ALMOST ABELIAN LIE GROUPS, SUBGROUPS AND QUOTIENTS

An almost Abelian Lie group is a non-Abelian Lie group with a codimension 1 Abelian normal subgroup. The majority of 3-dimensional real Lie groups are almost Abelian, and they appear in all parts of physics that deal with anisotropic media—cosmology, crystallography etc. In theoretical physics and d...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 266; no. 1; pp. 42 - 65
Main Authors Rios, Marcelo Almora, Avetisyan, Zhirayr, Berlow, Katalin, Martin, Isaac, Rakholia, Gautam, Yang, Kelley, Zhang, Hanwen, Zhao, Zishuo
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An almost Abelian Lie group is a non-Abelian Lie group with a codimension 1 Abelian normal subgroup. The majority of 3-dimensional real Lie groups are almost Abelian, and they appear in all parts of physics that deal with anisotropic media—cosmology, crystallography etc. In theoretical physics and differential geometry, almost Abelian Lie groups and their homogeneous spaces provide some of the simplest solvmanifolds on which a variety of geometric structures, such as symplectic, Kähler, spin etc., are currently studied in explicit terms. Recently, almost Abelian Lie algebras were classified and studied in details. However, a systematic investigation of almost Abelian Lie groups has not been carried out yet, and the present paper is devoted to an explicit description of properties of this wide and diverse class of groups. The subject of investigation are real almost Abelian Lie groups with their Lie group theoretical aspects, such as the exponential map, faithful matrix representations, discrete and connected subgroups, quotients and automorphisms. The emphasis is put on explicit description of all technical details.
AbstractList An almost Abelian Lie group is a non-Abelian Lie group with a codimension 1 Abelian normal subgroup. The majority of 3-dimensional real Lie groups are almost Abelian, and they appear in all parts of physics that deal with anisotropic media—cosmology, crystallography etc. In theoretical physics and differential geometry, almost Abelian Lie groups and their homogeneous spaces provide some of the simplest solvmanifolds on which a variety of geometric structures, such as symplectic, Kähler, spin etc., are currently studied in explicit terms. Recently, almost Abelian Lie algebras were classified and studied in details. However, a systematic investigation of almost Abelian Lie groups has not been carried out yet, and the present paper is devoted to an explicit description of properties of this wide and diverse class of groups. The subject of investigation are real almost Abelian Lie groups with their Lie group theoretical aspects, such as the exponential map, faithful matrix representations, discrete and connected subgroups, quotients and automorphisms. The emphasis is put on explicit description of all technical details.
An almost Abelian Lie group is a non-Abelian Lie group with a codimension 1 Abelian normal subgroup. The majority of 3-dimensional real Lie groups are almost Abelian, and they appear in all parts of physics that deal with anisotropic media—cosmology, crystallography etc. In theoretical physics and differential geometry, almost Abelian Lie groups and their homogeneous spaces provide some of the simplest solvmanifolds on which a variety of geometric structures, such as symplectic, Kähler, spin etc., are currently studied in explicit terms. Recently, almost Abelian Lie algebras were classified and studied in details. However, a systematic investigation of almost Abelian Lie groups has not been carried out yet, and the present paper is devoted to an explicit description of properties of this wide and diverse class of groups. The subject of investigation are real almost Abelian Lie groups with their Lie group theoretical aspects, such as the exponential map, faithful matrix representations, discrete and connected subgroups, quotients and automorphisms. The emphasis is put on explicit description of all technical details.
