Partitioning subjects based on high-dimensional fMRI data: comparison of several clustering methods and studying the influence of ICA data reduction in big data
In neuroscience, clustering subjects based on brain dysfunctions is a promising avenue to subtype mental disorders as it may enhance the development of a brain-based categorization system for mental disorders that transcends and is biologically more valid than current symptom-based categorization sy...
Saved in:
Published in | Behaviormetrika Vol. 46; no. 2; pp. 271 - 311 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Springer Japan
01.10.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In neuroscience, clustering subjects based on brain dysfunctions is a promising avenue to subtype mental disorders as it may enhance the development of a brain-based categorization system for mental disorders that transcends and is biologically more valid than current symptom-based categorization systems. As changes in functional connectivity (FC) patterns have been demonstrated to be associated with various mental disorders, one appealing approach in this regard is to cluster patients based on similarities and differences in FC patterns. To this end, researchers collect three-way fMRI data measuring neural activation over time for different patients at several brain locations and apply Independent Component Analysis (ICA) to extract FC patterns from the data. However, due to the three-way nature and huge size of fMRI data, classical (two-way) clustering methods are inadequate to cluster patients based on these FC patterns. Therefore, a two-step procedure is proposed where, first, ICA is applied to each patient’s fMRI data and, next, a clustering algorithm is used to cluster the patients into homogeneous groups in terms of FC patterns. As some clustering methods used operate on similarity data, the modified RV-coefficient is adopted to compute the similarity between patient specific FC patterns. An extensive simulation study demonstrated that performing ICA before clustering enhances the cluster recovery and that hierarchical clustering using Ward’s method outperforms complete linkage hierarchical clustering, Affinity Propagation and Partitioning Around Medoids. Moreover, the proposed two-step procedure appears to recover the underlying clustering better than (1) a two-step procedure that combines PCA with clustering and (2) Clusterwise SCA-ECP, which performs PCA and clustering in a simultaneous fashion. Additionally, the good performance of the proposed two-step procedure using ICA and Ward’s hierarchical clustering is illustrated in an empirical fMRI data set regarding dementia patients. |
---|---|
AbstractList | In neuroscience, clustering subjects based on brain dysfunctions is a promising avenue to subtype mental disorders as it may enhance the development of a brain-based categorization system for mental disorders that transcends and is biologically more valid than current symptom-based categorization systems. As changes in functional connectivity (FC) patterns have been demonstrated to be associated with various mental disorders, one appealing approach in this regard is to cluster patients based on similarities and differences in FC patterns. To this end, researchers collect three-way fMRI data measuring neural activation over time for different patients at several brain locations and apply Independent Component Analysis (ICA) to extract FC patterns from the data. However, due to the three-way nature and huge size of fMRI data, classical (two-way) clustering methods are inadequate to cluster patients based on these FC patterns. Therefore, a two-step procedure is proposed where, first, ICA is applied to each patient’s fMRI data and, next, a clustering algorithm is used to cluster the patients into homogeneous groups in terms of FC patterns. As some clustering methods used operate on similarity data, the modified RV-coefficient is adopted to compute the similarity between patient specific FC patterns. An extensive simulation study demonstrated that performing ICA before clustering enhances the cluster recovery and that hierarchical clustering using Ward’s method outperforms complete linkage hierarchical clustering, Affinity Propagation and Partitioning Around Medoids. Moreover, the proposed two-step procedure appears to recover the underlying clustering better than (1) a two-step procedure that combines PCA with clustering and (2) Clusterwise SCA-ECP, which performs PCA and clustering in a simultaneous fashion. Additionally, the good performance of the proposed two-step procedure using ICA and Ward’s hierarchical clustering is illustrated in an empirical fMRI data set regarding dementia patients. |
Author | Wilderjans, Tom F. Durieux, Jeffrey |
Author_xml | – sequence: 1 givenname: Jeffrey orcidid: 0000-0001-7888-8386 surname: Durieux fullname: Durieux, Jeffrey email: j.durieux@fsw.leidenuniv.nl organization: Methodology and Statistics Unit, Institute of Psychology, Faculty of Social and Behavioural Science, Leiden University, Leiden Institute for Brain and Cognition (LIBC) – sequence: 2 givenname: Tom F. surname: Wilderjans fullname: Wilderjans, Tom F. organization: Methodology and Statistics Unit, Institute of Psychology, Faculty of Social and Behavioural Science, Leiden University, Leiden Institute for Brain and Cognition (LIBC), Research Group of Quantitative Psychology and Individual Differences, Faculty of Psychology and Educational Sciences, KU Leuven |
BookMark | eNp9kctqHDEQRUVwIGMnP5CVIGvFUuvR3dkFk4fBISHYa6GWSjMaeqSJpA74b_KpUc8YAll4VVB1z6Wq7iW6iCkCQm8Zfc8o7a-LYB3vCWUjoZQOiogXaMO4GIkalbhAG8oHSXrB-lfospQ9pVzynm_Qnx8m11BDiiFucVmmPdha8GQKOJwi3oXtjrhwgFiaxszYf_t5i52p5gO26XA0OZQmSx4X-A25Cey8lAp5tTtA3SVXsIkOl7q4x7VZd4BD9PMC0cIK3t58PBniDG6x6yptjqewPXVfo5fezAXePNUr9PD50_3NV3L3_Usj74jt-kEQCYYxBj0zyjIKqpMTldYr5xkHD35iA4NuNHYwTElqpx5G6yyFQRnpqONX6N3Z95jTrwVK1fu05HZx0d3IuRykEKqpurPK5lRKBq-PORxMftSM6jUJfU5CtyT0KQktGjT8B9lQzXpozSbMz6P8jJbj-lHI_7Z6hvoLQq2iyw |
CitedBy_id | crossref_primary_10_1002_hbm_26472 crossref_primary_10_1016_j_jbi_2025_104799 crossref_primary_10_1002_hbm_26234 crossref_primary_10_1038_s41539_021_00088_6 crossref_primary_10_1155_2023_4830716 crossref_primary_10_1016_j_ins_2023_118948 crossref_primary_10_1007_s10750_020_04220_2 crossref_primary_10_1016_j_neuroimage_2022_119250 crossref_primary_10_1080_00222933_2020_1871522 |
Cites_doi | 10.1016/j.jpsychires.2014.02.001 10.1037/1082-989X.9.4.510 10.1126/science.1136800 10.1016/0377-0427(87)90125-7 10.1109/72.761722 10.1007/BF02294245 10.1523/JNEUROSCI.0333-10.2010 10.1016/j.neuroimage.2008.10.057 10.1056/NEJMp1500523 10.1136/jmg.2005.030718 10.1002/9780470238004.ch16 10.1038/nn1770 10.1111/j.2044-8317.2012.02040.x 10.1016/j.neurobiolaging.2011.06.024 10.1016/0165-1684(91)90079-X 10.1007/s00357-013-9120-0 10.1007/s11336-008-9069-9 10.1001/jamapsychiatry.2015.1376 10.1080/0094965031000136012 10.1176/appi.books.9780890425596 10.1038/nrd3628 10.1073/pnas.0811879106 10.1007/s11336-012-9275-3 10.1002/9780470977811 10.1214/11-BA622 10.3758/s13428-011-0166-9 10.1016/j.chemolab.2013.09.010 10.1007/s00357-015-9187-x 10.1002/hbm.1048 10.3758/s13428-011-0129-1 10.3389/fnhum.2015.00474 10.1038/nrneurol.2009.198 10.1016/j.neuroimage.2007.11.001 10.1186/1741-7015-10-156 10.1027/1614-2241.2.2.57 10.1016/j.neuroimage.2008.12.015 10.21236/AD0047524 10.1037/a0022679 10.1093/brain/awr066 10.1016/S0893-6080(00)00026-5 10.1098/rstb.2001.0915 10.1109/TPAMI.1983.4767342 10.1016/S1474-4422(11)70158-2 10.1002/hbm.20359 10.1198/016214502760047131 10.1016/j.neuroimage.2004.10.042 10.1111/1467-9868.00293 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 10.1016/j.neuron.2009.03.024 10.1016/j.neuron.2014.08.034 10.1007/BF02289823 10.1037/a0018535 10.1007/3-540-49257-7_15 10.1002/wps.20087 10.1002/9780470316801 10.1126/science.aab2358 10.1080/10255841003766829 10.1007/978-3-642-79999-0_1 10.1037/1082-989X.8.3.294 10.1002/hbm.20160 10.1038/nrn3155 10.1080/00273171.2012.673952 10.1038/nrn2201 10.18637/jss.v044.i10 10.1002/hbm.22379 10.1016/j.biopsych.2013.10.026 10.1348/000711005X64817 10.1016/j.biopsych.2014.01.023 10.1093/comjnl/20.4.359 10.1002/hbm.21170 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I 10.1109/TMI.2003.822821 10.1007/s11336-007-9000-9 10.1016/S0167-9473(00)00064-5 10.1093/bioinformatics/btr406 10.1007/978-3-642-51175-2_24 10.3389/fnhum.2017.00418 10.2307/2532201 10.1007/978-3-642-02172-5_57 10.1080/01621459.1963.10500845 10.1073/pnas.0905267106 10.1016/j.neuroimage.2011.09.015 10.1176/appi.ajp.2010.09091379 10.1212/WNL.0b013e31829a33f8 10.1073/pnas.0308627101 10.1016/j.csda.2010.02.009 10.1016/j.brainres.2009.11.057 10.1038/nm.4246 10.3389/fncir.2013.00185 10.1016/j.neuroimage.2017.11.025 10.1109/iscas.2009.5118290 10.1001/jamapsychiatry.2013.143 10.1148/radiol.14132388 10.1016/j.neuroimage.2011.05.074 10.1007/BF01908075 10.1002/0471221317 10.1016/0165-1684(94)90029-9 10.1186/s12916-017-0849-x 10.1093/bioinformatics/btn634 10.1007/s00357-014-9161-z 10.3758/s13428-012-0238-5 10.1016/j.neuroimage.2012.02.020 10.1016/j.csda.2006.11.025 10.1037/a0025385 10.1111/1467-9868.00196 10.3758/BF03192707 10.1016/j.euroneuro.2012.04.018 10.1016/j.euroneuro.2013.09.010 10.1098/rstb.2005.1634 10.1097/WCO.0b013e328306f2c5 10.1001/jamapsychiatry.2015.0071 10.1037/1082-989X.8.4.434 10.1038/s41598-018-32521-z |
ContentType | Journal Article |
Copyright | The Author(s) 2019 The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION PHGZM PHGZT PKEHL PSYQQ |
DOI | 10.1007/s41237-019-00086-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Psychology |
DatabaseTitle | CrossRef ProQuest One Psychology ProQuest One Academic Middle East (New) ProQuest Central (New) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Statistics Psychology Physics Computer Science |
EISSN | 1349-6964 |
EndPage | 311 |
ExternalDocumentID | 10_1007_s41237_019_00086_4 |
GrantInformation_xml | – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek grantid: 406.16.563 funderid: http://dx.doi.org/10.13039/501100003246 |
GroupedDBID | -EM 0R~ 23N 2WC 406 5GY AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYQN ABAKF ABDZT ABECU ABFTV ABIVO ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACREN ACZOJ ADBBV ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFQWF AGDGC AGMZJ AGQEE AGQMX AGRTI AHKAY AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ASPBG AXYYD BAWUL BGNMA BKOMP C6C CS3 CSCUP DIK DNIVK DPUIP E3Z EBLON EBS EIOEI EJD F5P FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD GX1 HG6 IKXTQ IWAJR J-C JSF JSI JSP JZLTJ KOV KQ8 LLZTM M4Y MOJWN M~E NPVJJ NQJWS NU0 O9J OK1 P6G PKN PSYQQ PT4 RJT RLLFE RNS ROL RSV RZJ SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TKC TR2 TSG UG4 UOJIU UTJUX UZXMN VFIZW XSB ZMTXR AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION OVT PHGZM PHGZT ABRTQ PKEHL |
ID | FETCH-LOGICAL-c2784-5ea111e71a6c10e625b05cf6df13efefb181e29ac8a1650cb7e9cdc0e86a5d0d3 |
IEDL.DBID | C6C |
ISSN | 0385-7417 |
IngestDate | Fri Jul 25 21:11:05 EDT 2025 Thu Apr 24 22:52:09 EDT 2025 Tue Jul 01 01:31:31 EDT 2025 Fri Feb 21 02:38:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | High-dimensional data ICA Affinity propagation Big data Clustering Hierarchical clustering PAM Data reduction FMRI three-way data |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2784-5ea111e71a6c10e625b05cf6df13efefb181e29ac8a1650cb7e9cdc0e86a5d0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7888-8386 |
OpenAccessLink | https://doi.org/10.1007/s41237-019-00086-4 |
PQID | 2933585446 |
PQPubID | 2039330 |
PageCount | 41 |
ParticipantIDs | proquest_journals_2933585446 crossref_primary_10_1007_s41237_019_00086_4 crossref_citationtrail_10_1007_s41237_019_00086_4 springer_journals_10_1007_s41237_019_00086_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191000 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 20191000 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Behaviormetrika |
PublicationTitleAbbrev | Behaviormetrika |
PublicationYear | 2019 |
Publisher | Springer Japan Springer Nature B.V |
Publisher_xml | – name: Springer Japan – name: Springer Nature B.V |
References | De RooverKCeulemansETimmermanMEVansteelandtKStoutenJOnghenaPClusterwise simultaneous component analysis for analyzing structural differences in multivariate multiblock dataPsychol Methods201217100119 Steinley D, Brusco M J (2011) K-means clustering and mixture model clustering: Reply to mclachlan (2011) and vermunt (2011) DrzezgaABeckerJAVan DijkKRSreenivasanATalukdarTSullivanCSperlingRANeuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burdenBrain2011134616351646 DrysdaleATGrosenickLDownarJDunlopKMansouriFMengYListonCResting-state connectivity biomarkers define neurophysiological subtypes of depressionNat Med201723128 ArabiePHubertLGaulWPfeiferDAdvances in cluster analysis relevant to marketing researchFrom data to knowledge: Theoretical and practical aspects of classification, data analysis, and knowledge organization1996Berlin, HeidelbergSpringer319 Lorenzo-SevaUTen BergeJMTucker’s congruence coefficient as a meaningful index of factor similarityMethodology2006225764 RousseeuwPJSilhouettes: a graphical aid to the interpretation and validation of cluster analysisJ Comput Appl Math19872053650636.62059 SokalRMichenerCA statistical method for evaluating systematic relationshipsUniv Kansas Sci Bull19583814091438 BarkhofFHallerSRomboutsSARBResting-state functional MR imaging: a new window to the brainRadiology201427212949 FernandesBSWilliamsLMSteinerJLeboyerMCarvalhoAFBerkMThe new field of ’precision psychiatry’BMC Med201715180 Lee T W, Lewicki M S, Sejnowski T J (1999) Unsupervised classification with non-gaussian mixture models using ica. In: Advances in neural information processing systems (pp 508–514) Insel T, Cuthbert B , Garvey M, Heinssen R, Pine D S , Quinn K, Wang P (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. American Psychiatric Association De SoeteGCarrollJDDidayELechevallierYSchaderMBertrandPBurtschyBK-means clustering in a low-dimensional euclidean spaceNew approaches in classiffication and data analysis1994Berlin, HeidelbergSpringer212219 VeerIMBeckmannCVan TolM-JFerrariniLMillesJVeltmanDRomboutsSAWhole brain resting-state analysis reveals decreased functional connectivity in major depressionFront Syst Neurosci2010441 BakemanRRecommended effect size statistics for repeated measures designsBehav Res Methods2005373379384 CraddockNO’DonovanMOwenMThe genetics of schizophrenia and bipolar disorder: dissecting psychosisJ Med Genet2005423193204 SchumannGBinderEBHolteAde KloetEROedegaardKJRobbinsTWStratified medicine for mental disordersEur Neuropsychopharmacol2014241550 CuthbertBNThe rdoc framework: facilitating transition from icd/dsm to dimensional approaches that integrate neuroscience and psychopathologyWorld Psychiatry20141312835 MojenaRHierarchical grouping methods and stopping rules: an evaluationComput J19772043593630364.62065 BeyerKGoldsteinJRamakrishnanRShaftUBeeriCBunemanPWhen is “nearest neighbor” meaningful?Database theory – ICDT’991999Berlin, HeidelbergSpringer217235 HyvärinenAOjaEIndependent component analysis: algorithms and applicationsNeural Netw2000134–5411430 FilippiniNMacIntoshBJHoughMGGoodwinGMFrisoniGBSmithSMMackayCEDistinct patterns of brain activity in young carriers of the apoe-e4 alleleProc Natl Acad Sci20091061772097214 MarínOInterneuron dysfunction in psychiatric disordersNat Rev Neurosci2012132107 MazziottaJTogaAEvansAFoxPLancasterJZillesKA probabilistic atlas and reference system for the human brain: International consortium for brain mapping (icbm)Philos Trans R Soc Lond B Biol Sci2001356141212931322 TibshiraniRWaltherGHastieTEstimating the number of clusters in a data set via the gap statisticJ R Stat Soc Ser B (Statistical Methodology)200163241142318415030979.62046 De RooverKCeulemansETimmermanMEHow to perform multiblock component analysis in practiceBehav Res Methods2012444156 Hennig C (2018) fpc: Flexible procedures for clustering [Computer software manual]. https://CRAN.R-project.org/package=fpc (R package version 2.1-11.1) Indahl U G , Næs T, Liland K H (2016) A similarity index for comparing coupled matrices [Computer software manual]. https://cran.r-project.org/web/packages/MatrixCorrelation ViroliCModel based clustering for three-way data structuresBayesian Anal20116457360228699581330.62262 DamoiseauxJSPraterKEMillerBLGreiciusMDFunctional connectivity tracks clinical deterioration in Alzheimer’s diseaseNeurobiol Aging2012334828-e19 SeeleyWWCrawfordRKZhouJMillerBLGreiciusMDNeurodegenerative diseases target large-scale human brain networksNeuron20096214252 MilliganGWCooperMCAn examination of procedures for determining the number of clusters in a data setPsychometrika1985502159179 KroonenbergPMKroonenbergPThree-mode clusteringApplied multiway data analysis2008HobokenWiley4034321160.62002 LynallM-EBassettDSKerwinRMcKennaPJKitzbichlerMMullerUBullmoreEFunctional connectivity and brain networks in schizophreniaJ Neurosci2010302894779487 WilderjansTFCeulemansEKuppensPClusterwise HICLAS: a generic modeling strategy to trace similarities and differences in multiblock binary dataBehav Res Methods2012442532545 KiersHALTowards a standardized notation and terminology in multiway analysisJ Chemom2000143105122 Agosta F, Sala S, Valsasina P, Meani A, Canu E, Magnani G, Filippi M (2013) Brain network connectivity assessed using graph theory in frontotemporal dementia. Neurology 1-10 de VosFKoiniMSchoutenTMSeilerSGrondJLechnerARomboutsSARBA comprehensive analysis of resting state fmri measures to classify individual patients with Alzheimer’s diseaseNeuroImage20181676272 SantanaRMcGarryLBielzaCLarrañagaPYusteRClassification of neocortical interneurons using affinity propagationFront Neural Circuits20137113 MillerCHHamiltonJPSacchetMDGotlibIHMeta-analysis of functional neuroimaging of major depressive disorder in youthJAMA Psychiatry2015721010451053 VichiMKiersHALFactorial K-means analysis for two-way dataComput Stat Data Anal2001371496418624791051.62056 EspositoFScarabinoTHyvarinenAHimbergJFormisanoEComaniSDi SalleFIndependent component analysis of fMRI group studies by self-organizing clusteringNeuroImage2005251193205 MckeownMJMakeigSBrownGGJungT-PKindermannSSBellAJSejnowskiTJAnalysis of fmri data by blind separation into independent spatial componentsHum Brain Mapp199863160188 PannekoekJNVeerIMvan TolM-Jvan der WerffSJDemenescuLRAlemanAvan der WeeNJResting-state functional connectivity abnormalities in limbic and salience networks in social anxiety disorder without comorbidityEur Neuropsychopharmacol2013233186195 GreiciusMDResting-state functional connectivity in neuropsychiatric disordersCurr Opin Neurol2008214424430 CeulemansEKiersHALSelecting among three-mode principal component models of different types and complexities: a numerical convex hull based methodBr J Math Stat Psychol20065911331502246998 LeeYParkB-YJamesOKimS-GParkHAutism spectrum disorder related functional connectivity changes in the language network in children, adolescents and adultsFront Hum Neurosci201711418 TimmermanMECeulemansEKiersHALVichiMFactorial and reduced K-means reconsideredComput Stat Data Anal20105471858187126089791284.62396 WengS-JWigginsJLPeltierSJCarrascoMRisiSLordCMonkCSAlterations of resting state functional connectivity in the default network in adolescents with autism spectrum disordersBrain Res20101313202214 BanfieldJDRafteryAEModel-based Gaussian and non-Gaussian clusteringBiometrics19934980382112434940794.62034 Core Team R (2017). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. https://www.R-project.org KaufmanLRousseeuwPFinding groups in data: an introduction to cluster analysis1990HobokenWiley1345.62009 ComonPIndependent component analysis, a new concept?Signal Process1994362873140791.62004 HennigCCluster-wise assessment of cluster stabilityComput Stat Data Anal2007521258271240998005560156 WardJHJHierarchical grouping to optimize an objective functionJ Am Stat Assoc196358301236244148188 SmithSMFoxPTMillerKLGlahnDCFoxPMMackayCEBeckmannCFCorrespondence of the brain’s functional architecture during activation and restProc Natl Acad Sci2009106311304013045 WilderjansTFCeulemansEVan MechelenIThe CHIC model: a global model for coupled binary dataPsychometrika200873472975124697901284.62767 TuckerLRA method for synthesis of factor analysis studies (Personnel Research Section Rapport # 984)1951Washington, DCDepartment of the Army VeerIMOeiNYSpinhovenPvan BuchemMAElzingaBMRomboutsSABeyond acute social stress: increased functional connectivity between amygdala and cortical midline structuresNeuroImage201157415341541 McLachlanGJBasfordKEMixture models: Inference and applications to clustering (Vol 84)1988New YorkMarcel Dekker0697.62050 Li G , Guo L, Liu T (2009 May) Grouping of brain MR images via Affinity Propagation. The ... Midwest symposium on circuits and systems conference proceedings : MWSCAS. Midwest symposium on circuits and systems 2009, pp 2425-2428. http://europepmc.org/articles/PMC3011186. https://doi.org/10.1109/iscas.2009.5118290 JenkinsonMBeckmannCFBehrensTEWoolrichMWSmithSMFslNeuroImage2012622782790 FoxMDRaichleMESpontaneous fluctuations in brain activity observed with functional magnetic resonance imagingNat Rev Neurosci20078700711 DownarJGeraciJSalomonsTVDunlopKWheelerSMcAndrewsMPGiacobbePAnhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depressionBiol Psychiatry2014763176185 HappéFRonaldAPlominRTime to give up on a single explanation for autismNat Neurosci20069101218 HartiganJAWongMAAlgorithm AS 136: A K-Means clustering algorithmJ R Stat Soc Ser C (Applied Statistics)1979281001080447.62062 BruscoMJSteinleyDAffinity propagation and uncapacitated facility location problemsJ Classif201532344348034228951331.90036 WilderjansTFCeulemansEClusterwise parafac to identify heterogeneity in three-way dataChemom Intell Lab Syst20131298797 GreenhouseSWGeisserSOn methods in the a C Viroli (86_CR114) 2011; 6 S-J Weng (86_CR117) 2010; 1313 JA Hartigan (86_CR48) 1979; 28 86_CR112 86_CR49 GJ McLachlan (86_CR79) 1988 V. García (86_CR40) 2009 PJ Rousseeuw (86_CR92) 1987; 20 TF Wilderjans (86_CR119) 2012; 44 L Hubert (86_CR52) 1985; 2 M-E Lynall (86_CR73) 2010; 30 TF Wilderjans (86_CR122) 2012; 77 E Ceulemans (86_CR17) 2007; 72 AT Drysdale (86_CR30) 2017; 23 M Jenkinson (86_CR60) 2012; 62 A Hyvärinen (86_CR54) 2001 R Tibshirani (86_CR103) 2001; 63 Y Lee (86_CR68) 2017; 11 R Mojena (86_CR85) 1977; 20 D Steinley (86_CR100) 2003; 8 86_CR56 ME Tipping (86_CR105) 1999; 61 86_CR57 R Sokal (86_CR99) 1958; 38 86_CR51 JHJ Ward (86_CR115) 1963; 58 CF Beckmann (86_CR9) 2004; 23 IM Veer (86_CR111) 2011; 57 N Craddock (86_CR20) 2005; 42 G Deco (86_CR24) 2014; 84 F Esposito (86_CR33) 2005; 25 GW Milligan (86_CR84) 1983; 5 ME Timmerman (86_CR104) 2010; 54 FS Collins (86_CR18) 2015; 372 R Bakeman (86_CR4) 2005; 37 J Downar (86_CR29) 2014; 76 TF Wilderjans (86_CR123) 2013; 30 J Zhang (86_CR125) 2011; 14 O Marín (86_CR75) 2012; 13 BN Cuthbert (86_CR21) 2014; 13 MJ Millan (86_CR81) 2012; 11 GH Golub (86_CR41) 2012 86_CR1 86_CR2 M Welvaert (86_CR116) 2011; 44 J Mazziotta (86_CR76) 2001; 356 A Drzezga (86_CR31) 2011; 134 K De Roover (86_CR25) 2013; 66 TR Insel (86_CR58) 2015; 348 SM Smith (86_CR98) 2009; 106 BJ Frey (86_CR39) 2008; 315 86_CR101 N Gour (86_CR42) 2014; 35 WW Seeley (86_CR96) 2009; 62 SW Greenhouse (86_CR43) 1959; 24 MD Fox (86_CR37) 2007; 8 TF Wilderjans (86_CR120) 2013; 45 P Arabie (86_CR3) 1996 K De Roover (86_CR23) 2012; 44 BS Fernandes (86_CR35) 2017; 15 P Comon (86_CR19) 1994; 36 F Murtagh (86_CR86) 2014; 31 S Olejnik (86_CR87) 2003; 8 F Happé (86_CR47) 2006; 9 MD Greicius (86_CR44) 2008; 21 LR Tucker (86_CR107) 1951 M Vichi (86_CR113) 2001; 37 MJ Brusco (86_CR13) 2015; 32 M van der Laan (86_CR108) 2003; 73 VD Calhoun (86_CR14) 2001; 14 CF Beckmann (86_CR8) 2005; 360 JN Pannekoek (86_CR88) 2013; 23 AK Smilde (86_CR97) 2009; 25 M Pievani (86_CR89) 2011; 10 K De Roover (86_CR26) 2012; 17 G De Soete (86_CR27) 1994 A Hafkemeijer (86_CR46) 2015; 9 E Ceulemans (86_CR16) 2006; 59 D Steinley (86_CR102) 2012; 47 Y-O Li (86_CR70) 2007; 28 HAL Kiers (86_CR64) 2000; 14 SA Rombouts (86_CR91) 2005; 26 L Kaufman (86_CR63) 1990 C Fraley (86_CR38) 2002; 97 MJ Mckeown (86_CR78) 1998; 6 CF Beckmann (86_CR7) 2012; 62 C Liston (86_CR71) 2014; 76 G Schumann (86_CR95) 2014; 24 MD Greicius (86_CR45) 2004; 101 A Hyvärinen (86_CR55) 2000; 13 RH Kaiser (86_CR62) 2015; 72 CH Miller (86_CR82) 2015; 72 86_CR90 HM van Loo (86_CR109) 2012; 10 MJ Brusco (86_CR12) 2004; 9 K Beyer (86_CR10) 1999 CL McGrath (86_CR77) 2013; 70 PM Kroonenberg (86_CR66) 2008 C Jutten (86_CR61) 1991; 24 U Bodenhofer (86_CR11) 2011; 27 R Santana (86_CR93) 2013; 7 F Barkhof (86_CR6) 2014; 272 GW Milligan (86_CR83) 1985; 50 MJ Jafri (86_CR59) 2008; 39 86_CR67 86_CR69 TF Wilderjans (86_CR118) 2013; 129 IM Veer (86_CR110) 2010; 4 JD Banfield (86_CR5) 1993; 49 JS Damoiseaux (86_CR22) 2012; 33 VD Calhoun (86_CR15) 2009; 45 A Mezer (86_CR80) 2009; 45 T Tokuda (86_CR106) 2018; 8 D Zhang (86_CR124) 2010; 6 TF Wilderjans (86_CR121) 2008; 73 H-F Köhn (86_CR65) 2010; 15 A Schacht (86_CR94) 2014; 53 86_CR74 N Filippini (86_CR36) 2009; 106 A Hyvärinen (86_CR53) 1999; 10 F de Vos (86_CR28) 2018; 167 BS Everitt (86_CR34) 2011 C Hennig (86_CR50) 2007; 52 EB Erhardt (86_CR32) 2011; 32 U Lorenzo-Seva (86_CR72) 2006; 2 |
References_xml | – reference: Helwig N E (2015) ica: Independent Component Analysis [Computer software manual]. https://cran.r-project.org/web/packages/ica/ (R package version 1.0-1) – reference: TibshiraniRWaltherGHastieTEstimating the number of clusters in a data set via the gap statisticJ R Stat Soc Ser B (Statistical Methodology)200163241142318415030979.62046 – reference: de VosFKoiniMSchoutenTMSeilerSGrondJLechnerARomboutsSARBA comprehensive analysis of resting state fmri measures to classify individual patients with Alzheimer’s diseaseNeuroImage20181676272 – reference: DownarJGeraciJSalomonsTVDunlopKWheelerSMcAndrewsMPGiacobbePAnhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depressionBiol Psychiatry2014763176185 – reference: EspositoFScarabinoTHyvarinenAHimbergJFormisanoEComaniSDi SalleFIndependent component analysis of fMRI group studies by self-organizing clusteringNeuroImage2005251193205 – reference: KaiserRHAndrews-HannaJRWagerTDPizzagalliDALarge-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivityJAMA Psychiatry2015726603611 – reference: WilderjansTFCeulemansEVan MechelenIThe CHIC model: a global model for coupled binary dataPsychometrika200873472975124697901284.62767 – reference: PannekoekJNVeerIMvan TolM-Jvan der WerffSJDemenescuLRAlemanAvan der WeeNJResting-state functional connectivity abnormalities in limbic and salience networks in social anxiety disorder without comorbidityEur Neuropsychopharmacol2013233186195 – reference: Insel T, Cuthbert B , Garvey M, Heinssen R, Pine D S , Quinn K, Wang P (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. American Psychiatric Association – reference: KaufmanLRousseeuwPFinding groups in data: an introduction to cluster analysis1990HobokenWiley1345.62009 – reference: Hennig C (2018) fpc: Flexible procedures for clustering [Computer software manual]. https://CRAN.R-project.org/package=fpc (R package version 2.1-11.1) – reference: Indahl U G , Næs T, Liland K H (2016) A similarity index for comparing coupled matrices [Computer software manual]. https://cran.r-project.org/web/packages/MatrixCorrelation/ – reference: HyvärinenAFast and robust fixed-point algorithm for independent component analysisIEEE Trans Neural Netw1999103626634 – reference: BeckmannCFDeLucaMDevlinJTSmithSMInvestigations into resting-state connectivity using independent component analysisPhilos Trans R Soc Lond B Biol Sci2005360145710011013 – reference: SchumannGBinderEBHolteAde KloetEROedegaardKJRobbinsTWStratified medicine for mental disordersEur Neuropsychopharmacol2014241550 – reference: LiY-OAdalıTCalhounVDEstimating the number of independent components for functional magnetic resonance imaging dataHum Brain Mapp2007281112511266 – reference: MurtaghFLegendrePWard’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion?J Class201431327429532777071360.62344 – reference: LeeYParkB-YJamesOKimS-GParkHAutism spectrum disorder related functional connectivity changes in the language network in children, adolescents and adultsFront Hum Neurosci201711418 – reference: ZhangJLiDChenHFangFAnalysis of activity in fMRI data using affinity propagation clusteringComput Methods Biomech Biomed Eng2011143271281 – reference: HubertLArabiePComparing partitionsJ Class198521932180587.62128 – reference: JafriMJPearlsonGDStevensMCalhounVDA method for functional network connectivity among spatially independent resting-state components in schizophreniaNeuroImage200839416661681 – reference: RomboutsSABarkhofFGoekoopRStamCJScheltensPAltered resting state networks in mild cognitive impairment and mild alzheimer’s disease: an fmri studyHum Brain Mapp2005264231239 – reference: MilliganGWSoonSCSokolLMThe effect of cluster size, dimensionality, and the number of clusters on recovery of true cluster structureIEEE Trans Pattern Anal Mach intell198354047 – reference: GreenhouseSWGeisserSOn methods in the analysis of profile dataPsychometrika1959242951121037831367.62224 – reference: LynallM-EBassettDSKerwinRMcKennaPJKitzbichlerMMullerUBullmoreEFunctional connectivity and brain networks in schizophreniaJ Neurosci2010302894779487 – reference: Core Team R (2017). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. https://www.R-project.org/ – reference: MazziottaJTogaAEvansAFoxPLancasterJZillesKA probabilistic atlas and reference system for the human brain: International consortium for brain mapping (icbm)Philos Trans R Soc Lond B Biol Sci2001356141212931322 – reference: van der LaanMPollardKBryanJA new partitioning around medoids algorithmJ Stat Comput Simul200373857558419986701054.62075 – reference: EverittBSLandauSLeeseMStahlDCluster analysis2011New YorkJohn Wiley and Sons1274.62003 – reference: HyvärinenAOjaEIndependent component analysis: algorithms and applicationsNeural Netw2000134–5411430 – reference: FreyBJDueckDClustering by passing messages between data pointsScience200831597297622921741226.94027 – reference: ArabiePHubertLGaulWPfeiferDAdvances in cluster analysis relevant to marketing researchFrom data to knowledge: Theoretical and practical aspects of classification, data analysis, and knowledge organization1996Berlin, HeidelbergSpringer319 – reference: OlejnikSAlginaJGeneralized eta and omega squared statistics: measures of effect size for some common research designsPsychol Methods200384434 – reference: VeerIMOeiNYSpinhovenPvan BuchemMAElzingaBMRomboutsSABeyond acute social stress: increased functional connectivity between amygdala and cortical midline structuresNeuroImage201157415341541 – reference: WardJHJHierarchical grouping to optimize an objective functionJ Am Stat Assoc196358301236244148188 – reference: MojenaRHierarchical grouping methods and stopping rules: an evaluationComput J19772043593630364.62065 – reference: GreiciusMDSrivastavaGReissALMenonVDefault-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRIProc Natl Acad Sci20041011346374642 – reference: Lorenzo-SevaUTen BergeJMTucker’s congruence coefficient as a meaningful index of factor similarityMethodology2006225764 – reference: CeulemansEKiersHALSelecting among three-mode principal component models of different types and complexities: a numerical convex hull based methodBr J Math Stat Psychol20065911331502246998 – reference: DecoGKringelbachMLGreat expectations: using whole-brain computational connectomics for understanding neuropsychiatric disordersNeuron2014845892905 – reference: RousseeuwPJSilhouettes: a graphical aid to the interpretation and validation of cluster analysisJ Comput Appl Math19872053650636.62059 – reference: SokalRMichenerCA statistical method for evaluating systematic relationshipsUniv Kansas Sci Bull19583814091438 – reference: MillanMJAgidYBrüneMBullmoreETCarterCSClaytonNSYoungLJCognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapyNat Rev Drug Discov2012112141 – reference: FilippiniNMacIntoshBJHoughMGGoodwinGMFrisoniGBSmithSMMackayCEDistinct patterns of brain activity in young carriers of the apoe-e4 alleleProc Natl Acad Sci20091061772097214 – reference: VichiMKiersHALFactorial K-means analysis for two-way dataComput Stat Data Anal2001371496418624791051.62056 – reference: PievaniMde HaanWWuTSeeleyWWFrisoniGBFunctional network disruption in the degenerative dementiasLancet Neurol2011109829843 – reference: FernandesBSWilliamsLMSteinerJLeboyerMCarvalhoAFBerkMThe new field of ’precision psychiatry’BMC Med201715180 – reference: BeyerKGoldsteinJRamakrishnanRShaftUBeeriCBunemanPWhen is “nearest neighbor” meaningful?Database theory – ICDT’991999Berlin, HeidelbergSpringer217235 – reference: TuckerLRA method for synthesis of factor analysis studies (Personnel Research Section Rapport # 984)1951Washington, DCDepartment of the Army – reference: ErhardtEBRachakondaSBedrickEJAllenEAAdaliTCalhounVDComparison of multi-subject ICA methods for analysis of fMRI dataHum Brain Mapp2011321220752095 – reference: De RooverKCeulemansETimmermanMEVansteelandtKStoutenJOnghenaPClusterwise simultaneous component analysis for analyzing structural differences in multivariate multiblock dataPsychol Methods201217100119 – reference: BodenhoferUKothmeierAHochreiterSAPCluster: an R package for affinity propagation clusteringBioinformatics20112724632464 – reference: MillerCHHamiltonJPSacchetMDGotlibIHMeta-analysis of functional neuroimaging of major depressive disorder in youthJAMA Psychiatry2015721010451053 – reference: SmithSMFoxPTMillerKLGlahnDCFoxPMMackayCEBeckmannCFCorrespondence of the brain’s functional architecture during activation and restProc Natl Acad Sci2009106311304013045 – reference: MarínOInterneuron dysfunction in psychiatric disordersNat Rev Neurosci2012132107 – reference: SeeleyWWCrawfordRKZhouJMillerBLGreiciusMDNeurodegenerative diseases target large-scale human brain networksNeuron20096214252 – reference: CalhounVDAdaliTPearlsonGDPekarJJA method for making group inferences from functional mri data using independent component analysisHum Brain Mapp200114314015110.1002/hbm.1048 – reference: WilderjansTFCeulemansEClusterwise parafac to identify heterogeneity in three-way dataChemom Intell Lab Syst20131298797 – reference: TokudaTYoshimotoJShimizuYOkadaGTakamuraMOkamotoYDoyaKIdentification of depression subtypes and relevant brain regions using a data-driven approachSci Rep2018811408210.1038/s41598-018-32521-z – reference: GourNFelicianODidicMKoricLGueriotCChanoineVRanjevaJPFunctional connectivity changes differ in early and late-onset Alzheimer’s diseaseHum Brain Mapp201435729782994 – reference: CollinsFSVarmusHA new initiative on precision medicineN Engl J Med20153729793795 – reference: CalhounVDLiuJAdalıTA review of group ica for fmri data and ica for joint inference of imaging, genetic, and erp dataNeuroImage2009451S163S172 – reference: WilderjansTFCeulemansEVan MechelenIThe SIMCLAS model: simultaneous analysis of coupled binary data matrices with noise heterogeneity between and within data blocksPsychometrika201277472474029935311284.62766 – reference: CeulemansEVan MechelenILeenenIThe local minima problem in hierarchical classes analysis: an evaluation of a simulated annealing algorithm and various multistart proceduresPsychometrika200772337739123619631286.62102 – reference: HartiganJAWongMAAlgorithm AS 136: A K-Means clustering algorithmJ R Stat Soc Ser C (Applied Statistics)1979281001080447.62062 – reference: BeckmannCFModelling with independent componentsNeuroImage2012622891901 – reference: JenkinsonMBeckmannCFBehrensTEWoolrichMWSmithSMFslNeuroImage2012622782790 – reference: VeerIMBeckmannCVan TolM-JFerrariniLMillesJVeltmanDRomboutsSAWhole brain resting-state analysis reveals decreased functional connectivity in major depressionFront Syst Neurosci2010441 – reference: Li G , Guo L, Liu T (2009 May) Grouping of brain MR images via Affinity Propagation. The ... Midwest symposium on circuits and systems conference proceedings : MWSCAS. Midwest symposium on circuits and systems 2009, pp 2425-2428. http://europepmc.org/articles/PMC3011186. https://doi.org/10.1109/iscas.2009.5118290 – reference: WengS-JWigginsJLPeltierSJCarrascoMRisiSLordCMonkCSAlterations of resting state functional connectivity in the default network in adolescents with autism spectrum disordersBrain Res20101313202214 – reference: BruscoMJSteinleyDAffinity propagation and uncapacitated facility location problemsJ Classif201532344348034228951331.90036 – reference: Lee T W, Lewicki M S, Sejnowski T J (1999) Unsupervised classification with non-gaussian mixture models using ica. In: Advances in neural information processing systems (pp 508–514) – reference: SantanaRMcGarryLBielzaCLarrañagaPYusteRClassification of neocortical interneurons using affinity propagationFront Neural Circuits20137113 – reference: Steinley D, Brusco M J (2011) K-means clustering and mixture model clustering: Reply to mclachlan (2011) and vermunt (2011) – reference: WilderjansTFCeulemansEKuppensPClusterwise HICLAS: a generic modeling strategy to trace similarities and differences in multiblock binary dataBehav Res Methods2012442532545 – reference: Vervloet M, Wilderjans T F, Durieux J, Ceulemans E (2017) Multichull: A generic convex-hull-based model selection method. [Computer software manual]. https://CRAN.R-project.org/package=multichull (R package version 1.0.0) – reference: TimmermanMECeulemansEKiersHALVichiMFactorial and reduced K-means reconsideredComput Stat Data Anal20105471858187126089791284.62396 – reference: JuttenCHeraultJBlind separation of sources, Part 1: an adaptive algorithm based on neuromimetic architectureSignal Process1991241100729.73650 – reference: GarcíaV.MollinedaR. A.SánchezJ. S.Index of Balanced Accuracy: A Performance Measure for Skewed Class DistributionsPattern Recognition and Image Analysis2009Berlin, HeidelbergSpringer Berlin Heidelberg441448 – reference: TippingMEBishopCMProbabilistic principal component analysisJ R Stat Soc Ser B (Statistical Methodology)199961361162217078640924.62068 – reference: MezerAYovelYPasternakOGorfineTAssafYCluster analysis of resting-state fmri time seriesNeuroImage200945411171125 – reference: HennigCCluster-wise assessment of cluster stabilityComput Stat Data Anal2007521258271240998005560156 – reference: ViroliCModel based clustering for three-way data structuresBayesian Anal20116457360228699581330.62262 – reference: ZhangDRaichleMEDisease and the brain’s dark energyNat Rev Neurol20106115 – reference: SchachtAGorwoodPBoycePSchafferAPicardHDepression symptom clusters and their predictive value for treatment outcomes: results from an individual patient data meta-analysis of duloxetine trialsJ Psychiatr Res2014535461 – reference: HappéFRonaldAPlominRTime to give up on a single explanation for autismNat Neurosci20069101218 – reference: van LooHMde JongePRomeijnJ-WKesslerRCSchoeversRAData-driven subtypes of major depressive disorder: a systematic reviewBMC Med2012101156 – reference: De RooverKCeulemansETimmermanMEOnghenaPA clusterwise simultaneous component method for capturing within-cluster differences in component variances and correlationsBr J Math Stat Psychol20136618110230448611406.91304 – reference: HyvärinenAKarhunenJOjaEIndependent component analysis2001New YorkJohn Wiley and Sons – reference: Agosta F, Sala S, Valsasina P, Meani A, Canu E, Magnani G, Filippi M (2013) Brain network connectivity assessed using graph theory in frontotemporal dementia. Neurology 1-10 – reference: De RooverKCeulemansETimmermanMEHow to perform multiblock component analysis in practiceBehav Res Methods2012444156 – reference: McLachlanGJBasfordKEMixture models: Inference and applications to clustering (Vol 84)1988New YorkMarcel Dekker0697.62050 – reference: DrysdaleATGrosenickLDownarJDunlopKMansouriFMengYListonCResting-state connectivity biomarkers define neurophysiological subtypes of depressionNat Med201723128 – reference: ListonCChenACZebleyBDDrysdaleATGordonRLeuchterBDubinMJDefault mode network mechanisms of transcranial magnetic stimulation in depressionBiol Psychiatry2014767517526 – reference: SteinleyDLocal optima in K-means clustering: what you don’t know may hurt youPsychol Methods200383294 – reference: DrzezgaABeckerJAVan DijkKRSreenivasanATalukdarTSullivanCSperlingRANeuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burdenBrain2011134616351646 – reference: MckeownMJMakeigSBrownGGJungT-PKindermannSSBellAJSejnowskiTJAnalysis of fmri data by blind separation into independent spatial componentsHum Brain Mapp199863160188 – reference: BarkhofFHallerSRomboutsSARBResting-state functional MR imaging: a new window to the brainRadiology201427212949 – reference: FraleyCRafteryAEModel-based clustering, discriminant analysis, and density estimationJ Am Stat Assoc20029745861163119516351073.62545 – reference: WilderjansTFDeprilDVan MechelenIAdditive biclustering: a comparison of one new and two existing ALS algorithmsJ Class2013301567430318551360.62364 – reference: ComonPIndependent component analysis, a new concept?Signal Process1994362873140791.62004 – reference: American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders: DSM-5, 5th edn. Autor, Washington, DC – reference: BanfieldJDRafteryAEModel-based Gaussian and non-Gaussian clusteringBiometrics19934980382112434940794.62034 – reference: SmildeAKKiersHALBijlsmaSRubinghCMvan ErkMJMatrix correlations for high-dimensional data: the modified RV-coefficientBioinformatics2009253401405 – reference: HafkemeijerAMöllerCDopperEGJiskootLCSchoutenTMvan SwietenJCResting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer’s diseaseFront Hum Neurosci20159474 – reference: FoxMDRaichleMESpontaneous fluctuations in brain activity observed with functional magnetic resonance imagingNat Rev Neurosci20078700711 – reference: KroonenbergPMKroonenbergPThree-mode clusteringApplied multiway data analysis2008HobokenWiley4034321160.62002 – reference: GreiciusMDResting-state functional connectivity in neuropsychiatric disordersCurr Opin Neurol2008214424430 – reference: MilliganGWCooperMCAn examination of procedures for determining the number of clusters in a data setPsychometrika1985502159179 – reference: BruscoMJClustering binary data in the presence of masking variablesPsychol Methods200494510 – reference: DamoiseauxJSPraterKEMillerBLGreiciusMDFunctional connectivity tracks clinical deterioration in Alzheimer’s diseaseNeurobiol Aging2012334828-e19 – reference: CraddockNO’DonovanMOwenMThe genetics of schizophrenia and bipolar disorder: dissecting psychosisJ Med Genet2005423193204 – reference: KiersHALTowards a standardized notation and terminology in multiway analysisJ Chemom2000143105122 – reference: InselTRCuthbertBNBrain disorders? preciselyScience20153486234499500 – reference: CuthbertBNThe rdoc framework: facilitating transition from icd/dsm to dimensional approaches that integrate neuroscience and psychopathologyWorld Psychiatry20141312835 – reference: Maechler M , Rousseeuw P, Struyf A, Hubert M, Hornik K (2017) cluster: Cluster analysis basics and extensions [Computer software manual]. Retrieved from https://cran.r-project.org/web/packages/cluster/ (R package version 2.0.6) – reference: WilderjansTFCeulemansEMeersKCHull: a generic convex-hull-based model selection methodBehav Res Methods2013451115 – reference: SteinleyDBruscoMJHensonRPrincipal cluster axes: a projection pursuit index for the preservation of cluster structures in the presence of data reductionMultivar Behav Res2012473463492 – reference: BakemanRRecommended effect size statistics for repeated measures designsBehav Res Methods2005373379384 – reference: De SoeteGCarrollJDDidayELechevallierYSchaderMBertrandPBurtschyBK-means clustering in a low-dimensional euclidean spaceNew approaches in classiffication and data analysis1994Berlin, HeidelbergSpringer212219 – reference: BeckmannCFSmithSMProbabilistic Independent Component Analysis for functional magnetic resonance imagingIEEE Trans Med Imaging2004232137152 – reference: GolubGHVan LoanCFMatrix computations2012BaltimoreJHU Press0559.65011 – reference: WelvaertMDurnezJMoerkerkeBVerdoolaegeGRosseelYneuRosim: an R package for generating fMRI dataJ Stat Softw20114410118 – reference: KöhnH-FSteinleyDBruscoMJThe p-median model as a tool for clustering psychological dataPsychol Methods20101518795 – reference: McGrathCLKelleyMEHoltzheimerPEDunlopBWCraigheadWEFrancoARMaybergHSToward a neuroimaging treatment selection biomarker for major depressive disorderJAMA Psychiatry2013708821829 – volume: 53 start-page: 54 year: 2014 ident: 86_CR94 publication-title: J Psychiatr Res doi: 10.1016/j.jpsychires.2014.02.001 – volume: 9 start-page: 510 issue: 4 year: 2004 ident: 86_CR12 publication-title: Psychol Methods doi: 10.1037/1082-989X.9.4.510 – volume: 315 start-page: 972 year: 2008 ident: 86_CR39 publication-title: Science doi: 10.1126/science.1136800 – volume: 20 start-page: 53 year: 1987 ident: 86_CR92 publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90125-7 – volume: 10 start-page: 626 issue: 3 year: 1999 ident: 86_CR53 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.761722 – volume: 50 start-page: 159 issue: 2 year: 1985 ident: 86_CR83 publication-title: Psychometrika doi: 10.1007/BF02294245 – volume: 30 start-page: 9477 issue: 28 year: 2010 ident: 86_CR73 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0333-10.2010 – volume: 45 start-page: S163 issue: 1 year: 2009 ident: 86_CR15 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.057 – volume: 372 start-page: 793 issue: 9 year: 2015 ident: 86_CR18 publication-title: N Engl J Med doi: 10.1056/NEJMp1500523 – volume: 42 start-page: 193 issue: 3 year: 2005 ident: 86_CR20 publication-title: J Med Genet doi: 10.1136/jmg.2005.030718 – start-page: 403 volume-title: Applied multiway data analysis year: 2008 ident: 86_CR66 doi: 10.1002/9780470238004.ch16 – volume: 9 start-page: 1218 issue: 10 year: 2006 ident: 86_CR47 publication-title: Nat Neurosci doi: 10.1038/nn1770 – volume: 66 start-page: 81 issue: 1 year: 2013 ident: 86_CR25 publication-title: Br J Math Stat Psychol doi: 10.1111/j.2044-8317.2012.02040.x – volume: 33 start-page: 828-e19 issue: 4 year: 2012 ident: 86_CR22 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2011.06.024 – volume: 24 start-page: 1 year: 1991 ident: 86_CR61 publication-title: Signal Process doi: 10.1016/0165-1684(91)90079-X – volume: 30 start-page: 56 issue: 1 year: 2013 ident: 86_CR123 publication-title: J Class doi: 10.1007/s00357-013-9120-0 – ident: 86_CR51 – volume: 73 start-page: 729 issue: 4 year: 2008 ident: 86_CR121 publication-title: Psychometrika doi: 10.1007/s11336-008-9069-9 – volume: 72 start-page: 1045 issue: 10 year: 2015 ident: 86_CR82 publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2015.1376 – volume: 73 start-page: 575 issue: 8 year: 2003 ident: 86_CR108 publication-title: J Stat Comput Simul doi: 10.1080/0094965031000136012 – ident: 86_CR2 doi: 10.1176/appi.books.9780890425596 – volume: 11 start-page: 141 issue: 2 year: 2012 ident: 86_CR81 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3628 – volume: 106 start-page: 7209 issue: 17 year: 2009 ident: 86_CR36 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0811879106 – volume: 77 start-page: 724 issue: 4 year: 2012 ident: 86_CR122 publication-title: Psychometrika doi: 10.1007/s11336-012-9275-3 – volume-title: Cluster analysis year: 2011 ident: 86_CR34 doi: 10.1002/9780470977811 – volume: 6 start-page: 573 issue: 4 year: 2011 ident: 86_CR114 publication-title: Bayesian Anal doi: 10.1214/11-BA622 – volume: 44 start-page: 532 issue: 2 year: 2012 ident: 86_CR119 publication-title: Behav Res Methods doi: 10.3758/s13428-011-0166-9 – volume: 129 start-page: 87 year: 2013 ident: 86_CR118 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2013.09.010 – volume: 32 start-page: 443 issue: 3 year: 2015 ident: 86_CR13 publication-title: J Classif doi: 10.1007/s00357-015-9187-x – volume: 14 start-page: 140 issue: 3 year: 2001 ident: 86_CR14 publication-title: Hum Brain Mapp doi: 10.1002/hbm.1048 – volume: 44 start-page: 41 year: 2012 ident: 86_CR23 publication-title: Behav Res Methods doi: 10.3758/s13428-011-0129-1 – volume: 9 start-page: 474 year: 2015 ident: 86_CR46 publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2015.00474 – volume: 6 start-page: 15 issue: 1 year: 2010 ident: 86_CR124 publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2009.198 – volume: 39 start-page: 1666 issue: 4 year: 2008 ident: 86_CR59 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.11.001 – volume: 10 start-page: 156 issue: 1 year: 2012 ident: 86_CR109 publication-title: BMC Med doi: 10.1186/1741-7015-10-156 – volume: 2 start-page: 57 issue: 2 year: 2006 ident: 86_CR72 publication-title: Methodology doi: 10.1027/1614-2241.2.2.57 – volume: 45 start-page: 1117 issue: 4 year: 2009 ident: 86_CR80 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.015 – volume-title: A method for synthesis of factor analysis studies (Personnel Research Section Rapport # 984) year: 1951 ident: 86_CR107 doi: 10.21236/AD0047524 – volume: 38 start-page: 1409 year: 1958 ident: 86_CR99 publication-title: Univ Kansas Sci Bull – ident: 86_CR101 doi: 10.1037/a0022679 – volume: 134 start-page: 1635 issue: 6 year: 2011 ident: 86_CR31 publication-title: Brain doi: 10.1093/brain/awr066 – volume: 13 start-page: 411 issue: 4–5 year: 2000 ident: 86_CR55 publication-title: Neural Netw doi: 10.1016/S0893-6080(00)00026-5 – ident: 86_CR74 – volume: 356 start-page: 1293 issue: 1412 year: 2001 ident: 86_CR76 publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2001.0915 – volume: 5 start-page: 40 year: 1983 ident: 86_CR84 publication-title: IEEE Trans Pattern Anal Mach intell doi: 10.1109/TPAMI.1983.4767342 – volume: 10 start-page: 829 issue: 9 year: 2011 ident: 86_CR89 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(11)70158-2 – volume: 28 start-page: 1251 issue: 11 year: 2007 ident: 86_CR70 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20359 – volume: 97 start-page: 611 issue: 458 year: 2002 ident: 86_CR38 publication-title: J Am Stat Assoc doi: 10.1198/016214502760047131 – volume: 25 start-page: 193 issue: 1 year: 2005 ident: 86_CR33 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.10.042 – volume: 63 start-page: 411 issue: 2 year: 2001 ident: 86_CR103 publication-title: J R Stat Soc Ser B (Statistical Methodology) doi: 10.1111/1467-9868.00293 – volume: 6 start-page: 160 issue: 3 year: 1998 ident: 86_CR78 publication-title: Hum Brain Mapp doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 – volume: 62 start-page: 42 issue: 1 year: 2009 ident: 86_CR96 publication-title: Neuron doi: 10.1016/j.neuron.2009.03.024 – volume: 84 start-page: 892 issue: 5 year: 2014 ident: 86_CR24 publication-title: Neuron doi: 10.1016/j.neuron.2014.08.034 – volume: 24 start-page: 95 issue: 2 year: 1959 ident: 86_CR43 publication-title: Psychometrika doi: 10.1007/BF02289823 – volume: 15 start-page: 87 issue: 1 year: 2010 ident: 86_CR65 publication-title: Psychol Methods doi: 10.1037/a0018535 – start-page: 217 volume-title: Database theory – ICDT’99 year: 1999 ident: 86_CR10 doi: 10.1007/3-540-49257-7_15 – volume: 13 start-page: 28 issue: 1 year: 2014 ident: 86_CR21 publication-title: World Psychiatry doi: 10.1002/wps.20087 – volume-title: Finding groups in data: an introduction to cluster analysis year: 1990 ident: 86_CR63 doi: 10.1002/9780470316801 – volume: 348 start-page: 499 issue: 6234 year: 2015 ident: 86_CR58 publication-title: Science doi: 10.1126/science.aab2358 – volume: 14 start-page: 271 issue: 3 year: 2011 ident: 86_CR125 publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255841003766829 – start-page: 3 volume-title: From data to knowledge: Theoretical and practical aspects of classification, data analysis, and knowledge organization year: 1996 ident: 86_CR3 doi: 10.1007/978-3-642-79999-0_1 – volume: 8 start-page: 294 issue: 3 year: 2003 ident: 86_CR100 publication-title: Psychol Methods doi: 10.1037/1082-989X.8.3.294 – volume: 26 start-page: 231 issue: 4 year: 2005 ident: 86_CR91 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20160 – volume: 13 start-page: 107 issue: 2 year: 2012 ident: 86_CR75 publication-title: Nat Rev Neurosci doi: 10.1038/nrn3155 – volume: 47 start-page: 463 issue: 3 year: 2012 ident: 86_CR102 publication-title: Multivar Behav Res doi: 10.1080/00273171.2012.673952 – volume: 8 start-page: 700 year: 2007 ident: 86_CR37 publication-title: Nat Rev Neurosci doi: 10.1038/nrn2201 – volume: 44 start-page: 1 issue: 10 year: 2011 ident: 86_CR116 publication-title: J Stat Softw doi: 10.18637/jss.v044.i10 – volume-title: Matrix computations year: 2012 ident: 86_CR41 – volume: 35 start-page: 2978 issue: 7 year: 2014 ident: 86_CR42 publication-title: Hum Brain Mapp doi: 10.1002/hbm.22379 – ident: 86_CR49 – volume: 76 start-page: 176 issue: 3 year: 2014 ident: 86_CR29 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2013.10.026 – volume: 59 start-page: 133 issue: 1 year: 2006 ident: 86_CR16 publication-title: Br J Math Stat Psychol doi: 10.1348/000711005X64817 – volume: 76 start-page: 517 issue: 7 year: 2014 ident: 86_CR71 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2014.01.023 – volume: 20 start-page: 359 issue: 4 year: 1977 ident: 86_CR85 publication-title: Comput J doi: 10.1093/comjnl/20.4.359 – volume: 32 start-page: 2075 issue: 12 year: 2011 ident: 86_CR32 publication-title: Hum Brain Mapp doi: 10.1002/hbm.21170 – volume: 14 start-page: 105 issue: 3 year: 2000 ident: 86_CR64 publication-title: J Chemom doi: 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I – volume: 23 start-page: 137 issue: 2 year: 2004 ident: 86_CR9 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.822821 – volume: 72 start-page: 377 issue: 3 year: 2007 ident: 86_CR17 publication-title: Psychometrika doi: 10.1007/s11336-007-9000-9 – volume: 37 start-page: 49 issue: 1 year: 2001 ident: 86_CR113 publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(00)00064-5 – volume: 27 start-page: 2463 year: 2011 ident: 86_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr406 – start-page: 212 volume-title: New approaches in classiffication and data analysis year: 1994 ident: 86_CR27 doi: 10.1007/978-3-642-51175-2_24 – volume: 11 start-page: 418 year: 2017 ident: 86_CR68 publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2017.00418 – volume: 49 start-page: 803 year: 1993 ident: 86_CR5 publication-title: Biometrics doi: 10.2307/2532201 – start-page: 441 volume-title: Pattern Recognition and Image Analysis year: 2009 ident: 86_CR40 doi: 10.1007/978-3-642-02172-5_57 – volume: 58 start-page: 236 issue: 301 year: 1963 ident: 86_CR115 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1963.10500845 – volume: 106 start-page: 13040 issue: 31 year: 2009 ident: 86_CR98 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0905267106 – volume: 62 start-page: 782 issue: 2 year: 2012 ident: 86_CR60 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.015 – ident: 86_CR57 doi: 10.1176/appi.ajp.2010.09091379 – ident: 86_CR1 doi: 10.1212/WNL.0b013e31829a33f8 – volume: 101 start-page: 4637 issue: 13 year: 2004 ident: 86_CR45 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0308627101 – volume: 54 start-page: 1858 issue: 7 year: 2010 ident: 86_CR104 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2010.02.009 – volume: 1313 start-page: 202 year: 2010 ident: 86_CR117 publication-title: Brain Res doi: 10.1016/j.brainres.2009.11.057 – volume: 4 start-page: 41 year: 2010 ident: 86_CR110 publication-title: Front Syst Neurosci – volume: 23 start-page: 28 issue: 1 year: 2017 ident: 86_CR30 publication-title: Nat Med doi: 10.1038/nm.4246 – volume: 7 start-page: 1 year: 2013 ident: 86_CR93 publication-title: Front Neural Circuits doi: 10.3389/fncir.2013.00185 – ident: 86_CR56 – volume-title: Mixture models: Inference and applications to clustering (Vol 84) year: 1988 ident: 86_CR79 – volume: 167 start-page: 62 year: 2018 ident: 86_CR28 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.11.025 – ident: 86_CR69 doi: 10.1109/iscas.2009.5118290 – volume: 70 start-page: 821 issue: 8 year: 2013 ident: 86_CR77 publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2013.143 – volume: 272 start-page: 29 issue: 1 year: 2014 ident: 86_CR6 publication-title: Radiology doi: 10.1148/radiol.14132388 – volume: 57 start-page: 1534 issue: 4 year: 2011 ident: 86_CR111 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.05.074 – volume: 2 start-page: 193 year: 1985 ident: 86_CR52 publication-title: J Class doi: 10.1007/BF01908075 – volume-title: Independent component analysis year: 2001 ident: 86_CR54 doi: 10.1002/0471221317 – volume: 36 start-page: 287 year: 1994 ident: 86_CR19 publication-title: Signal Process doi: 10.1016/0165-1684(94)90029-9 – volume: 15 start-page: 80 issue: 1 year: 2017 ident: 86_CR35 publication-title: BMC Med doi: 10.1186/s12916-017-0849-x – volume: 25 start-page: 401 issue: 3 year: 2009 ident: 86_CR97 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn634 – ident: 86_CR112 – volume: 31 start-page: 274 issue: 3 year: 2014 ident: 86_CR86 publication-title: J Class doi: 10.1007/s00357-014-9161-z – volume: 45 start-page: 1 issue: 1 year: 2013 ident: 86_CR120 publication-title: Behav Res Methods doi: 10.3758/s13428-012-0238-5 – volume: 28 start-page: 100 year: 1979 ident: 86_CR48 publication-title: J R Stat Soc Ser C (Applied Statistics) – volume: 62 start-page: 891 issue: 2 year: 2012 ident: 86_CR7 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.02.020 – volume: 52 start-page: 258 issue: 1 year: 2007 ident: 86_CR50 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2006.11.025 – volume: 17 start-page: 100 year: 2012 ident: 86_CR26 publication-title: Psychol Methods doi: 10.1037/a0025385 – volume: 61 start-page: 611 issue: 3 year: 1999 ident: 86_CR105 publication-title: J R Stat Soc Ser B (Statistical Methodology) doi: 10.1111/1467-9868.00196 – ident: 86_CR67 – volume: 37 start-page: 379 issue: 3 year: 2005 ident: 86_CR4 publication-title: Behav Res Methods doi: 10.3758/BF03192707 – ident: 86_CR90 – volume: 23 start-page: 186 issue: 3 year: 2013 ident: 86_CR88 publication-title: Eur Neuropsychopharmacol doi: 10.1016/j.euroneuro.2012.04.018 – volume: 24 start-page: 5 issue: 1 year: 2014 ident: 86_CR95 publication-title: Eur Neuropsychopharmacol doi: 10.1016/j.euroneuro.2013.09.010 – volume: 360 start-page: 1001 issue: 1457 year: 2005 ident: 86_CR8 publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2005.1634 – volume: 21 start-page: 424 issue: 4 year: 2008 ident: 86_CR44 publication-title: Curr Opin Neurol doi: 10.1097/WCO.0b013e328306f2c5 – volume: 72 start-page: 603 issue: 6 year: 2015 ident: 86_CR62 publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2015.0071 – volume: 8 start-page: 434 issue: 4 year: 2003 ident: 86_CR87 publication-title: Psychol Methods doi: 10.1037/1082-989X.8.4.434 – volume: 8 start-page: 14082 issue: 1 year: 2018 ident: 86_CR106 publication-title: Sci Rep doi: 10.1038/s41598-018-32521-z |
SSID | ssj0035373 |
Score | 2.1935701 |
Snippet | In neuroscience, clustering subjects based on brain dysfunctions is a promising avenue to subtype mental disorders as it may enhance the development of a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 271 |
SubjectTerms | Brain research Chemistry and Earth Sciences Computer Science Dementia Disease Economics Finance Insurance Management Mathematics and Statistics Mental disorders Methods Original Paper Patients Physics Statistical Theory and Methods Statistics Statistics for Business Statistics for Engineering |
Title | Partitioning subjects based on high-dimensional fMRI data: comparison of several clustering methods and studying the influence of ICA data reduction in big data |
URI | https://link.springer.com/article/10.1007/s41237-019-00086-4 https://www.proquest.com/docview/2933585446 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEaIXCguoSwuaAzew2DycONyqbasuqAghKvUWxR4bVaqyVdM99N_0pzLjJFu1KkhcosSPUaQZez7b428APvg0ZSeXG7ndXqk8DUE1VnultafMkSGKwZjH34ujk_zrqT4daHLkLsy98_vPXc5TqwRHVirCb5U_hic6yQqx4HkxH2fdTGf9aXJmtGIvWQ4XZB6WcdcJ3SLLe4eh0cccvoDnAzjEvV6bL-GRbyewNSZewGEcTuDZeJ24m8DTGMMpb5vryeyaPwRF9iTMr-DmhxjIsPWK3crK5kuH4sEIly0KZ7Ei4fnvOTowHP9coASPfkG3TlSIy4DsR2UTC935ShgWRFyfg7rDpiWMZLVSyLASz8b8J9JxMd-LAvFSuGLlV7ge7dnvWPoaTg4Pfs2P1JCaQTk5qVTaNzxJ-jJpCpfMPC-i7Ey7UFBIMh98sAwcfFo1zjQJY0BnS185cjNvikbTjLI3sNEuW78NSGRdlVpqSm9yS8EWxjAqIlNSbkLpppCMuqrdwFsu6TPO6zXjctRvzfqto37rfAof130uetaOf7beHU2gHkZwVzMMyngpxavlKXwazeK2-u_S3v5f8x3YTMUyY3zgLmxcXa78O8Y5V_Z9NHB-7i--_QE88_Y0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qi7QvWq-Kp1XnwTe7eEl2k41v5bDc1V4RaaFvIftVCiUnTe_B_8Y_1ZlNcsXSCr4l2Q8CMzvzm93Z3wB89GlKTk5qvt1eCpmGIGqjvFDKu8w67VxMxlyc5rNzeXyhLnqaHL4Lc-_8_nMrybRycmQpIvwW8glsSYqUOX1vmk8Hq5uprDtNzrQS5CWL_oLMw3P87YTukOW9w9DoY4524VkPDvGwk-YL2PDNCJ4PhRewX4cj2B6uE7cjeBpzOPlpZ23MftELo8iOhHkPfn9nBem3XrFdGd58aZE9mMNlg8xZLBzz_HccHRgWP-bIyaNf0K4LFeIyIPlR3sRCe71ihgWerqtB3WLdOIxktfyRYCVeDfVPeOB8ehgnxBvmiuVfoXY0V5fx60s4P_p6Np2JvjSDsHxSKZSvyUj6Iqlzm0w8BVFmomzIXUgyH3wwBBx8WtZW1wlhQGsKX1pnJ17ntXITl72CzWbZ-NeAzhlbpsbVhdfSuGByrQkVOV04qUNhx5AMsqpsz1vO5TOuqzXjcpRvRfKtonwrOYZP6zE_O9aOf_beH1Sg6ldwWxEMyiiUomh5DAeDWtw1Pz7bm__r_gG2Z2eLk-pkfvrtLeykrKUxV3AfNm9vVv4dYZ5b8z4q-x8llvgo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxQxDLagCOiFxwJioYAP3CDqzjvDrVpYdYFWFaJSb6NJnFSVqtmqs3vov-lPxc48CgiQuM1MHhrJTvwltj8DvHVxzEYu1ZLdXqo09l7VJnMqyxwlljRRCMY8OMz3j9PPJ9nJT1n8Idp9cEl2OQ3C0tSsdy_I746JbylvuBIyWaoAylV6G-7wSSU4auf5fNiLkyzpfMyJzhTbzqJPm_nzHL-aphu8-ZuLNFiexSN40ENG3Otk_BhuuWYCD4dyDNivzgncH5KM2wncDZGd8rQ9bnFX_CLYsqNmfgLXR6I2_YUsthsjVzItil0jXDUoTMaKhP2_Y-5Af_BtiRJS-gHtWL4QVx7ZusrVFtrzjfAuyHRdZeoW64YwUNjKRwabeDZURZGBy_lemBAvhUFWfoXb0Zydhq9P4Xjx6ft8X_UFG5QV_6XKXM1bpyuiOrfRzPHRyswy63PyUeK884bhhIvL2uo6YmRoTeFKS3bmdF5nNKPkGWw1q8Y9ByQytowN1YXTqSFvcq0ZK5EuKNW-sFOIBllVtmczl6Ia59XIwxzkW7F8qyDfKp3Cu3HMRcfl8c_eO4MKVP26bisGRwkfsPgMPYX3g1rcNP99thf_1_0N3Dv6uKi-Lg-_vITtWJQ0BBDuwNb6cuNeMRBam9dB138AwKQAfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partitioning+subjects+based+on+high-dimensional+fMRI+data%3A+comparison+of+several+clustering+methods+and+studying+the+influence+of+ICA+data+reduction+in+big+data&rft.jtitle=Behaviormetrika&rft.au=Durieux%2C+Jeffrey&rft.au=Wilderjans%2C+Tom+F&rft.date=2019-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0385-7417&rft.eissn=1349-6964&rft.volume=46&rft.issue=2&rft.spage=271&rft.epage=311&rft_id=info:doi/10.1007%2Fs41237-019-00086-4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0385-7417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0385-7417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0385-7417&client=summon |