A Review on Machine Unlearning

Recently, an increasing number of laws have governed the useability of users’ privacy. For example, Article 17 of the General Data Protection Regulation (GDPR), the right to be forgotten , requires machine learning applications to remove a portion of data from a dataset and retrain it if the user ma...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 4; no. 4; p. 337
Main Authors Zhang, Haibo, Nakamura, Toru, Isohara, Takamasa, Sakurai, Kouichi
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 19.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2661-8907
2662-995X
2661-8907
DOI10.1007/s42979-023-01767-4

Cover

Loading…
Abstract Recently, an increasing number of laws have governed the useability of users’ privacy. For example, Article 17 of the General Data Protection Regulation (GDPR), the right to be forgotten , requires machine learning applications to remove a portion of data from a dataset and retrain it if the user makes such a request. Furthermore, from the security perspective, training data for machine learning models, i.e., data that may contain user privacy, should be effectively protected, including appropriate erasure. Therefore, researchers propose various privacy-preserving methods to deal with such issues as machine unlearning. This paper provides an in-depth review of the security and privacy concerns in machine learning models. First, we present how machine learning can use users’ private data in daily life and the role that the GDPR plays in this problem. Then, we introduce the concept of machine unlearning by describing the security threats in machine learning models and how to protect users’ privacy from being violated using machine learning platforms. As the core content of the paper, we introduce and analyze current machine unlearning approaches and several representative results and discuss them in the context of the data lineage. Furthermore, we also discuss the future research challenges in this field.
AbstractList Recently, an increasing number of laws have governed the useability of users’ privacy. For example, Article 17 of the General Data Protection Regulation (GDPR), the right to be forgotten , requires machine learning applications to remove a portion of data from a dataset and retrain it if the user makes such a request. Furthermore, from the security perspective, training data for machine learning models, i.e., data that may contain user privacy, should be effectively protected, including appropriate erasure. Therefore, researchers propose various privacy-preserving methods to deal with such issues as machine unlearning. This paper provides an in-depth review of the security and privacy concerns in machine learning models. First, we present how machine learning can use users’ private data in daily life and the role that the GDPR plays in this problem. Then, we introduce the concept of machine unlearning by describing the security threats in machine learning models and how to protect users’ privacy from being violated using machine learning platforms. As the core content of the paper, we introduce and analyze current machine unlearning approaches and several representative results and discuss them in the context of the data lineage. Furthermore, we also discuss the future research challenges in this field.
Recently, an increasing number of laws have governed the useability of users’ privacy. For example, Article 17 of the General Data Protection Regulation (GDPR), the right to be forgotten, requires machine learning applications to remove a portion of data from a dataset and retrain it if the user makes such a request. Furthermore, from the security perspective, training data for machine learning models, i.e., data that may contain user privacy, should be effectively protected, including appropriate erasure. Therefore, researchers propose various privacy-preserving methods to deal with such issues as machine unlearning. This paper provides an in-depth review of the security and privacy concerns in machine learning models. First, we present how machine learning can use users’ private data in daily life and the role that the GDPR plays in this problem. Then, we introduce the concept of machine unlearning by describing the security threats in machine learning models and how to protect users’ privacy from being violated using machine learning platforms. As the core content of the paper, we introduce and analyze current machine unlearning approaches and several representative results and discuss them in the context of the data lineage. Furthermore, we also discuss the future research challenges in this field.
ArticleNumber 337
Author Sakurai, Kouichi
Nakamura, Toru
Zhang, Haibo
Isohara, Takamasa
Author_xml – sequence: 1
  givenname: Haibo
  orcidid: 0000-0002-4275-405X
  surname: Zhang
  fullname: Zhang, Haibo
  email: zhang.haibo.892@s.kyushu-u.ac.jp
  organization: Department of Information Science and Technology, Graduate School of Information Science and Electrical Engineering, Kyushu University
– sequence: 2
  givenname: Toru
  surname: Nakamura
  fullname: Nakamura, Toru
  organization: KDDI Research Inc
– sequence: 3
  givenname: Takamasa