Author Rakholia, Gautam
Zhang, Hanwen
Zhao, Zishuo
Avetisyan, Zhirayr
Berlow, Katalin
Yang, Kelley
Rios, Marcelo Almora
Martin, Isaac
Author_xml – sequence: 1
  givenname: Marcelo Almora
  surname: Rios
  fullname: Rios, Marcelo Almora
  organization: Department of Mathematics, University of Montana
– sequence: 2
  givenname: Zhirayr
  surname: Avetisyan
  fullname: Avetisyan, Zhirayr
  email: jirayrag@gmail.com
  organization: Department of Mathematics, UC Santa Barbara, Regional Mathematical Center of Southern Federal University
– sequence: 3
  givenname: Katalin
  surname: Berlow
  fullname: Berlow, Katalin
  organization: Department of Mathematics, UC Berkeley
– sequence: 4
  givenname: Isaac
  surname: Martin
  fullname: Martin, Isaac
  organization: Department of Mathematics, University of Cambridge
– sequence: 5
  givenname: Gautam
  surname: Rakholia
  fullname: Rakholia, Gautam
  organization: Department of Mathematics, UC Santa Barbara
– sequence: 6
  givenname: Kelley
  surname: Yang
  fullname: Yang, Kelley
  organization: University of South California
– sequence: 7
  givenname: Hanwen
  surname: Zhang
  fullname: Zhang, Hanwen
  organization: Department of Mathematics, UC Santa Barbara
– sequence: 8
  givenname: Zishuo
  surname: Zhao
  fullname: Zhao, Zishuo
  organization: Department of Mathematics, UC Santa Barbara
BookMark eNp9kE9Pg0AQxTdGE9vqF_BE4lV0_9EdjrRiJcGiAufNAotpU6Hu0oPf3lVMTDz0NC-T95s3eVN02vWdRuiK4FuCsbizBIcB-JhSHwcgqE9P0IQEgvkgwuDUaeyWjAl-jqbWbrGD5sAmiEbpU5YXXrSI0yRae2kSe6vXrHzOb7y8XIzSi9b33kuZFUm8LvILdNaqndWXv3OGyoe4WD76abZKllHq11QA9SuMNWu4UtACb6sGN8CB1ETBnDSYCx4SKrRuIKg4Z1y73-ac07CumcJKV2yGrse7e9N_HLQd5LY_mM5FSio4QBCwEJyLjq7a9NYa3cq92bwr8ykJlt_dyLEb6bqRP91I6iD4B9WbQQ2bvhuM2uyOo2xErcvp3rT5--oI9QXHV3Qy
CitedBy_id crossref_primary_10_1016_j_jalgebra_2024_10_023
crossref_primary_10_1063_5_0201573
Cites_doi 10.1007/s10231-020-01059-1
10.1007/s10711-018-0330-9
10.1007/s10455-021-09782-5
10.4310/AJM.2016.v20.n2.a1
10.1016/j.jpaa.2022.107186
10.1201/9781439864081
10.1515/coma-2020-0111
10.1007/978-3-319-13467-3
10.1088/0264-9381/30/15/155006
10.1007/s10231-018-0753-9
10.1142/S0218196721500181
10.1007/JHEP05(2011)028
10.1007/978-3-319-29558-9
10.1098/rsta.2015.0172
10.1142/S0129167X22500574
10.1007/978-94-007-5345-7
10.1093/qmathj/haz036
10.1093/qmath/haz020
10.1007/978-94-011-4455-1_1
10.1142/S0219498818502146
10.1007/978-1-4612-1772-5_1
10.1515/9781400882427
10.1007/s10455-012-9326-0
10.1007/s00229-017-0938-3
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2022
Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
DOI 10.1007/s10958-022-05872-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 65
ExternalDocumentID 10_1007_s10958_022_05872_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c2782-b00e3d4aa8f84fbd0d8481c1a861d04749127eed85b4434e37464429cc3a0aeb3
IEDL.DBID U2A
ISSN 1072-3374
IngestDate Fri Jul 25 11:08:14 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Tue Jul 01 01:42:21 EDT 2025
Fri Feb 21 02:44:07 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2782-b00e3d4aa8f84fbd0d8481c1a861d04749127eed85b4434e37464429cc3a0aeb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10958-022-05872-2.pdf
PQID 2748855398
PQPubID 2043545
PageCount 24
ParticipantIDs proquest_journals_2748855398
crossref_primary_10_1007_s10958_022_05872_2
crossref_citationtrail_10_1007_s10958_022_05872_2
springer_journals_10_1007_s10958_022_05872_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220900
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 9
  year: 2022
  text: 20220900
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References A. Fino and F. Paradiso. Generalized Kähler almost Abelian Lie groups. Annali di Mathematica, 200:1781–1812, 2021.
M. Osinovsky. Bianchi universes admitting full groups of motions. Ann. Inst. Henri Poincaré (Section A: Physique théorique), 19:197—210, 1973.
Gerald B. Folland. Harmonic Analysis in Phase Space. (AM-122). Princeton University Press, 1989.
V. Fischer and M. Ruzhansky. Quantization on Nilpotent Lie Groups. Birkhüser, 2016.
M. Freibert, A. Swann. The shear construction. Geometriae Dedicata, 198:71—101, 2018.
D. Dummit, R. Foote. Abstract algebra. John Wiley & Sons, 2004.
A. Fino, F. Paradiso. Balanced Hermitian structures on almost Abelian Lie algebras. Journal of Pure and Applied Algebra, 227(2):107186, 2023.
M. Freibert, L. Schiemanowski and H. Weiss. Homogeneous spinor flow. The Quarterly Journal of Mathematics, 71(1):21—51, 2019.
D. Andriot, E. Goi, R. Minasian and M. Petrini. Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory. Journal of High Energy Physics, 28, 2011.
G. F. R. Ellis and H. van Elst. Cosmological models. (Cargese lectures 1998). Theoretical and Observational Cosmology, edited by M. Lachieze-Rey, 1998.
Sundaram Thangavelu. Harmonic Analysis on the Heisenberg Group (Progress in Mathematics). Birkhäuser, 1 edition, 1998.
B. C. Hall. Lie groups, Lie algebras and representations: an elementary introduction. Springer, 2015.
Marco Freibert. Cocalibrated structures on Lie algebras with a codimension one Abelian ideal. Ann Glob Anal Geom, 42(4):537—563, 2012.
Z. Avetisyan. Jordanable almost Abelian Lie agebras. ArXiv:1811.01252, 2018.
L. Bagaglini and A. Fino. The Laplacian coflow on almost-abelian Lie groups. Annali di Matematica, 197:1855–1873, 2018.
A. Petrov, V. Kaygorodov and V. Abdullin. Classification of gravitational fields of general form by motion groups. Izvestiia Visshikh Uchebnikh Zavedeniy. Matematika, 6(13):118—130, 1959.
Z. Avetisyan and R. Verch. Explicit harmonic and spectral analysis in Bianchi I-VII-type cosmologies. Classical and Quantum Gravity, 30(15):155006, 2013.
G. Rudolph, M. Schmidt. Differential geometry and mathematical physics. Part I. Springer, 2013.
S. Console and M. Macrí. Lattices, cohomology and models of six dimensional almost abelian solvmanifolds. ArXiv, 1206.5977, 2012.
Christoph Bock. On low dimensional solvmanifolds. Asian Journal of Mathematics, 20(2):199–262, 2016.
G. Parry. Discrete structures in continuum description of defective crystals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2066), 2016.
M. Ryan and L. Shepley. Homogeneous relativistic cosmologies. Princeton University Press, 1975.
J. Stanfield. Positive Hermitian curvature flow on nilpotent and almost-Abelian complex Lie groups. Annals of Global Analysis and Geometry, 60:401-429, 2021.
I. Stewart, D. Tall. Algebraic number theory and Fermat’s last theorem. A. K. Peters, 2002.
F. Paradiso. Locally conformally balanced metrics on almost Abelian Lie algebras. Complex Manifolds, 8(1):196–207, 2021.
A. Andrada and M. Origlia. Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures. Manuscripta Mathematica, 155:389-417, 2017.
Z. Avetisyan. The structure of almost Abelian Lie algebras. International Journal of Mathematics, 33(08):2250057, 2022.
J. Lauret and C. Will. The Ricci pinching functional on solvmanifolds. The Quarterly Journal of Mathematics, 70(4):1281–1304, 2019.
D. Burde, K. Dekimpe, B. Verbeke. Almost inner derivations of Lie algebras II. International Journal of Algebra and Computation, 31(02):341–364, 2021.
L. Fuchs. Infinite Abelian groups. Vol 1. Academic Press, 1970.
D. Burde, K. Dekimpe, B. Verbeke. Almost inner derivations of Lie algebras. Journal of Algebra and Its Applications, 17(11):1850214, 2018.
5872_CR22
5872_CR23
5872_CR24
5872_CR25
5872_CR26
5872_CR27
5872_CR28
5872_CR29
5872_CR20
5872_CR21
5872_CR2
5872_CR11
5872_CR3
5872_CR12
5872_CR13
5872_CR1
5872_CR14
5872_CR6
5872_CR15
5872_CR7
5872_CR16
5872_CR4
5872_CR17
5872_CR5
5872_CR18
5872_CR19
5872_CR8
5872_CR9
5872_CR30
5872_CR31
5872_CR10
References_xml – reference: Marco Freibert. Cocalibrated structures on Lie algebras with a codimension one Abelian ideal. Ann Glob Anal Geom, 42(4):537—563, 2012.
– reference: A. Fino and F. Paradiso. Generalized Kähler almost Abelian Lie groups. Annali di Mathematica, 200:1781–1812, 2021.
– reference: B. C. Hall. Lie groups, Lie algebras and representations: an elementary introduction. Springer, 2015.
– reference: Z. Avetisyan. Jordanable almost Abelian Lie agebras. ArXiv:1811.01252, 2018.
– reference: I. Stewart, D. Tall. Algebraic number theory and Fermat’s last theorem. A. K. Peters, 2002.
– reference: D. Dummit, R. Foote. Abstract algebra. John Wiley & Sons, 2004.
– reference: S. Console and M. Macrí. Lattices, cohomology and models of six dimensional almost abelian solvmanifolds. ArXiv, 1206.5977, 2012.
– reference: M. Freibert, L. Schiemanowski and H. Weiss. Homogeneous spinor flow. The Quarterly Journal of Mathematics, 71(1):21—51, 2019.
– reference: D. Andriot, E. Goi, R. Minasian and M. Petrini. Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory. Journal of High Energy Physics, 28, 2011.
– reference: D. Burde, K. Dekimpe, B. Verbeke. Almost inner derivations of Lie algebras II. International Journal of Algebra and Computation, 31(02):341–364, 2021.
– reference: V. Fischer and M. Ruzhansky. Quantization on Nilpotent Lie Groups. Birkhüser, 2016.
– reference: J. Stanfield. Positive Hermitian curvature flow on nilpotent and almost-Abelian complex Lie groups. Annals of Global Analysis and Geometry, 60:401-429, 2021.
– reference: Z. Avetisyan. The structure of almost Abelian Lie algebras. International Journal of Mathematics, 33(08):2250057, 2022.
– reference: L. Fuchs. Infinite Abelian groups. Vol 1. Academic Press, 1970.
– reference: A. Andrada and M. Origlia. Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures. Manuscripta Mathematica, 155:389-417, 2017.
– reference: M. Ryan and L. Shepley. Homogeneous relativistic cosmologies. Princeton University Press, 1975.
– reference: G. Rudolph, M. Schmidt. Differential geometry and mathematical physics. Part I. Springer, 2013.
– reference: Gerald B. Folland. Harmonic Analysis in Phase Space. (AM-122). Princeton University Press, 1989.
– reference: A. Fino, F. Paradiso. Balanced Hermitian structures on almost Abelian Lie algebras. Journal of Pure and Applied Algebra, 227(2):107186, 2023.
– reference: Christoph Bock. On low dimensional solvmanifolds. Asian Journal of Mathematics, 20(2):199–262, 2016.
– reference: G. Parry. Discrete structures in continuum description of defective crystals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2066), 2016.
– reference: L. Bagaglini and A. Fino. The Laplacian coflow on almost-abelian Lie groups. Annali di Matematica, 197:1855–1873, 2018.
– reference: A. Petrov, V. Kaygorodov and V. Abdullin. Classification of gravitational fields of general form by motion groups. Izvestiia Visshikh Uchebnikh Zavedeniy. Matematika, 6(13):118—130, 1959.
– reference: F. Paradiso. Locally conformally balanced metrics on almost Abelian Lie algebras. Complex Manifolds, 8(1):196–207, 2021.
– reference: G. F. R. Ellis and H. van Elst. Cosmological models. (Cargese lectures 1998). Theoretical and Observational Cosmology, edited by M. Lachieze-Rey, 1998.
– reference: J. Lauret and C. Will. The Ricci pinching functional on solvmanifolds. The Quarterly Journal of Mathematics, 70(4):1281–1304, 2019.
– reference: M. Osinovsky. Bianchi universes admitting full groups of motions. Ann. Inst. Henri Poincaré (Section A: Physique théorique), 19:197—210, 1973.
– reference: M. Freibert, A. Swann. The shear construction. Geometriae Dedicata, 198:71—101, 2018.
– reference: D. Burde, K. Dekimpe, B. Verbeke. Almost inner derivations of Lie algebras. Journal of Algebra and Its Applications, 17(11):1850214, 2018.
– reference: Sundaram Thangavelu. Harmonic Analysis on the Heisenberg Group (Progress in Mathematics). Birkhäuser, 1 edition, 1998.
– reference: Z. Avetisyan and R. Verch. Explicit harmonic and spectral analysis in Bianchi I-VII-type cosmologies. Classical and Quantum Gravity, 30(15):155006, 2013.
– ident: 5872_CR13
  doi: 10.1007/s10231-020-01059-1
– ident: 5872_CR11
– ident: 5872_CR18
  doi: 10.1007/s10711-018-0330-9
– ident: 5872_CR29
  doi: 10.1007/s10455-021-09782-5
– ident: 5872_CR23
– ident: 5872_CR9
  doi: 10.4310/AJM.2016.v20.n2.a1
– ident: 5872_CR28
– ident: 5872_CR14
  doi: 10.1016/j.jpaa.2022.107186
– ident: 5872_CR30
  doi: 10.1201/9781439864081
– ident: 5872_CR24
  doi: 10.1515/coma-2020-0111
– ident: 5872_CR21
  doi: 10.1007/978-3-319-13467-3
– ident: 5872_CR3
  doi: 10.1088/0264-9381/30/15/155006
– ident: 5872_CR10
– ident: 5872_CR6
  doi: 10.1007/s10231-018-0753-9
– ident: 5872_CR8
  doi: 10.1142/S0218196721500181
– ident: 5872_CR2
  doi: 10.1007/JHEP05(2011)028
– ident: 5872_CR15
  doi: 10.1007/978-3-319-29558-9
– ident: 5872_CR25
  doi: 10.1098/rsta.2015.0172
– ident: 5872_CR20
– ident: 5872_CR4
  doi: 10.1142/S0129167X22500574
– ident: 5872_CR5
– ident: 5872_CR27
  doi: 10.1007/978-94-007-5345-7
– ident: 5872_CR19
  doi: 10.1093/qmathj/haz036
– ident: 5872_CR22
  doi: 10.1093/qmath/haz020
– ident: 5872_CR12
  doi: 10.1007/978-94-011-4455-1_1
– ident: 5872_CR26
– ident: 5872_CR7
  doi: 10.1142/S0219498818502146
– ident: 5872_CR31
  doi: 10.1007/978-1-4612-1772-5_1
– ident: 5872_CR16
  doi: 10.1515/9781400882427
– ident: 5872_CR17
  doi: 10.1007/s10455-012-9326-0
– ident: 5872_CR1
  doi: 10.1007/s00229-017-0938-3
SSID ssj0007683
Score 2.2621713
Snippet An almost Abelian Lie group is a non-Abelian Lie group with a codimension 1 Abelian normal subgroup. The majority of 3-dimensional real Lie groups are almost...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 42
SubjectTerms Anisotropic media
Automorphisms
Cosmology
Crystallography
Differential geometry
Lie groups
Mathematics
Mathematics and Statistics
Matrix representation
Quotients
Subgroups
Theoretical physics
Title ALMOST ABELIAN LIE GROUPS, SUBGROUPS AND QUOTIENTS
URI https://link.springer.com/article/10.1007/s10958-022-05872-2
https://www.proquest.com/docview/2748855398
Volume 266
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kvehBfGK1lhy82YXNPprdY2JTrbYpkgbqKSSb5CRVbP3_zubRqqjgKYFMFjKbnfmG_eZbhK6EU9hpwRXOGckwL3SBVaIFzgijCVQUSuemwXkaDO4ifr8Qi7opbNWw3ZstyTJSf2p2U0Jiwz4nQjoUQ-BtC6jdDZErou4m_gKArmj1YMOYw-tWmZ_H-JqOthjz27ZomW1GB2i_homWW83rIdrJl0dob7rRWF0dI-pOprNwbrmeD_V4YE3GvlWS6MO-FUZedWu5wdB6jGbzsR_MwxMUjfz5zR2uT0DAmkLqNqfj5CzjSSILyYs0I5lRv9d2Igd2RrjDlU0dyHJSpJwznsPXAr6hSmuWkATq5FPUWr4s8zNk5VAFE6UBoUmjZ5MqRwD0IkwXGpYh5R1kN46IdS0Pbk6peI63wsbGeTE4Ly6dF9MOut6881qJY_xp3W38G9cLZRVDUSylEEzJDuo3Pt8-_n208_-ZX6BdWk67YYd1UWv99p5fApxYpz3Udr2hNzLX26cHv1f-TR_dqLtF
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kHtSD-MRq1T14swvJPprdY6oprSYp0gR6C8kmOUkVW_-_s3m0Kip4C2SykG9nZ75h54HQjXBKOyu5IgWzcsJLXRKVakFyi9EUIgqlC1PgHISDccwf5mLeFIUt22z39kqystSfit2UkMRkn1tCOpSA4d0GMiCNLsfUXdtfINB1Wj3IMObwplTm5zW-uqMNx_x2LVp5m9EB2m9oInbrfT1EW8XiCO0F6x6ry2NEXT-YziLsDj2Ix0PsTzxcJdHP-ngWD-tH7Ib3-CmeRhMvjGYnKB550d2YNBMQiKbgus10nILlPE1lKXmZ5VZuut9rO5UDO7e4w5VNHfByUmScM17A3wK_oUprllopxMmnqLN4WRRnCBcQBVtKA0OTpp9NphwB1MtiutRwDCnvIrsFItFNe3AzpeI52TQ2NuAlAF5SgZfQLrpdf_NaN8f4U7rX4ps0B2WZQFAspRBMyS7qt5hvXv--2vn_xK_RzjgK_MSfhI8XaJdWKmAyxXqos3p7Ly6BWqyyq0qTPgAZx7sy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kguhBfGK1ag7ebGiyj2b3mNqUVttUSQO9hWSTPUkstv5_Z_Noq6jgLZDJQr6d3fmGnfkWoTvmKDtRVJgZsVKTKqlMEUtmphbBMWQUQma6wXnid4chfZyz-VYXf1HtXh9Jlj0NWqUpX3UWqepsNb4Jxk1diW4x7mATNuFdqruBwaND7K73YiDTZYk92BDi0Kpt5ucxvoamDd_8dkRaRJ7BETqsKKPhlnN8jHay_AQdTNZ6q8tThN3xZBrMDLfnQW7uG-ORZxQF9UHbCMJe-Wi4ft94CaezkefPgjMUDrzZw9CsbkMwJYYwrm_KyUhK45grTlWSWqlWwpd2zLt2alGHChs7EPE4SyglNIO_Ba6DhZQktmLImc9RI3_LswtkZJARW0ICW-Na2yYRDgMaZhGpJCxJTJvIroGIZCUVrm-seI02IscavAjAiwrwItxE9-tvFqVQxp_WrRrfqFo0ywgSZM4ZI4I3UbvGfPP699Eu_2d-i_ae-4NoPPKfrtA-LjxAF421UGP1_pFdA8tYJTeFI30CsVa_ZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ALMOST+ABELIAN+LIE+GROUPS%2C+SUBGROUPS+AND+QUOTIENTS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Rios%2C+Marcelo+Almora&rft.au=Avetisyan%2C+Zhirayr&rft.au=Berlow%2C+Katalin&rft.au=Martin%2C+Isaac&rft.date=2022-09-01&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=266&rft.issue=1&rft.spage=42&rft.epage=65&rft_id=info:doi/10.1007%2Fs10958-022-05872-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10958_022_05872_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon