://europepmc.org/articles/PMC3011186. https://doi.org/10.1109/iscas.2009.5118290
JenkinsonMBeckmannCFBehrensTEWoolrichMWSmithSMFslNeuroImage2012622782790
FoxMDRaichleMESpontaneous fluctuations in brain activity observed with functional magnetic resonance imagingNat Rev Neurosci20078700711
DownarJGeraciJSalomonsTVDunlopKWheelerSMcAndrewsMPGiacobbePAnhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depressionBiol Psychiatry2014763176185
HappéFRonaldAPlominRTime to give up on a single explanation for autismNat Neurosci20069101218
HartiganJAWongMAAlgorithm AS 136: A K-Means clustering algorithmJ R Stat Soc Ser C (Applied Statistics)1979281001080447.62062
BruscoMJSteinleyDAffinity propagation and uncapacitated facility location problemsJ Classif201532344348034228951331.90036
WilderjansTFCeulemansEClusterwise parafac to identify heterogeneity in three-way dataChemom Intell Lab Syst20131298797
GreenhouseSWGeisserSOn methods in the a
C Viroli (86_CR114) 2011; 6
S-J Weng (86_CR117) 2010; 1313
JA Hartigan (86_CR48) 1979; 28
86_CR112
86_CR49
GJ McLachlan (86_CR79) 1988
V. García (86_CR40) 2009
PJ Rousseeuw (86_CR92) 1987; 20
TF Wilderjans (86_CR119) 2012; 44
L Hubert (86_CR52) 1985; 2
M-E Lynall (86_CR73) 2010; 30
TF Wilderjans (86_CR122) 2012; 77
E Ceulemans (86_CR17) 2007; 72
AT Drysdale (86_CR30) 2017; 23
M Jenkinson (86_CR60) 2012; 62
A Hyvärinen (86_CR54) 2001
R Tibshirani (86_CR103) 2001; 63
Y Lee (86_CR68) 2017; 11
R Mojena (86_CR85) 1977; 20
D Steinley (86_CR100) 2003; 8
86_CR56
ME Tipping (86_CR105) 1999; 61
86_CR57
R Sokal (86_CR99) 1958; 38
86_CR51
JHJ Ward (86_CR115) 1963; 58
CF Beckmann (86_CR9) 2004; 23
IM Veer (86_CR111) 2011; 57
N Craddock (86_CR20) 2005; 42
G Deco (86_CR24) 2014; 84
F Esposito (86_CR33) 2005; 25
GW Milligan (86_CR84) 1983; 5
ME Timmerman (86_CR104) 2010; 54
FS Collins (86_CR18) 2015; 372
R Bakeman (86_CR4) 2005; 37
J Downar (86_CR29) 2014; 76
TF Wilderjans (86_CR123) 2013; 30
J Zhang (86_CR125) 2011; 14
O Marín (86_CR75) 2012; 13
BN Cuthbert (86_CR21) 2014; 13
MJ Millan (86_CR81) 2012; 11
GH Golub (86_CR41) 2012
86_CR1
86_CR2
M Welvaert (86_CR116) 2011; 44
J Mazziotta (86_CR76) 2001; 356
A Drzezga (86_CR31) 2011; 134
K De Roover (86_CR25) 2013; 66
TR Insel (86_CR58) 2015; 348
SM Smith (86_CR98) 2009; 106
BJ Frey (86_CR39) 2008; 315
86_CR101
N Gour (86_CR42) 2014; 35
WW Seeley (86_CR96) 2009; 62
SW Greenhouse (86_CR43) 1959; 24
MD Fox (86_CR37) 2007; 8
TF Wilderjans (86_CR120) 2013; 45
P Arabie (86_CR3) 1996
K De Roover (86_CR23) 2012; 44
BS Fernandes (86_CR35) 2017; 15
P Comon (86_CR19) 1994; 36
F Murtagh (86_CR86) 2014; 31
S Olejnik (86_CR87) 2003; 8
F Happé (86_CR47) 2006; 9
MD Greicius (86_CR44) 2008; 21
LR Tucker (86_CR107) 1951
M Vichi (86_CR113) 2001; 37
MJ Brusco (86_CR13) 2015; 32
M van der Laan (86_CR108) 2003; 73
VD Calhoun (86_CR14) 2001; 14
CF Beckmann (86_CR8) 2005; 360
JN Pannekoek (86_CR88) 2013; 23
AK Smilde (86_CR97) 2009; 25
M Pievani (86_CR89) 2011; 10
K De Roover (86_CR26) 2012; 17
G De Soete (86_CR27) 1994
A Hafkemeijer (86_CR46) 2015; 9
E Ceulemans (86_CR16) 2006; 59
D Steinley (86_CR102) 2012; 47
Y-O Li (86_CR70) 2007; 28
HAL Kiers (86_CR64) 2000; 14
SA Rombouts (86_CR91) 2005; 26
L Kaufman (86_CR63) 1990
C Fraley (86_CR38) 2002; 97
MJ Mckeown (86_CR78) 1998; 6
CF Beckmann (86_CR7) 2012; 62
C Liston (86_CR71) 2014; 76
G Schumann (86_CR95) 2014; 24
MD Greicius (86_CR45) 2004; 101
A Hyvärinen (86_CR55) 2000; 13
RH Kaiser (86_CR62) 2015; 72
CH Miller (86_CR82) 2015; 72
86_CR90
HM van Loo (86_CR109) 2012; 10
MJ Brusco (86_CR12) 2004; 9
K Beyer (86_CR10) 1999
CL McGrath (86_CR77) 2013; 70
PM Kroonenberg (86_CR66) 2008
C Jutten (86_CR61) 1991; 24
U Bodenhofer (86_CR11) 2011; 27
R Santana (86_CR93) 2013; 7
F Barkhof (86_CR6) 2014; 272
GW Milligan (86_CR83) 1985; 50
MJ Jafri (86_CR59) 2008; 39
86_CR67
86_CR69
TF Wilderjans (86_CR118) 2013; 129
IM Veer (86_CR110) 2010; 4
JD Banfield (86_CR5) 1993; 49
JS Damoiseaux (86_CR22) 2012; 33
VD Calhoun (86_CR15) 2009; 45
A Mezer (86_CR80) 2009; 45
T Tokuda (86_CR106) 2018; 8
D Zhang (86_CR124) 2010; 6
TF Wilderjans (86_CR121) 2008; 73
H-F Köhn (86_CR65) 2010; 15
A Schacht (86_CR94) 2014; 53
86_CR74
N Filippini (86_CR36) 2009; 106
A Hyvärinen (86_CR53) 1999; 10
F de Vos (86_CR28) 2018; 167
BS Everitt (86_CR34) 2011
C Hennig (86_CR50) 2007; 52
EB Erhardt (86_CR32) 2011; 32
U Lorenzo-Seva (86_CR72) 2006; 2
References_xml – reference: Helwig N E (2015) ica: Independent Component Analysis [Computer software manual]. https://cran.r-project.org/web/packages/ica/ (R package version 1.0-1)
– reference: TibshiraniRWaltherGHastieTEstimating the number of clusters in a data set via the gap statisticJ R Stat Soc Ser B (Statistical Methodology)200163241142318415030979.62046
– reference: de VosFKoiniMSchoutenTMSeilerSGrondJLechnerARomboutsSARBA comprehensive analysis of resting state fmri measures to classify individual patients with Alzheimer’s diseaseNeuroImage20181676272
– reference: DownarJGeraciJSalomonsTVDunlopKWheelerSMcAndrewsMPGiacobbePAnhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depressionBiol Psychiatry2014763176185
– reference: EspositoFScarabinoTHyvarinenAHimbergJFormisanoEComaniSDi SalleFIndependent component analysis of fMRI group studies by self-organizing clusteringNeuroImage2005251193205
– reference: KaiserRHAndrews-HannaJRWagerTDPizzagalliDALarge-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivityJAMA Psychiatry2015726603611
– reference: WilderjansTFCeulemansEVan MechelenIThe CHIC model: a global model for coupled binary dataPsychometrika200873472975124697901284.62767
– reference: PannekoekJNVeerIMvan TolM-Jvan der WerffSJDemenescuLRAlemanAvan der WeeNJResting-state functional connectivity abnormalities in limbic and salience networks in social anxiety disorder without comorbidityEur Neuropsychopharmacol2013233186195
– reference: Insel T, Cuthbert B , Garvey M, Heinssen R, Pine D S , Quinn K, Wang P (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. American Psychiatric Association
– reference: KaufmanLRousseeuwPFinding groups in data: an introduction to cluster analysis1990HobokenWiley1345.62009
– reference: Hennig C (2018) fpc: Flexible procedures for clustering [Computer software manual]. https://CRAN.R-project.org/package=fpc (R package version 2.1-11.1)
– reference: Indahl U G , Næs T, Liland K H (2016) A similarity index for comparing coupled matrices [Computer software manual]. https://cran.r-project.org/web/packages/MatrixCorrelation/
– reference: HyvärinenAFast and robust fixed-point algorithm for independent component analysisIEEE Trans Neural Netw1999103626634
– reference: BeckmannCFDeLucaMDevlinJTSmithSMInvestigations into resting-state connectivity using independent component analysisPhilos Trans R Soc Lond B Biol Sci2005360145710011013
– reference: SchumannGBinderEBHolteAde KloetEROedegaardKJRobbinsTWStratified medicine for mental disordersEur Neuropsychopharmacol2014241550
– reference: LiY-OAdalıTCalhounVDEstimating the number of independent components for functional magnetic resonance imaging dataHum Brain Mapp2007281112511266
– reference: MurtaghFLegendrePWard’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion?J Class201431327429532777071360.62344
– reference: LeeYParkB-YJamesOKimS-GParkHAutism spectrum disorder related functional connectivity changes in the language network in children, adolescents and adultsFront Hum Neurosci201711418
– reference: ZhangJLiDChenHFangFAnalysis of activity in fMRI data using affinity propagation clusteringComput Methods Biomech Biomed Eng2011143271281
– reference: HubertLArabiePComparing partitionsJ Class198521932180587.62128
– reference: JafriMJPearlsonGDStevensMCalhounVDA method for functional network connectivity among spatially independent resting-state components in schizophreniaNeuroImage200839416661681
– reference: RomboutsSABarkhofFGoekoopRStamCJScheltensPAltered resting state networks in mild cognitive impairment and mild alzheimer’s disease: an fmri studyHum Brain Mapp2005264231239
– reference: MilliganGWSoonSCSokolLMThe effect of cluster size, dimensionality, and the number of clusters on recovery of true cluster structureIEEE Trans Pattern Anal Mach intell198354047
– reference: GreenhouseSWGeisserSOn methods in the analysis of profile dataPsychometrika1959242951121037831367.62224
– reference: LynallM-EBassettDSKerwinRMcKennaPJKitzbichlerMMullerUBullmoreEFunctional connectivity and brain networks in schizophreniaJ Neurosci2010302894779487
– reference: Core Team R (2017). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. https://www.R-project.org/
– reference: MazziottaJTogaAEvansAFoxPLancasterJZillesKA probabilistic atlas and reference system for the human brain: International consortium for brain mapping (icbm)Philos Trans R Soc Lond B Biol Sci2001356141212931322
– reference: van der LaanMPollardKBryanJA new partitioning around medoids algorithmJ Stat Comput Simul200373857558419986701054.62075
– reference: EverittBSLandauSLeeseMStahlDCluster analysis2011New YorkJohn Wiley and Sons1274.62003
– reference: HyvärinenAOjaEIndependent component analysis: algorithms and applicationsNeural Netw2000134–5411430
– reference: FreyBJDueckDClustering by passing messages between data pointsScience200831597297622921741226.94027
– reference: ArabiePHubertLGaulWPfeiferDAdvances in cluster analysis relevant to marketing researchFrom data to knowledge: Theoretical and practical aspects of classification, data analysis, and knowledge organization1996Berlin, HeidelbergSpringer319
– reference: OlejnikSAlginaJGeneralized eta and omega squared statistics: measures of effect size for some common research designsPsychol Methods200384434
– reference: VeerIMOeiNYSpinhovenPvan BuchemMAElzingaBMRomboutsSABeyond acute social stress: increased functional connectivity between amygdala and cortical midline structuresNeuroImage201157415341541
– reference: WardJHJHierarchical grouping to optimize an objective functionJ Am Stat Assoc196358301236244148188
– reference: MojenaRHierarchical grouping methods and stopping rules: an evaluationComput J19772043593630364.62065
– reference: GreiciusMDSrivastavaGReissALMenonVDefault-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRIProc Natl Acad Sci20041011346374642
– reference: Lorenzo-SevaUTen BergeJMTucker’s congruence coefficient as a meaningful index of factor similarityMethodology2006225764
– reference: CeulemansEKiersHALSelecting among three-mode principal component models of different types and complexities: a numerical convex hull based methodBr J Math Stat Psychol20065911331502246998
– reference: DecoGKringelbachMLGreat expectations: using whole-brain computational connectomics for understanding neuropsychiatric disordersNeuron2014845892905
– reference: RousseeuwPJSilhouettes: a graphical aid to the interpretation and validation of cluster analysisJ Comput Appl Math19872053650636.62059
– reference: SokalRMichenerCA statistical method for evaluating systematic relationshipsUniv Kansas Sci Bull19583814091438
– reference: MillanMJAgidYBrüneMBullmoreETCarterCSClaytonNSYoungLJCognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapyNat Rev Drug Discov2012112141
– reference: FilippiniNMacIntoshBJHoughMGGoodwinGMFrisoniGBSmithSMMackayCEDistinct patterns of brain activity in young carriers of the apoe-e4 alleleProc Natl Acad Sci20091061772097214
– reference: VichiMKiersHALFactorial K-means analysis for two-way dataComput Stat Data Anal2001371496418624791051.62056
– reference: PievaniMde HaanWWuTSeeleyWWFrisoniGBFunctional network disruption in the degenerative dementiasLancet Neurol2011109829843
– reference: FernandesBSWilliamsLMSteinerJLeboyerMCarvalhoAFBerkMThe new field of ’precision psychiatry’BMC Med201715180
– reference: BeyerKGoldsteinJRamakrishnanRShaftUBeeriCBunemanPWhen is “nearest neighbor” meaningful?Database theory – ICDT’991999Berlin, HeidelbergSpringer217235
– reference: TuckerLRA method for synthesis of factor analysis studies (Personnel Research Section Rapport # 984)1951Washington, DCDepartment of the Army
– reference: ErhardtEBRachakondaSBedrickEJAllenEAAdaliTCalhounVDComparison of multi-subject ICA methods for analysis of fMRI dataHum Brain Mapp2011321220752095
– reference: De RooverKCeulemansETimmermanMEVansteelandtKStoutenJOnghenaPClusterwise simultaneous component analysis for analyzing structural differences in multivariate multiblock dataPsychol Methods201217100119
– reference: BodenhoferUKothmeierAHochreiterSAPCluster: an R package for affinity propagation clusteringBioinformatics20112724632464
– reference: MillerCHHamiltonJPSacchetMDGotlibIHMeta-analysis of functional neuroimaging of major depressive disorder in youthJAMA Psychiatry2015721010451053
– reference: SmithSMFoxPTMillerKLGlahnDCFoxPMMackayCEBeckmannCFCorrespondence of the brain’s functional architecture during activation and restProc Natl Acad Sci2009106311304013045
– reference: MarínOInterneuron dysfunction in psychiatric disordersNat Rev Neurosci2012132107
– reference: SeeleyWWCrawfordRKZhouJMillerBLGreiciusMDNeurodegenerative diseases target large-scale human brain networksNeuron20096214252
– reference: CalhounVDAdaliTPearlsonGDPekarJJA method for making group inferences from functional mri data using independent component analysisHum Brain Mapp200114314015110.1002/hbm.1048
– reference: WilderjansTFCeulemansEClusterwise parafac to identify heterogeneity in three-way dataChemom Intell Lab Syst20131298797
– reference: TokudaTYoshimotoJShimizuYOkadaGTakamuraMOkamotoYDoyaKIdentification of depression subtypes and relevant brain regions using a data-driven approachSci Rep2018811408210.1038/s41598-018-32521-z
– reference: GourNFelicianODidicMKoricLGueriotCChanoineVRanjevaJPFunctional connectivity changes differ in early and late-onset Alzheimer’s diseaseHum Brain Mapp201435729782994
– reference: CollinsFSVarmusHA new initiative on precision medicineN Engl J Med20153729793795
– reference: CalhounVDLiuJAdalıTA review of group ica for fmri data and ica for joint inference of imaging, genetic, and erp dataNeuroImage2009451S163S172
– reference: WilderjansTFCeulemansEVan MechelenIThe SIMCLAS model: simultaneous analysis of coupled binary data matrices with noise heterogeneity between and within data blocksPsychometrika201277472474029935311284.62766
– reference: CeulemansEVan MechelenILeenenIThe local minima problem in hierarchical classes analysis: an evaluation of a simulated annealing algorithm and various multistart proceduresPsychometrika200772337739123619631286.62102
– reference: HartiganJAWongMAAlgorithm AS 136: A K-Means clustering algorithmJ R Stat Soc Ser C (Applied Statistics)1979281001080447.62062
– reference: BeckmannCFModelling with independent componentsNeuroImage2012622891901
– reference: JenkinsonMBeckmannCFBehrensTEWoolrichMWSmithSMFslNeuroImage2012622782790
– reference: VeerIMBeckmannCVan TolM-JFerrariniLMillesJVeltmanDRomboutsSAWhole brain resting-state analysis reveals decreased functional connectivity in major depressionFront Syst Neurosci2010441
– reference: Li G , Guo L, Liu T (2009 May) Grouping of brain MR images via Affinity Propagation. The ... Midwest symposium on circuits and systems conference proceedings : MWSCAS. Midwest symposium on circuits and systems 2009, pp 2425-2428. http://europepmc.org/articles/PMC3011186. https://doi.org/10.1109/iscas.2009.5118290
– reference: WengS-JWigginsJLPeltierSJCarrascoMRisiSLordCMonkCSAlterations of resting state functional connectivity in the default network in adolescents with autism spectrum disordersBrain Res20101313202214
– reference: BruscoMJSteinleyDAffinity propagation and uncapacitated facility location problemsJ Classif201532344348034228951331.90036
– reference: Lee T W, Lewicki M S, Sejnowski T J (1999) Unsupervised classification with non-gaussian mixture models using ica. In: Advances in neural information processing systems (pp 508–514)
– reference: SantanaRMcGarryLBielzaCLarrañagaPYusteRClassification of neocortical interneurons using affinity propagationFront Neural Circuits20137113
– reference: Steinley D, Brusco M J (2011) K-means clustering and mixture model clustering: Reply to mclachlan (2011) and vermunt (2011)
– reference: WilderjansTFCeulemansEKuppensPClusterwise HICLAS: a generic modeling strategy to trace similarities and differences in multiblock binary dataBehav Res Methods2012442532545
– reference: Vervloet M, Wilderjans T F, Durieux J, Ceulemans E (2017) Multichull: A generic convex-hull-based model selection method. [Computer software manual]. https://CRAN.R-project.org/package=multichull (R package version 1.0.0)
– reference: TimmermanMECeulemansEKiersHALVichiMFactorial and reduced K-means reconsideredComput Stat Data Anal20105471858187126089791284.62396
– reference: JuttenCHeraultJBlind separation of sources, Part 1: an adaptive algorithm based on neuromimetic architectureSignal Process1991241100729.73650
– reference: GarcíaV.MollinedaR. A.SánchezJ. S.Index of Balanced Accuracy: A Performance Measure for Skewed Class DistributionsPattern Recognition and Image Analysis2009Berlin, HeidelbergSpringer Berlin Heidelberg441448
– reference: TippingMEBishopCMProbabilistic principal component analysisJ R Stat Soc Ser B (Statistical Methodology)199961361162217078640924.62068
– reference: MezerAYovelYPasternakOGorfineTAssafYCluster analysis of resting-state fmri time seriesNeuroImage200945411171125
– reference: HennigCCluster-wise assessment of cluster stabilityComput Stat Data Anal2007521258271240998005560156
– reference: ViroliCModel based clustering for three-way data structuresBayesian Anal20116457360228699581330.62262
– reference: ZhangDRaichleMEDisease and the brain’s dark energyNat Rev Neurol20106115
– reference: SchachtAGorwoodPBoycePSchafferAPicardHDepression symptom clusters and their predictive value for treatment outcomes: results from an individual patient data meta-analysis of duloxetine trialsJ Psychiatr Res2014535461
– reference: HappéFRonaldAPlominRTime to give up on a single explanation for autismNat Neurosci20069101218
– reference: van LooHMde JongePRomeijnJ-WKesslerRCSchoeversRAData-driven subtypes of major depressive disorder: a systematic reviewBMC Med2012101156
– reference: De RooverKCeulemansETimmermanMEOnghenaPA clusterwise simultaneous component method for capturing within-cluster differences in component variances and correlationsBr J Math Stat Psychol20136618110230448611406.91304
– reference: HyvärinenAKarhunenJOjaEIndependent component analysis2001New YorkJohn Wiley and Sons
– reference: Agosta F, Sala S, Valsasina P, Meani A, Canu E, Magnani G, Filippi M (2013) Brain network connectivity assessed using graph theory in frontotemporal dementia. Neurology 1-10
– reference: De RooverKCeulemansETimmermanMEHow to perform multiblock component analysis in practiceBehav Res Methods2012444156
– reference: McLachlanGJBasfordKEMixture models: Inference and applications to clustering (Vol 84)1988New YorkMarcel Dekker0697.62050
– reference: DrysdaleATGrosenickLDownarJDunlopKMansouriFMengYListonCResting-state connectivity biomarkers define neurophysiological subtypes of depressionNat Med201723128
– reference: ListonCChenACZebleyBDDrysdaleATGordonRLeuchterBDubinMJDefault mode network mechanisms of transcranial magnetic stimulation in depressionBiol Psychiatry2014767517526
– reference: SteinleyDLocal optima in K-means clustering: what you don’t know may hurt youPsychol Methods200383294
– reference: DrzezgaABeckerJAVan DijkKRSreenivasanATalukdarTSullivanCSperlingRANeuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burdenBrain2011134616351646
– reference: MckeownMJMakeigSBrownGGJungT-PKindermannSSBellAJSejnowskiTJAnalysis of fmri data by blind separation into independent spatial componentsHum Brain Mapp199863160188
– reference: BarkhofFHallerSRomboutsSARBResting-state functional MR imaging: a new window to the brainRadiology201427212949
– reference: FraleyCRafteryAEModel-based clustering, discriminant analysis, and density estimationJ Am Stat Assoc20029745861163119516351073.62545
– reference: WilderjansTFDeprilDVan MechelenIAdditive biclustering: a comparison of one new and two existing ALS algorithmsJ Class2013301567430318551360.62364
– reference: ComonPIndependent component analysis, a new concept?Signal Process1994362873140791.62004
– reference: American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders: DSM-5, 5th edn. Autor, Washington, DC
– reference: BanfieldJDRafteryAEModel-based Gaussian and non-Gaussian clusteringBiometrics19934980382112434940794.62034
– reference: SmildeAKKiersHALBijlsmaSRubinghCMvan ErkMJMatrix correlations for high-dimensional data: the modified RV-coefficientBioinformatics2009253401405
– reference: HafkemeijerAMöllerCDopperEGJiskootLCSchoutenTMvan SwietenJCResting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer’s diseaseFront Hum Neurosci20159474
– reference: FoxMDRaichleMESpontaneous fluctuations in brain activity observed with functional magnetic resonance imagingNat Rev Neurosci20078700711
– reference: KroonenbergPMKroonenbergPThree-mode clusteringApplied multiway data analysis2008HobokenWiley4034321160.62002
– reference: GreiciusMDResting-state functional connectivity in neuropsychiatric disordersCurr Opin Neurol2008214424430
– reference: MilliganGWCooperMCAn examination of procedures for determining the number of clusters in a data setPsychometrika1985502159179
– reference: BruscoMJClustering binary data in the presence of masking variablesPsychol Methods200494510
– reference: DamoiseauxJSPraterKEMillerBLGreiciusMDFunctional connectivity tracks clinical deterioration in Alzheimer’s diseaseNeurobiol Aging2012334828-e19
– reference: CraddockNO’DonovanMOwenMThe genetics of schizophrenia and bipolar disorder: dissecting psychosisJ Med Genet2005423193204
– reference: KiersHALTowards a standardized notation and terminology in multiway analysisJ Chemom2000143105122
– reference: InselTRCuthbertBNBrain disorders? preciselyScience20153486234499500
– reference: CuthbertBNThe rdoc framework: facilitating transition from icd/dsm to dimensional approaches that integrate neuroscience and psychopathologyWorld Psychiatry20141312835
– reference: Maechler M , Rousseeuw P, Struyf A, Hubert M, Hornik K (2017) cluster: Cluster analysis basics and extensions [Computer software manual]. Retrieved from https://cran.r-project.org/web/packages/cluster/ (R package version 2.0.6)
– reference: WilderjansTFCeulemansEMeersKCHull: a generic convex-hull-based model selection methodBehav Res Methods2013451115
– reference: SteinleyDBruscoMJHensonRPrincipal cluster axes: a projection pursuit index for the preservation of cluster structures in the presence of data reductionMultivar Behav Res2012473463492
– reference: BakemanRRecommended effect size statistics for repeated measures designsBehav Res Methods2005373379384
– reference: De SoeteGCarrollJDDidayELechevallierYSchaderMBertrandPBurtschyBK-means clustering in a low-dimensional euclidean spaceNew approaches in classiffication and data analysis1994Berlin, HeidelbergSpringer212219
– reference: BeckmannCFSmithSMProbabilistic Independent Component Analysis for functional magnetic resonance imagingIEEE Trans Med Imaging2004232137152
– reference: GolubGHVan LoanCFMatrix computations2012BaltimoreJHU Press0559.65011
– reference: WelvaertMDurnezJMoerkerkeBVerdoolaegeGRosseelYneuRosim: an R package for generating fMRI dataJ Stat Softw20114410118
– reference: KöhnH-FSteinleyDBruscoMJThe p-median model as a tool for clustering psychological dataPsychol Methods20101518795
– reference: McGrathCLKelleyMEHoltzheimerPEDunlopBWCraigheadWEFrancoARMaybergHSToward a neuroimaging treatment selection biomarker for major depressive disorderJAMA Psychiatry2013708821829
– volume: 53
  start-page: 54
  year: 2014
  ident: 86_CR94
  publication-title: J Psychiatr Res
  doi: 10.1016/j.jpsychires.2014.02.001
– volume: 9
  start-page: 510
  issue: 4
  year: 2004
  ident: 86_CR12
  publication-title: Psychol Methods
  doi: 10.1037/1082-989X.9.4.510
– volume: 315
  start-page: 972
  year: 2008
  ident: 86_CR39
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 20
  start-page: 53
  year: 1987
  ident: 86_CR92
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– volume: 10
  start-page: 626
  issue: 3
  year: 1999
  ident: 86_CR53
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.761722
– volume: 50
  start-page: 159
  issue: 2
  year: 1985
  ident: 86_CR83
  publication-title: Psychometrika
  doi: 10.1007/BF02294245
– volume: 30
  start-page: 9477
  issue: 28
  year: 2010
  ident: 86_CR73
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0333-10.2010
– volume: 45
  start-page: S163
  issue: 1
  year: 2009
  ident: 86_CR15
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.057
– volume: 372
  start-page: 793
  issue: 9
  year: 2015
  ident: 86_CR18
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1500523
– volume: 42
  start-page: 193
  issue: 3
  year: 2005
  ident: 86_CR20
  publication-title: J Med Genet
  doi: 10.1136/jmg.2005.030718
– start-page: 403
  volume-title: Applied multiway data analysis
  year: 2008
  ident: 86_CR66
  doi: 10.1002/9780470238004.ch16
– volume: 9
  start-page: 1218
  issue: 10
  year: 2006
  ident: 86_CR47
  publication-title: Nat Neurosci
  doi: 10.1038/nn1770
– volume: 66
  start-page: 81
  issue: 1
  year: 2013
  ident: 86_CR25
  publication-title: Br J Math Stat Psychol
  doi: 10.1111/j.2044-8317.2012.02040.x
– volume: 33
  start-page: 828-e19
  issue: 4
  year: 2012
  ident: 86_CR22
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2011.06.024
– volume: 24
  start-page: 1
  year: 1991
  ident: 86_CR61
  publication-title: Signal Process
  doi: 10.1016/0165-1684(91)90079-X
– volume: 30
  start-page: 56
  issue: 1
  year: 2013
  ident: 86_CR123
  publication-title: J Class
  doi: 10.1007/s00357-013-9120-0
– ident: 86_CR51
– volume: 73
  start-page: 729
  issue: 4
  year: 2008
  ident: 86_CR121
  publication-title: Psychometrika
  doi: 10.1007/s11336-008-9069-9
– volume: 72
  start-page: 1045
  issue: 10
  year: 2015
  ident: 86_CR82
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2015.1376
– volume: 73
  start-page: 575
  issue: 8
  year: 2003
  ident: 86_CR108
  publication-title: J Stat Comput Simul
  doi: 10.1080/0094965031000136012
– ident: 86_CR2
  doi: 10.1176/appi.books.9780890425596
– volume: 11
  start-page: 141
  issue: 2
  year: 2012
  ident: 86_CR81
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3628
– volume: 106
  start-page: 7209
  issue: 17
  year: 2009
  ident: 86_CR36
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0811879106
– volume: 77
  start-page: 724
  issue: 4
  year: 2012
  ident: 86_CR122
  publication-title: Psychometrika
  doi: 10.1007/s11336-012-9275-3
– volume-title: Cluster analysis
  year: 2011
  ident: 86_CR34
  doi: 10.1002/9780470977811
– volume: 6
  start-page: 573
  issue: 4
  year: 2011
  ident: 86_CR114
  publication-title: Bayesian Anal
  doi: 10.1214/11-BA622
– volume: 44
  start-page: 532
  issue: 2
  year: 2012
  ident: 86_CR119
  publication-title: Behav Res Methods
  doi: 10.3758/s13428-011-0166-9
– volume: 129
  start-page: 87
  year: 2013
  ident: 86_CR118
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2013.09.010
– volume: 32
  start-page: 443
  issue: 3
  year: 2015
  ident: 86_CR13
  publication-title: J Classif
  doi: 10.1007/s00357-015-9187-x
– volume: 14
  start-page: 140
  issue: 3
  year: 2001
  ident: 86_CR14
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.1048
– volume: 44
  start-page: 41
  year: 2012
  ident: 86_CR23
  publication-title: Behav Res Methods
  doi: 10.3758/s13428-011-0129-1
– volume: 9
  start-page: 474
  year: 2015
  ident: 86_CR46
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2015.00474
– volume: 6
  start-page: 15
  issue: 1
  year: 2010
  ident: 86_CR124
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2009.198
– volume: 39
  start-page: 1666
  issue: 4
  year: 2008
  ident: 86_CR59
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.11.001
– volume: 10
  start-page: 156
  issue: 1
  year: 2012
  ident: 86_CR109
  publication-title: BMC Med
  doi: 10.1186/1741-7015-10-156
– volume: 2
  start-page: 57
  issue: 2
  year: 2006
  ident: 86_CR72
  publication-title: Methodology
  doi: 10.1027/1614-2241.2.2.57
– volume: 45
  start-page: 1117
  issue: 4
  year: 2009
  ident: 86_CR80
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.12.015
– volume-title: A method for synthesis of factor analysis studies (Personnel Research Section Rapport # 984)
  year: 1951
  ident: 86_CR107
  doi: 10.21236/AD0047524
– volume: 38
  start-page: 1409
  year: 1958
  ident: 86_CR99
  publication-title: Univ Kansas Sci Bull
– ident: 86_CR101
  doi: 10.1037/a0022679
– volume: 134
  start-page: 1635
  issue: 6
  year: 2011
  ident: 86_CR31
  publication-title: Brain
  doi: 10.1093/brain/awr066
– volume: 13
  start-page: 411
  issue: 4–5
  year: 2000
  ident: 86_CR55
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(00)00026-5
– ident: 86_CR74
– volume: 356
  start-page: 1293
  issue: 1412
  year: 2001
  ident: 86_CR76
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2001.0915
– volume: 5
  start-page: 40
  year: 1983
  ident: 86_CR84
  publication-title: IEEE Trans Pattern Anal Mach intell
  doi: 10.1109/TPAMI.1983.4767342
– volume: 10
  start-page: 829
  issue: 9
  year: 2011
  ident: 86_CR89
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(11)70158-2
– volume: 28
  start-page: 1251
  issue: 11
  year: 2007
  ident: 86_CR70
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20359
– volume: 97
  start-page: 611
  issue: 458
  year: 2002
  ident: 86_CR38
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214502760047131
– volume: 25
  start-page: 193
  issue: 1
  year: 2005
  ident: 86_CR33
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.10.042
– volume: 63
  start-page: 411
  issue: 2
  year: 2001
  ident: 86_CR103
  publication-title: J R Stat Soc Ser B (Statistical Methodology)
  doi: 10.1111/1467-9868.00293
– volume: 6
  start-page: 160
  issue: 3
  year: 1998
  ident: 86_CR78
  publication-title: Hum Brain Mapp
  doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
– volume: 62
  start-page: 42
  issue: 1
  year: 2009
  ident: 86_CR96
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.024
– volume: 84
  start-page: 892
  issue: 5
  year: 2014
  ident: 86_CR24
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.08.034
– volume: 24
  start-page: 95
  issue: 2
  year: 1959
  ident: 86_CR43
  publication-title: Psychometrika
  doi: 10.1007/BF02289823
– volume: 15
  start-page: 87
  issue: 1
  year: 2010
  ident: 86_CR65
  publication-title: Psychol Methods
  doi: 10.1037/a0018535
– start-page: 217
  volume-title: Database theory – ICDT’99
  year: 1999
  ident: 86_CR10
  doi: 10.1007/3-540-49257-7_15
– volume: 13
  start-page: 28
  issue: 1
  year: 2014
  ident: 86_CR21
  publication-title: World Psychiatry
  doi: 10.1002/wps.20087
– volume-title: Finding groups in data: an introduction to cluster analysis
  year: 1990
  ident: 86_CR63
  doi: 10.1002/9780470316801
– volume: 348
  start-page: 499
  issue: 6234
  year: 2015
  ident: 86_CR58
  publication-title: Science
  doi: 10.1126/science.aab2358
– volume: 14
  start-page: 271
  issue: 3
  year: 2011
  ident: 86_CR125
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255841003766829
– start-page: 3
  volume-title: From data to knowledge: Theoretical and practical aspects of classification, data analysis, and knowledge organization
  year: 1996
  ident: 86_CR3
  doi: 10.1007/978-3-642-79999-0_1
– volume: 8
  start-page: 294
  issue: 3
  year: 2003
  ident: 86_CR100
  publication-title: Psychol Methods
  doi: 10.1037/1082-989X.8.3.294
– volume: 26
  start-page: 231
  issue: 4
  year: 2005
  ident: 86_CR91
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20160
– volume: 13
  start-page: 107
  issue: 2
  year: 2012
  ident: 86_CR75
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3155
– volume: 47
  start-page: 463
  issue: 3
  year: 2012
  ident: 86_CR102
  publication-title: Multivar Behav Res
  doi: 10.1080/00273171.2012.673952
– volume: 8
  start-page: 700
  year: 2007
  ident: 86_CR37
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2201
– volume: 44
  start-page: 1
  issue: 10
  year: 2011
  ident: 86_CR116
  publication-title: J Stat Softw
  doi: 10.18637/jss.v044.i10
– volume-title: Matrix computations
  year: 2012
  ident: 86_CR41
– volume: 35
  start-page: 2978
  issue: 7
  year: 2014
  ident: 86_CR42
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22379
– ident: 86_CR49
– volume: 76
  start-page: 176
  issue: 3
  year: 2014
  ident: 86_CR29
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2013.10.026
– volume: 59
  start-page: 133
  issue: 1
  year: 2006
  ident: 86_CR16
  publication-title: Br J Math Stat Psychol
  doi: 10.1348/000711005X64817
– volume: 76
  start-page: 517
  issue: 7
  year: 2014
  ident: 86_CR71
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2014.01.023
– volume: 20
  start-page: 359
  issue: 4
  year: 1977
  ident: 86_CR85
  publication-title: Comput J
  doi: 10.1093/comjnl/20.4.359
– volume: 32
  start-page: 2075
  issue: 12
  year: 2011
  ident: 86_CR32
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21170
– volume: 14
  start-page: 105
  issue: 3
  year: 2000
  ident: 86_CR64
  publication-title: J Chemom
  doi: 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
– volume: 23
  start-page: 137
  issue: 2
  year: 2004
  ident: 86_CR9
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2003.822821
– volume: 72
  start-page: 377
  issue: 3
  year: 2007
  ident: 86_CR17
  publication-title: Psychometrika
  doi: 10.1007/s11336-007-9000-9
– volume: 37
  start-page: 49
  issue: 1
  year: 2001
  ident: 86_CR113
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(00)00064-5
– volume: 27
  start-page: 2463
  year: 2011
  ident: 86_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr406
– start-page: 212
  volume-title: New approaches in classiffication and data analysis
  year: 1994
  ident: 86_CR27
  doi: 10.1007/978-3-642-51175-2_24
– volume: 11
  start-page: 418
  year: 2017
  ident: 86_CR68
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2017.00418
– volume: 49
  start-page: 803
  year: 1993
  ident: 86_CR5
  publication-title: Biometrics
  doi: 10.2307/2532201
– start-page: 441
  volume-title: Pattern Recognition and Image Analysis
  year: 2009
  ident: 86_CR40
  doi: 10.1007/978-3-642-02172-5_57
– volume: 58
  start-page: 236
  issue: 301
  year: 1963
  ident: 86_CR115
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1963.10500845
– volume: 106
  start-page: 13040
  issue: 31
  year: 2009
  ident: 86_CR98
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0905267106
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 86_CR60
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: 86_CR57
  doi: 10.1176/appi.ajp.2010.09091379
– ident: 86_CR1
  doi: 10.1212/WNL.0b013e31829a33f8
– volume: 101
  start-page: 4637
  issue: 13
  year: 2004
  ident: 86_CR45
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0308627101
– volume: 54
  start-page: 1858
  issue: 7
  year: 2010
  ident: 86_CR104
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2010.02.009
– volume: 1313
  start-page: 202
  year: 2010
  ident: 86_CR117
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2009.11.057
– volume: 4
  start-page: 41
  year: 2010
  ident: 86_CR110
  publication-title: Front Syst Neurosci
– volume: 23
  start-page: 28
  issue: 1
  year: 2017
  ident: 86_CR30
  publication-title: Nat Med
  doi: 10.1038/nm.4246
– volume: 7
  start-page: 1
  year: 2013
  ident: 86_CR93
  publication-title: Front Neural Circuits
  doi: 10.3389/fncir.2013.00185
– ident: 86_CR56
– volume-title: Mixture models: Inference and applications to clustering (Vol 84)
  year: 1988
  ident: 86_CR79
– volume: 167
  start-page: 62
  year: 2018
  ident: 86_CR28
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.11.025
– ident: 86_CR69
  doi: 10.1109/iscas.2009.5118290
– volume: 70
  start-page: 821
  issue: 8
  year: 2013
  ident: 86_CR77
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2013.143
– volume: 272
  start-page: 29
  issue: 1
  year: 2014
  ident: 86_CR6
  publication-title: Radiology
  doi: 10.1148/radiol.14132388
– volume: 57
  start-page: 1534
  issue: 4
  year: 2011
  ident: 86_CR111
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.05.074
– volume: 2
  start-page: 193
  year: 1985
  ident: 86_CR52
  publication-title: J Class
  doi: 10.1007/BF01908075
– volume-title: Independent component analysis
  year: 2001
  ident: 86_CR54
  doi: 10.1002/0471221317
– volume: 36
  start-page: 287
  year: 1994
  ident: 86_CR19
  publication-title: Signal Process
  doi: 10.1016/0165-1684(94)90029-9
– volume: 15
  start-page: 80
  issue: 1
  year: 2017
  ident: 86_CR35
  publication-title: BMC Med
  doi: 10.1186/s12916-017-0849-x
– volume: 25
  start-page: 401
  issue: 3
  year: 2009
  ident: 86_CR97
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn634
– ident: 86_CR112
– volume: 31
  start-page: 274
  issue: 3
  year: 2014
  ident: 86_CR86
  publication-title: J Class
  doi: 10.1007/s00357-014-9161-z
– volume: 45
  start-page: 1
  issue: 1
  year: 2013
  ident: 86_CR120
  publication-title: Behav Res Methods
  doi: 10.3758/s13428-012-0238-5
– volume: 28
  start-page: 100
  year: 1979
  ident: 86_CR48
  publication-title: J R Stat Soc Ser C (Applied Statistics)
– volume: 62
  start-page: 891
  issue: 2
  year: 2012
  ident: 86_CR7
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.02.020
– volume: 52
  start-page: 258
  issue: 1
  year: 2007
  ident: 86_CR50
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2006.11.025
– volume: 17
  start-page: 100
  year: 2012
  ident: 86_CR26
  publication-title: Psychol Methods
  doi: 10.1037/a0025385
– volume: 61
  start-page: 611
  issue: 3
  year: 1999
  ident: 86_CR105
  publication-title: J R Stat Soc Ser B (Statistical Methodology)
  doi: 10.1111/1467-9868.00196
– ident: 86_CR67
– volume: 37
  start-page: 379
  issue: 3
  year: 2005
  ident: 86_CR4
  publication-title: Behav Res Methods
  doi: 10.3758/BF03192707
– ident: 86_CR90
– volume: 23
  start-page: 186
  issue: 3
  year: 2013
  ident: 86_CR88
  publication-title: Eur Neuropsychopharmacol
  doi: 10.1016/j.euroneuro.2012.04.018
– volume: 24
  start-page: 5
  issue: 1
  year: 2014
  ident: 86_CR95
  publication-title: Eur Neuropsychopharmacol
  doi: 10.1016/j.euroneuro.2013.09.010
– volume: 360
  start-page: 1001
  issue: 1457
  year: 2005
  ident: 86_CR8
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2005.1634
– volume: 21
  start-page: 424
  issue: 4
  year: 2008
  ident: 86_CR44
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0b013e328306f2c5
– volume: 72
  start-page: 603
  issue: 6
  year: 2015
  ident: 86_CR62
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2015.0071
– volume: 8
  start-page: 434
  issue: 4
  year: 2003
  ident: 86_CR87
  publication-title: Psychol Methods
  doi: 10.1037/1082-989X.8.4.434
– volume: 8
  start-page: 14082
  issue: 1
  year: 2018
  ident: 86_CR106
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-32521-z
SSID ssj0035373
Score 2.1935701
Snippet In neuroscience, clustering subjects based on brain dysfunctions is a promising avenue to subtype mental disorders as it may enhance the development of a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 271
SubjectTerms Brain research
Chemistry and Earth Sciences
Computer Science
Dementia
Disease
Economics
Finance
Insurance
Management
Mathematics and Statistics
Mental disorders
Methods
Original Paper
Patients
Physics
Statistical Theory and Methods
Statistics
Statistics for Business
Statistics for Engineering
Title Partitioning subjects based on high-dimensional fMRI data: comparison of several clustering methods and studying the influence of ICA data reduction in big data
URI https://link.springer.com/article/10.1007/s41237-019-00086-4
https://www.proquest.com/docview/2933585446
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEaIXCguoSwuaAzew2DycONyqbasuqAghKvUWxR4bVaqyVdM99N_0pzLjJFu1KkhcosSPUaQZez7b428APvg0ZSeXG7ndXqk8DUE1VnultafMkSGKwZjH34ujk_zrqT4daHLkLsy98_vPXc5TqwRHVirCb5U_hic6yQqx4HkxH2fdTGf9aXJmtGIvWQ4XZB6WcdcJ3SLLe4eh0cccvoDnAzjEvV6bL-GRbyewNSZewGEcTuDZeJ24m8DTGMMpb5vryeyaPwRF9iTMr-DmhxjIsPWK3crK5kuH4sEIly0KZ7Ei4fnvOTowHP9coASPfkG3TlSIy4DsR2UTC935ShgWRFyfg7rDpiWMZLVSyLASz8b8J9JxMd-LAvFSuGLlV7ge7dnvWPoaTg4Pfs2P1JCaQTk5qVTaNzxJ-jJpCpfMPC-i7Ey7UFBIMh98sAwcfFo1zjQJY0BnS185cjNvikbTjLI3sNEuW78NSGRdlVpqSm9yS8EWxjAqIlNSbkLpppCMuqrdwFsu6TPO6zXjctRvzfqto37rfAof130uetaOf7beHU2gHkZwVzMMyngpxavlKXwazeK2-u_S3v5f8x3YTMUyY3zgLmxcXa78O8Y5V_Z9NHB-7i--_QE88_Y0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qi7QvWq-Kp1XnwTe7eEl2k41v5bDc1V4RaaFvIftVCiUnTe_B_8Y_1ZlNcsXSCr4l2Q8CMzvzm93Z3wB89GlKTk5qvt1eCpmGIGqjvFDKu8w67VxMxlyc5rNzeXyhLnqaHL4Lc-_8_nMrybRycmQpIvwW8glsSYqUOX1vmk8Hq5uprDtNzrQS5CWL_oLMw3P87YTukOW9w9DoY4524VkPDvGwk-YL2PDNCJ4PhRewX4cj2B6uE7cjeBpzOPlpZ23MftELo8iOhHkPfn9nBem3XrFdGd58aZE9mMNlg8xZLBzz_HccHRgWP-bIyaNf0K4LFeIyIPlR3sRCe71ihgWerqtB3WLdOIxktfyRYCVeDfVPeOB8ehgnxBvmiuVfoXY0V5fx60s4P_p6Np2JvjSDsHxSKZSvyUj6Iqlzm0w8BVFmomzIXUgyH3wwBBx8WtZW1wlhQGsKX1pnJ17ntXITl72CzWbZ-NeAzhlbpsbVhdfSuGByrQkVOV04qUNhx5AMsqpsz1vO5TOuqzXjcpRvRfKtonwrOYZP6zE_O9aOf_beH1Sg6ldwWxEMyiiUomh5DAeDWtw1Pz7bm__r_gG2Z2eLk-pkfvrtLeykrKUxV3AfNm9vVv4dYZ5b8z4q-x8llvgo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxQxDLagCOiFxwJioYAP3CDqzjvDrVpYdYFWFaJSb6NJnFSVqtmqs3vov-lPxc48CgiQuM1MHhrJTvwltj8DvHVxzEYu1ZLdXqo09l7VJnMqyxwlljRRCMY8OMz3j9PPJ9nJT1n8Idp9cEl2OQ3C0tSsdy_I746JbylvuBIyWaoAylV6G-7wSSU4auf5fNiLkyzpfMyJzhTbzqJPm_nzHL-aphu8-ZuLNFiexSN40ENG3Otk_BhuuWYCD4dyDNivzgncH5KM2wncDZGd8rQ9bnFX_CLYsqNmfgLXR6I2_YUsthsjVzItil0jXDUoTMaKhP2_Y-5Af_BtiRJS-gHtWL4QVx7ZusrVFtrzjfAuyHRdZeoW64YwUNjKRwabeDZURZGBy_lemBAvhUFWfoXb0Zydhq9P4Xjx6ft8X_UFG5QV_6XKXM1bpyuiOrfRzPHRyswy63PyUeK884bhhIvL2uo6YmRoTeFKS3bmdF5nNKPkGWw1q8Y9ByQytowN1YXTqSFvcq0ZK5EuKNW-sFOIBllVtmczl6Ia59XIwxzkW7F8qyDfKp3Cu3HMRcfl8c_eO4MKVP26bisGRwkfsPgMPYX3g1rcNP99thf_1_0N3Dv6uKi-Lg-_vITtWJQ0BBDuwNb6cuNeMRBam9dB138AwKQAfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partitioning+subjects+based+on+high-dimensional+fMRI+data%3A+comparison+of+several+clustering+methods+and+studying+the+influence+of+ICA+data+reduction+in+big+data&rft.jtitle=Behaviormetrika&rft.au=Durieux%2C+Jeffrey&rft.au=Wilderjans%2C+Tom+F&rft.date=2019-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0385-7417&rft.eissn=1349-6964&rft.volume=46&rft.issue=2&rft.spage=271&rft.epage=311&rft_id=info:doi/10.1007%2Fs41237-019-00086-4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0385-7417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0385-7417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0385-7417&client=summon