  surname: Isohara
  fullname: Isohara, Takamasa
  organization: KDDI Research Inc
– sequence: 4
  givenname: Kouichi
  surname: Sakurai
  fullname: Sakurai, Kouichi
  organization: Department of Information Science and Technology, Faculty of Information Science and Electrical Engineering, Kyushu University
BookMark eNp9kE1LAzEQhoNUsNb-AQ-y4DmaTLKZzbEUv6AiiD2HbJqtW9ZsTbaK_97VFRQPPc17eJ-Z4Tkmo9AGT8gpZxecMbxMEjRqykBQxlEhlQdkDEpxWmiGoz_5iExT2jDGIGdSqnxMzmbZo3-r_XvWhuzeuuc6-GwZGm9jqMP6hBxWtkl--jMnZHl99TS_pYuHm7v5bEEdYCGpBABrJbpSlhqsEN5pdFZJViqNxUpBWfEqR8GUQL4S1uUFyj6h9-iqQkzI-bB3G9vXnU-d2bS7GPqTBjRwyKWQom8VQ8vFNqXoK-PqznZ1G7po68ZwZr6EmEGI6YWYbyFG9ij8Q7exfrHxYz8kBij15bD28ferPdQnVn1xvg
CitedBy_id crossref_primary_10_1038_d41586_024_02838_z
crossref_primary_10_3390_s24103087
crossref_primary_10_1007_s13347_023_00644_5
crossref_primary_10_1007_s10115_024_02312_2
crossref_primary_10_1145_3704997
crossref_primary_10_1016_j_jisa_2025_104010
crossref_primary_10_1016_j_ijft_2025_101119
crossref_primary_10_1007_s40319_023_01419_3
crossref_primary_10_1016_j_neucom_2023_126629
crossref_primary_10_1177_02537176241302898
crossref_primary_10_1002_path_6168
Cites_doi 10.1145/2810103.2813677
10.1016/j.eswa.2020.114154
10.48550/arXiv.2201.09441
10.1109/IWQOS52092.2021.9521274
10.48550/arXiv.2201.05629
10.1145/3133956.3134077
10.1109/SP.2017.41
10.1145/3460120.3484756
10.1109/ICIOT.2018.00015
10.48550/arXiv.1907.05012
10.1109/CVPR42600.2020.00932
10.48550/arXiv.2108.11577
10.2196/27778
10.2478/popets-2019-0008
10.1145/293347.293351
10.1609/aaai.v36i7.20736
10.1145/2623330.2623661
10.48550/arXiv.2109.13398
10.1109/SP.2015.35
10.1109/SP40001.2021.00019
10.48550/arXiv.2005.08502
10.48550/arXiv.2202.03460
10.1145/3078597.3078603
10.1109/MLSP52302.2021.9596170
10.1145/3128572.3140450
10.48550/arXiv.2110.11891
10.1145/3196494.3196517
10.48550/arXiv.2002.02730
10.1109/TNN.2010.2048039
10.48550/arXiv.2202.13295
10.48550/arXiv.2201.09538
10.1145/3390557.3394126
10.48550/arXiv.2203.11491
10.1109/CSF.2018.00027
10.1109/MSEC.2018.2888775
10.48550/arXiv.2105.06209
10.48550/arXiv.2111.12056
10.1109/CVPR46437.2021.00085
10.48550/arXiv.2106.15093
10.48550/arXiv.1412.1193
10.1145/3351095.3372834
10.48550/arXiv.2010.10981
10.48550/arXiv.1911.03030
10.1145/3319535.3363226
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-023-01767-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_023_01767_4
GrantInformation_xml – fundername: JST-Mirai Program
  grantid: JPMJSP2136
  funderid: http://dx.doi.org/10.13039/501100020959
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
CCPQU
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2784-4222aa47cb4b92a33ec97ca640b6978d62bf1f57306371d3ac587471d7ee7cf83
IEDL.DBID 8FG
ISSN 2661-8907
2662-995X
IngestDate Fri Jul 25 23:31:49 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Tue Jul 01 03:19:19 EDT 2025
Fri Feb 21 02:43:28 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Machine unlearning
Data lineage
Privacy
Security
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2784-4222aa47cb4b92a33ec97ca640b6978d62bf1f57306371d3ac587471d7ee7cf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4275-405X
OpenAccessLink https://kyutech.repo.nii.ac.jp/records/2000802
PQID 2921254343
PQPubID 6623307
ParticipantIDs proquest_journals_2921254343
crossref_citationtrail_10_1007_s42979_023_01767_4
crossref_primary_10_1007_s42979_023_01767_4
springer_journals_10_1007_s42979_023_01767_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230419
PublicationDateYYYYMMDD 2023-04-19
PublicationDate_xml – month: 4
  year: 2023
  text: 20230419
  day: 19
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References KashefRA boosted svm classifier trained by incremental learning and decremental unlearning approachExpert Syst Appl202116711415410.1016/j.eswa.2020.114154
GravesLNagisettyVGaneshVAmnesiac machine learningarXiv202010.48550/arXiv.2010.10981
Chen M, Zhang Z, Wang T, Backes M, Humbert M, Zhang Y. When machine unlearning jeopardizes privacy. In: Proceedings of the 2021 ACM SIGSAC conference on computer and communications security. 2021;896–911
Al-RubaieMChangJMPrivacy-preserving machine learning: threats and solutionsIEEE Secur Priv2019172495810.1109/MSEC.2018.2888775
Yeom S, Giacomelli I, Fredrikson M, Jha S. Privacy risk in machine learning: analyzing the connection to overfitting. In: 2018 IEEE 31st computer security foundations symposium (CSF). IEEE. 2018;268–282.
GuoTGuoSZhangJXuWWangJVertical machine unlearning: Selectively removing sensitive information from latent feature spacearXiv202210.48550/arXiv.2202.13295
ThudiAJiaHShumailovIPapernotNOn the necessity of auditable algorithmic definitions for machine unlearningarXiv202110.48550/arXiv.2110.11891
LiuYFanMChenCLiuXMaZWangLMaJBackdoor defense with machine unlearningarXiv202210.48550/arXiv.2201.09538
ThiagoRMSouzaRAzevedoLSoaresEFDSSantosRDos SantosWDe BayserMCardosoMCMorenoMFCerqueiraRManaging data lineage of o&g machine learning models: the sweet spot for shale use caseFirst EAGE Digit Conf Exhib2020202015
Cao Y, Yang J. Towards making systems forget with machine unlearning. In: 2015 IEEE Symposium on Security and Privacy. IEEE. 2015;463–480.
Song C, Ristenpart T, Shmatikov V. Machine learning models that remember too much. In: Proceedings of the 2017 ACM SIGSAC confer-ence on computer and communications security. 2017;587–601.
AlsdurfHBelliveauEBengioYDeleuTGuptaPIppolitoDJandaRJarvieMKolodyTKrastevSCovi white paperarXiv202010.48550/arXiv.2005.08502
GolatkarAAchilleASoattoSForgetting outside the box: Scrubbing deep networks of information accessible from input-output observations Europea conference on computer vision2020ChamSpringer383398
HeYMengGChenKHeJHuXDeepobliviate: a powerful charm for erasing data residual memory in deep neural networksarXiv202110.48550/arXiv.2105.06209
Tsai C-H, Lin C-Y, Lin C-J. Incremental and decremental training for linear classification. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. 2014;343–352.
KarasuyamaMTakeuchiIMultiple incremental decremental learning of support vector machinesIEEE Trans Neural Networks20102171048105910.1109/TNN.2010.2048039
BaumhauerTSch¨ottlePZeppelzauerMMachine unlearning: linear filtration for logit-based classifiersarXiv202010.48550/arXiv.2002.0273007624270
Chaudhuri K, Monteleoni C. Privacy-preserving logistic regression. advances in neural information processing systems. 2008;21.
Fredrikson M, Jha S, Ristenpart T. Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC conference on computer and communications security. 2015;1322–1333.
WarneckeAPirchLWressneggerCRieckKMachine unlearning of features and labelsarXiv202110.48550/arXiv.2108.11577
DworkCRothAThe algorithmic foundations of differential privacyFound Trends Theor Comput Sci201493–421140732540201302.68109
Surma J. Hacking machine learning: towards the comprehensive taxonomy of attacks against machine learning systems. In: Proceedings of the 2020 the 4th international conference on innovation in artificial intelligence. 2020;1–4.
Baracaldo N, Chen B, Ludwig H, Safavi A, Zhang R. Detecting poisoning attacks on machine learning in iot environments. In: 2018 IEEE international congress on internet of things (ICIOT). IEEE 2018;57–64.
Jose ST, Simeone O. A unified pac-bayesian framework for machine unlearning via information risk minimization. In: 2021 IEEE 3 1st international workshop on machine learning for signal processing (MLSP). IEEE. 2021;1–6.
Shokri R, Stronati M, Song C, Shmatikov V. Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP). IEEE. 2017;3–18.
Bourtoule L, Chandrasekaran V, Choquette-Choo CA, Jia H, Travers A, Zhang B, Lie D, Papernot N. Machine unlearning. In: 2021 IEEE symposium on security and privacy (SP). IEEE. 2021;141–159
Du M, Chen Z, Liu C, Oak R, Song D. Lifelong anomaly detection through unlearning. In: Proceedings of the 2019 ACM SIGSAC conference on computer and communications security. 2019;1283–1297.
LuoGA roadmap for automating lineage tracing to aid automatically explaining machine learning predictions for clinical decision supportJMIR Med Inform2021952777810.2196/27778
Brophy J, Lowd D. Machine unlearning for random forests. In: International Conference on Machine Learning. PMLR. 2021;1092–1104.
GinartAGuanMYValiantGZouJMaking ai forget you: data deletion in machine learningarXiv201910.48550/arXiv.1907.05012
Giordano R, Stephenson W, Liu R, Jordan M, Broderick T. A swiss army infinitesimal jackknife. In: The 22nd international conference on artificial intelligence and statistics. International conference on machine learning. PMLR. 2019;1139–1147.
Marchant NG, Rubinstein BI, Alfeld S. Hard to forget: poisoning attacks on certified machine unlearning. arXiv preprint arXiv:2109.08266. 2021
Shen S, Tople S, Saxena P. Auror: Defending against poisoning attacks in collaborative deep learning systems. In: Proceedings of the 32nd annual conference on computer security applications. 2016;508–519.
WuCZhuSMitraPFederated unlearning with knowledge distillationarXiv202210.48550/arXiv.2201.09441
Sablayrolles A, Douze M, Schmid C, Ollivier Y, J´egou H. White-box vs black-box: Bayes optimal strategies for membership inference. In: International conference on machine learning. PMLR. 2019;5558–5567.
Golatkar A, Achille A, Ravichandran A, Polito M, Soatto S. Mixed—privacy forgetting in deep networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021;792–801.
GuoCGoldsteinTHannunAVan Der MaatenLCertified data removal from machine learning modelsarXiv201910.48550/arXiv.1911.03030
Cao Y, Yu AF, Aday A, Stahl E, Merwine J, Yang J. Efficient repair of polluted machine learning systems via causal unlearning. In: Proceedings of the 2018 on Asia conference on computer and communications security. 2018;735–747.
Golatkar A, Achille A, Soatto S. Eternal sunshine of the spotless net: selective forgetting in deep networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020;9304–9312.
MahadevanAMathioudakisMCertifiable machine unlearning for linear modelsarXiv202110.48550/arXiv.2106.15093
Izzo Z, Smart MA, Chaudhuri K, Zou J. Approximate data deletion from machine learning models. In: International conference on artificial intelligence and statistics. PMLR. 2021;2008–2016.
Wu Y, Dobriban E, Davidson S. Deltagrad: rapid retraining of machine learning models. In: International conference on machine learning. PMLR. 2021;10355–10366.
Baracaldo N, Chen B, Ludwig H, Safavi JA. Mitigating poisoning attacks on machine learning models: a data provenance based approach. In: Proceedings of the 10th ACM workshop on artificial intelligence and security. 2017;103–110
MartensJNew insights and perspectives on the natural gradient methodarXiv201410.48550/arXiv.1412.119307306852
GongJSimeoneOKassabRKangJForget-svgd: Particle-based bayesian federated unlearningarXiv202110.48550/arXiv.2111.12056
Koh PW, Liang P. Understanding black-box predictions via influence functions. In: International conference on machine learning. PMLR. 2017;1885–1894.
Ullah E, Mai T, Rao A, Rossi RA, Arora R. Machine unlearning via algorithmic stability. In: conference on learning theory. PMLR. 2021;4126–4142.
KearnsMEfficient noise-tolerant learning from statistical queriesJ ACM19984569831006167884910.1145/293347.2933511065.68605
LiYZhengXChenCLiuJMaking recommender systems forget: learning and unlearning for erasable recommendationarXiv202210.48550/arXiv.2203.11491
ChundawatVSTarunAKMandalMKankanhalliMZero-shot machine unlearningarXiv202210.48550/arXiv.2201.05629
Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning. advances in neural information processing systems. 2000;13.
Neel S, Roth A, Sharifi-Malvajerdi S. Descent-to-delete: gradient- based methods for machine unlearning. In: Algorithmic learning theory. PMLR. 2021;931–962.
Zhang Z, Sparks ER, Franklin MJ. Diagnosing machine learning pipelines with fine-grained lineage. In: Proceedings of the 26th international symposium on high-performance parallel and distributed computing. 2017;143–153.
GaoJGargSMahmoodyMVasudevanPNDeletion inference, reconstruction, and compliance in machine (un) learningarXiv202210.48550/arXiv.2202.03460
ThudiADezaGChandrasekaranVPapernotNUnrolling sgd: understanding factors influencing machine unlearningarXiv202110.48550/arXiv.2109.13398
Liu G, Ma X, Yang Y, Wang C, Liu J. Federaser: enabling efficient client-level data removal from federated learning models. In: 2021 IEEE/ACM 29th international symposium on quality of service (IWQOS). IEEE. 2021;1–10.
TramèrFZhangFJuelsAReiterMKRistenpartTStealing machine learning models via prediction APIsUSENIX Secur Symp201616601618
Toreini E, Aitken M, Coopamootoo K, Elliott K, Zelaya CG, Van Moorsel A. The relationship between trust in ai and trustworthy machine learning technologies. In: Proceedings of the 2020 conference on fairness, accountability, and transparency. 2020;272–283.
Schelter S. Towards efficient machine unlearning via incremental view maintenance.
HayesJMelisLDanezisGDe CristofaroELogan: membership inference attacks against generative modelsProc Privacy Enhanc Technol De Gruyter2019201913315210.2478/popets-2019-0008
J Hayes (1767_CR60) 2019; 2019
C Guo (1767_CR21) 2019
1767_CR19
1767_CR16
1767_CR15
1767_CR59
1767_CR58
1767_CR13
1767_CR57
1767_CR12
R Kashef (1767_CR26) 2021; 167
1767_CR10
T Guo (1767_CR42) 2022
1767_CR53
Y Liu (1767_CR2) 2022
1767_CR52
Y He (1767_CR40) 2021
1767_CR51
1767_CR1
1767_CR3
1767_CR5
G Luo (1767_CR54) 2021; 9
A Thudi (1767_CR38) 2021
J Gong (1767_CR41) 2021
1767_CR49
A Golatkar (1767_CR50) 2020
A Ginart (1767_CR18) 2019
1767_CR44
1767_CR7
1767_CR43
VS Chundawat (1767_CR11) 2022
1767_CR9
Y Li (1767_CR56) 2022
H Alsdurf (1767_CR17) 2020
RM Thiago (1767_CR55) 2020; 2020
J Martens (1767_CR47) 2014
A Warnecke (1767_CR39) 2021
A Thudi (1767_CR22) 2021
1767_CR37
C Dwork (1767_CR48) 2014; 9
1767_CR36
A Mahadevan (1767_CR20) 2021
1767_CR35
L Graves (1767_CR6) 2020
1767_CR34
M Kearns (1767_CR46) 1998; 45
1767_CR33
1767_CR31
J Gao (1767_CR8) 2022
M Karasuyama (1767_CR45) 2010; 21
M Al-Rubaie (1767_CR4) 2019; 17
1767_CR29
1767_CR28
1767_CR27
1767_CR25
1767_CR24
1767_CR23
T Baumhauer (1767_CR32) 2020
C Wu (1767_CR30) 2022
F Tramèr (1767_CR14) 2016; 16
References_xml – reference: Schelter S. Towards efficient machine unlearning via incremental view maintenance.
– reference: Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning. advances in neural information processing systems. 2000;13.
– reference: Golatkar A, Achille A, Ravichandran A, Polito M, Soatto S. Mixed—privacy forgetting in deep networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021;792–801.
– reference: ChundawatVSTarunAKMandalMKankanhalliMZero-shot machine unlearningarXiv202210.48550/arXiv.2201.05629
– reference: Brophy J, Lowd D. Machine unlearning for random forests. In: International Conference on Machine Learning. PMLR. 2021;1092–1104.
– reference: BaumhauerTSch¨ottlePZeppelzauerMMachine unlearning: linear filtration for logit-based classifiersarXiv202010.48550/arXiv.2002.0273007624270
– reference: Fredrikson M, Jha S, Ristenpart T. Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC conference on computer and communications security. 2015;1322–1333.
– reference: Cao Y, Yu AF, Aday A, Stahl E, Merwine J, Yang J. Efficient repair of polluted machine learning systems via causal unlearning. In: Proceedings of the 2018 on Asia conference on computer and communications security. 2018;735–747.
– reference: Sablayrolles A, Douze M, Schmid C, Ollivier Y, J´egou H. White-box vs black-box: Bayes optimal strategies for membership inference. In: International conference on machine learning. PMLR. 2019;5558–5567.
– reference: HayesJMelisLDanezisGDe CristofaroELogan: membership inference attacks against generative modelsProc Privacy Enhanc Technol De Gruyter2019201913315210.2478/popets-2019-0008
– reference: Tsai C-H, Lin C-Y, Lin C-J. Incremental and decremental training for linear classification. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. 2014;343–352.
– reference: Zhang Z, Sparks ER, Franklin MJ. Diagnosing machine learning pipelines with fine-grained lineage. In: Proceedings of the 26th international symposium on high-performance parallel and distributed computing. 2017;143–153.
– reference: WuCZhuSMitraPFederated unlearning with knowledge distillationarXiv202210.48550/arXiv.2201.09441
– reference: GuoTGuoSZhangJXuWWangJVertical machine unlearning: Selectively removing sensitive information from latent feature spacearXiv202210.48550/arXiv.2202.13295
– reference: Baracaldo N, Chen B, Ludwig H, Safavi JA. Mitigating poisoning attacks on machine learning models: a data provenance based approach. In: Proceedings of the 10th ACM workshop on artificial intelligence and security. 2017;103–110
– reference: Baracaldo N, Chen B, Ludwig H, Safavi A, Zhang R. Detecting poisoning attacks on machine learning in iot environments. In: 2018 IEEE international congress on internet of things (ICIOT). IEEE 2018;57–64.
– reference: LiuYFanMChenCLiuXMaZWangLMaJBackdoor defense with machine unlearningarXiv202210.48550/arXiv.2201.09538
– reference: WarneckeAPirchLWressneggerCRieckKMachine unlearning of features and labelsarXiv202110.48550/arXiv.2108.11577
– reference: Chaudhuri K, Monteleoni C. Privacy-preserving logistic regression. advances in neural information processing systems. 2008;21.
– reference: GaoJGargSMahmoodyMVasudevanPNDeletion inference, reconstruction, and compliance in machine (un) learningarXiv202210.48550/arXiv.2202.03460
– reference: GongJSimeoneOKassabRKangJForget-svgd: Particle-based bayesian federated unlearningarXiv202110.48550/arXiv.2111.12056
– reference: GolatkarAAchilleASoattoSForgetting outside the box: Scrubbing deep networks of information accessible from input-output observations Europea conference on computer vision2020ChamSpringer383398
– reference: ThudiADezaGChandrasekaranVPapernotNUnrolling sgd: understanding factors influencing machine unlearningarXiv202110.48550/arXiv.2109.13398
– reference: HeYMengGChenKHeJHuXDeepobliviate: a powerful charm for erasing data residual memory in deep neural networksarXiv202110.48550/arXiv.2105.06209
– reference: Ullah E, Mai T, Rao A, Rossi RA, Arora R. Machine unlearning via algorithmic stability. In: conference on learning theory. PMLR. 2021;4126–4142.
– reference: Liu G, Ma X, Yang Y, Wang C, Liu J. Federaser: enabling efficient client-level data removal from federated learning models. In: 2021 IEEE/ACM 29th international symposium on quality of service (IWQOS). IEEE. 2021;1–10.
– reference: Bourtoule L, Chandrasekaran V, Choquette-Choo CA, Jia H, Travers A, Zhang B, Lie D, Papernot N. Machine unlearning. In: 2021 IEEE symposium on security and privacy (SP). IEEE. 2021;141–159
– reference: DworkCRothAThe algorithmic foundations of differential privacyFound Trends Theor Comput Sci201493–421140732540201302.68109
– reference: Song C, Ristenpart T, Shmatikov V. Machine learning models that remember too much. In: Proceedings of the 2017 ACM SIGSAC confer-ence on computer and communications security. 2017;587–601.
– reference: Yeom S, Giacomelli I, Fredrikson M, Jha S. Privacy risk in machine learning: analyzing the connection to overfitting. In: 2018 IEEE 31st computer security foundations symposium (CSF). IEEE. 2018;268–282.
– reference: Al-RubaieMChangJMPrivacy-preserving machine learning: threats and solutionsIEEE Secur Priv2019172495810.1109/MSEC.2018.2888775
– reference: KashefRA boosted svm classifier trained by incremental learning and decremental unlearning approachExpert Syst Appl202116711415410.1016/j.eswa.2020.114154
– reference: Du M, Chen Z, Liu C, Oak R, Song D. Lifelong anomaly detection through unlearning. In: Proceedings of the 2019 ACM SIGSAC conference on computer and communications security. 2019;1283–1297.
– reference: MahadevanAMathioudakisMCertifiable machine unlearning for linear modelsarXiv202110.48550/arXiv.2106.15093
– reference: Shen S, Tople S, Saxena P. Auror: Defending against poisoning attacks in collaborative deep learning systems. In: Proceedings of the 32nd annual conference on computer security applications. 2016;508–519.
– reference: Izzo Z, Smart MA, Chaudhuri K, Zou J. Approximate data deletion from machine learning models. In: International conference on artificial intelligence and statistics. PMLR. 2021;2008–2016.
– reference: Golatkar A, Achille A, Soatto S. Eternal sunshine of the spotless net: selective forgetting in deep networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020;9304–9312.
– reference: Koh PW, Liang P. Understanding black-box predictions via influence functions. In: International conference on machine learning. PMLR. 2017;1885–1894.
– reference: Jose ST, Simeone O. A unified pac-bayesian framework for machine unlearning via information risk minimization. In: 2021 IEEE 3 1st international workshop on machine learning for signal processing (MLSP). IEEE. 2021;1–6.
– reference: TramèrFZhangFJuelsAReiterMKRistenpartTStealing machine learning models via prediction APIsUSENIX Secur Symp201616601618
– reference: Chen M, Zhang Z, Wang T, Backes M, Humbert M, Zhang Y. When machine unlearning jeopardizes privacy. In: Proceedings of the 2021 ACM SIGSAC conference on computer and communications security. 2021;896–911
– reference: Shokri R, Stronati M, Song C, Shmatikov V. Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP). IEEE. 2017;3–18.
– reference: Cao Y, Yang J. Towards making systems forget with machine unlearning. In: 2015 IEEE Symposium on Security and Privacy. IEEE. 2015;463–480.
– reference: Wu Y, Dobriban E, Davidson S. Deltagrad: rapid retraining of machine learning models. In: International conference on machine learning. PMLR. 2021;10355–10366.
– reference: Toreini E, Aitken M, Coopamootoo K, Elliott K, Zelaya CG, Van Moorsel A. The relationship between trust in ai and trustworthy machine learning technologies. In: Proceedings of the 2020 conference on fairness, accountability, and transparency. 2020;272–283.
– reference: GinartAGuanMYValiantGZouJMaking ai forget you: data deletion in machine learningarXiv201910.48550/arXiv.1907.05012
– reference: GuoCGoldsteinTHannunAVan Der MaatenLCertified data removal from machine learning modelsarXiv201910.48550/arXiv.1911.03030
– reference: ThiagoRMSouzaRAzevedoLSoaresEFDSSantosRDos SantosWDe BayserMCardosoMCMorenoMFCerqueiraRManaging data lineage of o&g machine learning models: the sweet spot for shale use caseFirst EAGE Digit Conf Exhib2020202015
– reference: LuoGA roadmap for automating lineage tracing to aid automatically explaining machine learning predictions for clinical decision supportJMIR Med Inform2021952777810.2196/27778
– reference: LiYZhengXChenCLiuJMaking recommender systems forget: learning and unlearning for erasable recommendationarXiv202210.48550/arXiv.2203.11491
– reference: ThudiAJiaHShumailovIPapernotNOn the necessity of auditable algorithmic definitions for machine unlearningarXiv202110.48550/arXiv.2110.11891
– reference: Surma J. Hacking machine learning: towards the comprehensive taxonomy of attacks against machine learning systems. In: Proceedings of the 2020 the 4th international conference on innovation in artificial intelligence. 2020;1–4.
– reference: Neel S, Roth A, Sharifi-Malvajerdi S. Descent-to-delete: gradient- based methods for machine unlearning. In: Algorithmic learning theory. PMLR. 2021;931–962.
– reference: GravesLNagisettyVGaneshVAmnesiac machine learningarXiv202010.48550/arXiv.2010.10981
– reference: Giordano R, Stephenson W, Liu R, Jordan M, Broderick T. A swiss army infinitesimal jackknife. In: The 22nd international conference on artificial intelligence and statistics. International conference on machine learning. PMLR. 2019;1139–1147.
– reference: KearnsMEfficient noise-tolerant learning from statistical queriesJ ACM19984569831006167884910.1145/293347.2933511065.68605
– reference: Marchant NG, Rubinstein BI, Alfeld S. Hard to forget: poisoning attacks on certified machine unlearning. arXiv preprint arXiv:2109.08266. 2021
– reference: AlsdurfHBelliveauEBengioYDeleuTGuptaPIppolitoDJandaRJarvieMKolodyTKrastevSCovi white paperarXiv202010.48550/arXiv.2005.08502
– reference: KarasuyamaMTakeuchiIMultiple incremental decremental learning of support vector machinesIEEE Trans Neural Networks20102171048105910.1109/TNN.2010.2048039
– reference: MartensJNew insights and perspectives on the natural gradient methodarXiv201410.48550/arXiv.1412.119307306852
– ident: 1767_CR19
  doi: 10.1145/2810103.2813677
– volume: 167
  start-page: 114154
  year: 2021
  ident: 1767_CR26
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114154
– year: 2022
  ident: 1767_CR30
  publication-title: arXiv
  doi: 10.48550/arXiv.2201.09441
– ident: 1767_CR28
  doi: 10.1109/IWQOS52092.2021.9521274
– year: 2022
  ident: 1767_CR11
  publication-title: arXiv
  doi: 10.48550/arXiv.2201.05629
– ident: 1767_CR15
  doi: 10.1145/3133956.3134077
– ident: 1767_CR57
  doi: 10.1109/SP.2017.41
– ident: 1767_CR7
  doi: 10.1145/3460120.3484756
– ident: 1767_CR10
  doi: 10.1109/ICIOT.2018.00015
– year: 2019
  ident: 1767_CR18
  publication-title: arXiv
  doi: 10.48550/arXiv.1907.05012
– ident: 1767_CR33
  doi: 10.1109/CVPR42600.2020.00932
– ident: 1767_CR29
– ident: 1767_CR5
– year: 2021
  ident: 1767_CR39
  publication-title: arXiv
  doi: 10.48550/arXiv.2108.11577
– volume: 9
  start-page: 27778
  issue: 5
  year: 2021
  ident: 1767_CR54
  publication-title: JMIR Med Inform
  doi: 10.2196/27778
– volume: 2019
  start-page: 133
  year: 2019
  ident: 1767_CR60
  publication-title: Proc Privacy Enhanc Technol De Gruyter
  doi: 10.2478/popets-2019-0008
– volume: 45
  start-page: 983
  issue: 6
  year: 1998
  ident: 1767_CR46
  publication-title: J ACM
  doi: 10.1145/293347.293351
– ident: 1767_CR9
  doi: 10.1609/aaai.v36i7.20736
– ident: 1767_CR44
  doi: 10.1145/2623330.2623661
– ident: 1767_CR43
– year: 2021
  ident: 1767_CR38
  publication-title: arXiv
  doi: 10.48550/arXiv.2109.13398
– ident: 1767_CR24
  doi: 10.1109/SP.2015.35
– ident: 1767_CR3
  doi: 10.1109/SP40001.2021.00019
– year: 2020
  ident: 1767_CR17
  publication-title: arXiv
  doi: 10.48550/arXiv.2005.08502
– ident: 1767_CR16
– ident: 1767_CR37
– year: 2022
  ident: 1767_CR8
  publication-title: arXiv
  doi: 10.48550/arXiv.2202.03460
– ident: 1767_CR53
  doi: 10.1145/3078597.3078603
– ident: 1767_CR27
  doi: 10.1109/MLSP52302.2021.9596170
– ident: 1767_CR1
  doi: 10.1145/3128572.3140450
– year: 2021
  ident: 1767_CR22
  publication-title: arXiv
  doi: 10.48550/arXiv.2110.11891
– ident: 1767_CR25
  doi: 10.1145/3196494.3196517
– year: 2020
  ident: 1767_CR32
  publication-title: arXiv
  doi: 10.48550/arXiv.2002.02730
– volume: 21
  start-page: 1048
  issue: 7
  year: 2010
  ident: 1767_CR45
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/TNN.2010.2048039
– year: 2022
  ident: 1767_CR42
  publication-title: arXiv
  doi: 10.48550/arXiv.2202.13295
– volume: 16
  start-page: 601
  year: 2016
  ident: 1767_CR14
  publication-title: USENIX Secur Symp
– ident: 1767_CR36
– ident: 1767_CR52
– year: 2022
  ident: 1767_CR2
  publication-title: arXiv
  doi: 10.48550/arXiv.2201.09538
– ident: 1767_CR13
  doi: 10.1145/3390557.3394126
– volume: 2020
  start-page: 1
  year: 2020
  ident: 1767_CR55
  publication-title: First EAGE Digit Conf Exhib
– year: 2022
  ident: 1767_CR56
  publication-title: arXiv
  doi: 10.48550/arXiv.2203.11491
– ident: 1767_CR58
  doi: 10.1109/CSF.2018.00027
– volume: 17
  start-page: 49
  issue: 2
  year: 2019
  ident: 1767_CR4
  publication-title: IEEE Secur Priv
  doi: 10.1109/MSEC.2018.2888775
– year: 2021
  ident: 1767_CR40
  publication-title: arXiv
  doi: 10.48550/arXiv.2105.06209
– volume: 9
  start-page: 211
  issue: 3–4
  year: 2014
  ident: 1767_CR48
  publication-title: Found Trends Theor Comput Sci
– ident: 1767_CR23
– year: 2021
  ident: 1767_CR41
  publication-title: arXiv
  doi: 10.48550/arXiv.2111.12056
– ident: 1767_CR35
  doi: 10.1109/CVPR46437.2021.00085
– year: 2021
  ident: 1767_CR20
  publication-title: arXiv
  doi: 10.48550/arXiv.2106.15093
– ident: 1767_CR49
– ident: 1767_CR51
– year: 2014
  ident: 1767_CR47
  publication-title: arXiv
  doi: 10.48550/arXiv.1412.1193
– start-page: 383
  volume-title: Forgetting outside the box: Scrubbing deep networks of information accessible from input-output observations Europea conference on computer vision
  year: 2020
  ident: 1767_CR50
– ident: 1767_CR34
– ident: 1767_CR12
  doi: 10.1145/3351095.3372834
– ident: 1767_CR59
– year: 2020
  ident: 1767_CR6
  publication-title: arXiv
  doi: 10.48550/arXiv.2010.10981
– year: 2019
  ident: 1767_CR21
  publication-title: arXiv
  doi: 10.48550/arXiv.1911.03030
– ident: 1767_CR31
  doi: 10.1145/3319535.3363226
SSID ssj0002504465
Score 2.4878855
Snippet Recently, an increasing number of laws have governed the useability of users’ privacy. For example, Article 17 of the General Data Protection Regulation...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 337
SubjectTerms Algorithms
Artificial intelligence
Big Data
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data analysis
Data Structures and Information Theory
Datasets
General Data Protection Regulation
Information Systems and Communication Service
Internet
Machine learning
Pattern Recognition and Graphics
Privacy
Research methodology
Search engines
Security
Software Engineering/Programming and Operating Systems
Survey Article
Vision
Title A Review on Machine Unlearning
URI https://link.springer.com/article/10.1007/s42979-023-01767-4
https://www.proquest.com/docview/2921254343
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vXgRRcVqLXvwpsF9JJvkJFVai9AiYqG3JZnNepFttfX_m6TZFgV7zgMyk8wzMx_AtaZWj2iuiciVdVBomROh0UECMhHrmAmsXHHyeJKPpvR5xmYh4LYM3yobmegFdTlHFyO_S6UVsr4O8n7xSRxqlMuuBgiNfWgnVtO4Gy6GT5sYi2vPRT2apB1MiZRsFupmfPWcFcVcEqu0rD_NXfvv37ppa3D-yZF61TM8gsNgM0b9NZOPYc_UJ9DrR-u4fjSvo7H_EmmiaR1QIN5PYTocvD2OSAA7IOhyf8SFYpSiHDXVMlVZZlByVDmNdW49vTJPdZVUzD7IPONJmSlkwjmUJTeGYyWyM2jV89qcQ1RVmY5RoGIJ0iyutMIk5aVAHqdYSt2BpDlmgaETuAOk-Cg2PYw9aQpLmsKTpqAduNmsWaz7YOyc3W2oV4Q3sSy2HOzAbUPR7fD_u13s3u0SDlLPREoS2YXW6uvbXFlLYaV7_jr0oP0wmLy8_gBtHbcK
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsCCQIAolJIBJrBIbCe2B4QqoLT0MbVStxA7CQtKCy1C_Cl-I7aTtAKJbp2TnJTz-d53H8C5pNqOSCYRDyIdoNA4QFwqAwnoc1e6PlepGU7uD4L2iD6N_XEFvstZGNNWWepEq6jjiTI58msstJK1c5C30zdkUKNMdbWE0MjFopt8feqQbXbTudfne4Fx62F410YFqgBSpsiGTM4jiihTkkqBI0ISJZiKAurKQIdUcYBl6qW-lvyAMC8mkfK5idxiliRMpZxouhuwSQkRpoWQtx4XOR2zDoxa9Ept9jASwh8Xczp2Wk-rfiaQNpI6fmdm3fhvW7h0cP_UZK2pa-3CTuGjOs1cqPagkmT70Gg6eR3BmWRO37ZgJs4oK1AnXg5gtBY2HEI1m2TJEThpSqSruIp8T1HipjJSHmYxV8zFKhayBl75m6EqNo8bAIzXcLEz2bIm1KwJLWtCWoPLxTfTfO_GyrfrJffC4g7OwqXE1OCq5Ojy8f_UjldTO4Ot9rDfC3udQfcEtrE9UIo8UYfq_P0jOdVeylw2rGg48LxuWfwBnGPxVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+Machine+Unlearning&rft.jtitle=SN+computer+science&rft.au=Zhang%2C+Haibo&rft.au=Nakamura%2C+Toru&rft.au=Isohara%2C+Takamasa&rft.au=Sakurai%2C+Kouichi&rft.date=2023-04-19&rft.pub=Springer+Nature+Singapore&rft.eissn=2661-8907&rft.volume=4&rft.issue=4&rft_id=info:doi/10.1007%2Fs42979-023-01767-4&rft.externalDocID=10_1007_s42979_023_01767_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon