ALMOST ABELIAN LIE GROUPS, SUBGROUPS AND QUOTIENTS
An almost Abelian Lie group is a non-Abelian Lie group with a codimension 1 Abelian normal subgroup. The majority of 3-dimensional real Lie groups are almost Abelian, and they appear in all parts of physics that deal with anisotropic media—cosmology, crystallography etc. In theoretical physics and d...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 266; no. 1; pp. 42 - 65 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An almost Abelian Lie group is a non-Abelian Lie group with a codimension 1 Abelian normal subgroup. The majority of 3-dimensional real Lie groups are almost Abelian, and they appear in all parts of physics that deal with anisotropic media—cosmology, crystallography etc. In theoretical physics and differential geometry, almost Abelian Lie groups and their homogeneous spaces provide some of the simplest solvmanifolds on which a variety of geometric structures, such as symplectic, Kähler, spin etc., are currently studied in explicit terms. Recently, almost Abelian Lie algebras were classified and studied in details. However, a systematic investigation of almost Abelian Lie groups has not been carried out yet, and the present paper is devoted to an explicit description of properties of this wide and diverse class of groups. The subject of investigation are real almost Abelian Lie groups with their Lie group theoretical aspects, such as the exponential map, faithful matrix representations, discrete and connected subgroups, quotients and automorphisms. The emphasis is put on explicit description of all technical details. |
---|---|
AbstractList | An almost Abelian Lie group is a non-Abelian Lie group with a codimension 1 Abelian normal subgroup. The majority of 3-dimensional real Lie groups are almost Abelian, and they appear in all parts of physics that deal with anisotropic media—cosmology, crystallography etc. In theoretical physics and differential geometry, almost Abelian Lie groups and their homogeneous spaces provide some of the simplest solvmanifolds on which a variety of geometric structures, such as symplectic, Kähler, spin etc., are currently studied in explicit terms. Recently, almost Abelian Lie algebras were classified and studied in details. However, a systematic investigation of almost Abelian Lie groups has not been carried out yet, and the present paper is devoted to an explicit description of properties of this wide and diverse class of groups. The subject of investigation are real almost Abelian Lie groups with their Lie group theoretical aspects, such as the exponential map, faithful matrix representations, discrete and connected subgroups, quotients and automorphisms. The emphasis is put on explicit description of all technical details. An almost Abelian Lie group is a non-Abelian Lie group with a codimension 1 Abelian normal subgroup. The majority of 3-dimensional real Lie groups are almost Abelian, and they appear in all parts of physics that deal with anisotropic media—cosmology, crystallography etc. In theoretical physics and differential geometry, almost Abelian Lie groups and their homogeneous spaces provide some of the simplest solvmanifolds on which a variety of geometric structures, such as symplectic, Kähler, spin etc., are currently studied in explicit terms. Recently, almost Abelian Lie algebras were classified and studied in details. However, a systematic investigation of almost Abelian Lie groups has not been carried out yet, and the present paper is devoted to an explicit description of properties of this wide and diverse class of groups. The subject of investigation are real almost Abelian Lie groups with their Lie group theoretical aspects, such as the exponential map, faithful matrix representations, discrete and connected subgroups, quotients and automorphisms. The emphasis is put on explicit description of all technical details. |
Author | Rakholia, Gautam Zhang, Hanwen Zhao, Zishuo Avetisyan, Zhirayr Berlow, Katalin Yang, Kelley Rios, Marcelo Almora Martin, Isaac |
Author_xml | – sequence: 1 givenname: Marcelo Almora surname: Rios fullname: Rios, Marcelo Almora organization: Department of Mathematics, University of Montana – sequence: 2 givenname: Zhirayr surname: Avetisyan fullname: Avetisyan, Zhirayr email: jirayrag@gmail.com organization: Department of Mathematics, UC Santa Barbara, Regional Mathematical Center of Southern Federal University – sequence: 3 givenname: Katalin surname: Berlow fullname: Berlow, Katalin organization: Department of Mathematics, UC Berkeley – sequence: 4 givenname: Isaac surname: Martin fullname: Martin, Isaac organization: Department of Mathematics, University of Cambridge – sequence: 5 givenname: Gautam surname: Rakholia fullname: Rakholia, Gautam organization: Department of Mathematics, UC Santa Barbara – sequence: 6 givenname: Kelley surname: Yang fullname: Yang, Kelley organization: University of South California – sequence: 7 givenname: Hanwen surname: Zhang fullname: Zhang, Hanwen organization: Department of Mathematics, UC Santa Barbara – sequence: 8 givenname: Zishuo surname: Zhao fullname: Zhao, Zishuo organization: Department of Mathematics, UC Santa Barbara |
BookMark | eNp9kE9Pg0AQxTdGE9vqF_BE4lV0_9EdjrRiJcGiAufNAotpU6Hu0oPf3lVMTDz0NC-T95s3eVN02vWdRuiK4FuCsbizBIcB-JhSHwcgqE9P0IQEgvkgwuDUaeyWjAl-jqbWbrGD5sAmiEbpU5YXXrSI0yRae2kSe6vXrHzOb7y8XIzSi9b33kuZFUm8LvILdNaqndWXv3OGyoe4WD76abZKllHq11QA9SuMNWu4UtACb6sGN8CB1ETBnDSYCx4SKrRuIKg4Z1y73-ac07CumcJKV2yGrse7e9N_HLQd5LY_mM5FSio4QBCwEJyLjq7a9NYa3cq92bwr8ykJlt_dyLEb6bqRP91I6iD4B9WbQQ2bvhuM2uyOo2xErcvp3rT5--oI9QXHV3Qy |
CitedBy_id | crossref_primary_10_1016_j_jalgebra_2024_10_023 crossref_primary_10_1063_5_0201573 |
Cites_doi | 10.1007/s10231-020-01059-1 10.1007/s10711-018-0330-9 10.1007/s10455-021-09782-5 10.4310/AJM.2016.v20.n2.a1 10.1016/j.jpaa.2022.107186 10.1201/9781439864081 10.1515/coma-2020-0111 10.1007/978-3-319-13467-3 10.1088/0264-9381/30/15/155006 10.1007/s10231-018-0753-9 10.1142/S0218196721500181 10.1007/JHEP05(2011)028 10.1007/978-3-319-29558-9 10.1098/rsta.2015.0172 10.1142/S0129167X22500574 10.1007/978-94-007-5345-7 10.1093/qmathj/haz036 10.1093/qmath/haz020 10.1007/978-94-011-4455-1_1 10.1142/S0219498818502146 10.1007/978-1-4612-1772-5_1 10.1515/9781400882427 10.1007/s10455-012-9326-0 10.1007/s00229-017-0938-3 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10958-022-05872-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 65 |
ExternalDocumentID | 10_1007_s10958_022_05872_2 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c2782-b00e3d4aa8f84fbd0d8481c1a861d04749127eed85b4434e37464429cc3a0aeb3 |
IEDL.DBID | U2A |
ISSN | 1072-3374 |
IngestDate | Fri Jul 25 11:08:14 EDT 2025 Thu Apr 24 22:59:52 EDT 2025 Tue Jul 01 01:42:21 EDT 2025 Fri Feb 21 02:44:07 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2782-b00e3d4aa8f84fbd0d8481c1a861d04749127eed85b4434e37464429cc3a0aeb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10958-022-05872-2.pdf |
PQID | 2748855398 |
PQPubID | 2043545 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2748855398 crossref_primary_10_1007_s10958_022_05872_2 crossref_citationtrail_10_1007_s10958_022_05872_2 springer_journals_10_1007_s10958_022_05872_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220900 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 9 year: 2022 text: 20220900 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | A. Fino and F. Paradiso. Generalized Kähler almost Abelian Lie groups. Annali di Mathematica, 200:1781–1812, 2021. M. Osinovsky. Bianchi universes admitting full groups of motions. Ann. Inst. Henri Poincaré (Section A: Physique théorique), 19:197—210, 1973. Gerald B. Folland. Harmonic Analysis in Phase Space. (AM-122). Princeton University Press, 1989. V. Fischer and M. Ruzhansky. Quantization on Nilpotent Lie Groups. Birkhüser, 2016. M. Freibert, A. Swann. The shear construction. Geometriae Dedicata, 198:71—101, 2018. D. Dummit, R. Foote. Abstract algebra. John Wiley & Sons, 2004. A. Fino, F. Paradiso. Balanced Hermitian structures on almost Abelian Lie algebras. Journal of Pure and Applied Algebra, 227(2):107186, 2023. M. Freibert, L. Schiemanowski and H. Weiss. Homogeneous spinor flow. The Quarterly Journal of Mathematics, 71(1):21—51, 2019. D. Andriot, E. Goi, R. Minasian and M. Petrini. Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory. Journal of High Energy Physics, 28, 2011. G. F. R. Ellis and H. van Elst. Cosmological models. (Cargese lectures 1998). Theoretical and Observational Cosmology, edited by M. Lachieze-Rey, 1998. Sundaram Thangavelu. Harmonic Analysis on the Heisenberg Group (Progress in Mathematics). Birkhäuser, 1 edition, 1998. B. C. Hall. Lie groups, Lie algebras and representations: an elementary introduction. Springer, 2015. Marco Freibert. Cocalibrated structures on Lie algebras with a codimension one Abelian ideal. Ann Glob Anal Geom, 42(4):537—563, 2012. Z. Avetisyan. Jordanable almost Abelian Lie agebras. ArXiv:1811.01252, 2018. L. Bagaglini and A. Fino. The Laplacian coflow on almost-abelian Lie groups. Annali di Matematica, 197:1855–1873, 2018. A. Petrov, V. Kaygorodov and V. Abdullin. Classification of gravitational fields of general form by motion groups. Izvestiia Visshikh Uchebnikh Zavedeniy. Matematika, 6(13):118—130, 1959. Z. Avetisyan and R. Verch. Explicit harmonic and spectral analysis in Bianchi I-VII-type cosmologies. Classical and Quantum Gravity, 30(15):155006, 2013. G. Rudolph, M. Schmidt. Differential geometry and mathematical physics. Part I. Springer, 2013. S. Console and M. Macrí. Lattices, cohomology and models of six dimensional almost abelian solvmanifolds. ArXiv, 1206.5977, 2012. Christoph Bock. On low dimensional solvmanifolds. Asian Journal of Mathematics, 20(2):199–262, 2016. G. Parry. Discrete structures in continuum description of defective crystals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2066), 2016. M. Ryan and L. Shepley. Homogeneous relativistic cosmologies. Princeton University Press, 1975. J. Stanfield. Positive Hermitian curvature flow on nilpotent and almost-Abelian complex Lie groups. Annals of Global Analysis and Geometry, 60:401-429, 2021. I. Stewart, D. Tall. Algebraic number theory and Fermat’s last theorem. A. K. Peters, 2002. F. Paradiso. Locally conformally balanced metrics on almost Abelian Lie algebras. Complex Manifolds, 8(1):196–207, 2021. A. Andrada and M. Origlia. Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures. Manuscripta Mathematica, 155:389-417, 2017. Z. Avetisyan. The structure of almost Abelian Lie algebras. International Journal of Mathematics, 33(08):2250057, 2022. J. Lauret and C. Will. The Ricci pinching functional on solvmanifolds. The Quarterly Journal of Mathematics, 70(4):1281–1304, 2019. D. Burde, K. Dekimpe, B. Verbeke. Almost inner derivations of Lie algebras II. International Journal of Algebra and Computation, 31(02):341–364, 2021. L. Fuchs. Infinite Abelian groups. Vol 1. Academic Press, 1970. D. Burde, K. Dekimpe, B. Verbeke. Almost inner derivations of Lie algebras. Journal of Algebra and Its Applications, 17(11):1850214, 2018. 5872_CR22 5872_CR23 5872_CR24 5872_CR25 5872_CR26 5872_CR27 5872_CR28 5872_CR29 5872_CR20 5872_CR21 5872_CR2 5872_CR11 5872_CR3 5872_CR12 5872_CR13 5872_CR1 5872_CR14 5872_CR6 5872_CR15 5872_CR7 5872_CR16 5872_CR4 5872_CR17 5872_CR5 5872_CR18 5872_CR19 5872_CR8 5872_CR9 5872_CR30 5872_CR31 5872_CR10 |
References_xml | – reference: Marco Freibert. Cocalibrated structures on Lie algebras with a codimension one Abelian ideal. Ann Glob Anal Geom, 42(4):537—563, 2012. – reference: A. Fino and F. Paradiso. Generalized Kähler almost Abelian Lie groups. Annali di Mathematica, 200:1781–1812, 2021. – reference: B. C. Hall. Lie groups, Lie algebras and representations: an elementary introduction. Springer, 2015. – reference: Z. Avetisyan. Jordanable almost Abelian Lie agebras. ArXiv:1811.01252, 2018. – reference: I. Stewart, D. Tall. Algebraic number theory and Fermat’s last theorem. A. K. Peters, 2002. – reference: D. Dummit, R. Foote. Abstract algebra. John Wiley & Sons, 2004. – reference: S. Console and M. Macrí. Lattices, cohomology and models of six dimensional almost abelian solvmanifolds. ArXiv, 1206.5977, 2012. – reference: M. Freibert, L. Schiemanowski and H. Weiss. Homogeneous spinor flow. The Quarterly Journal of Mathematics, 71(1):21—51, 2019. – reference: D. Andriot, E. Goi, R. Minasian and M. Petrini. Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory. Journal of High Energy Physics, 28, 2011. – reference: D. Burde, K. Dekimpe, B. Verbeke. Almost inner derivations of Lie algebras II. International Journal of Algebra and Computation, 31(02):341–364, 2021. – reference: V. Fischer and M. Ruzhansky. Quantization on Nilpotent Lie Groups. Birkhüser, 2016. – reference: J. Stanfield. Positive Hermitian curvature flow on nilpotent and almost-Abelian complex Lie groups. Annals of Global Analysis and Geometry, 60:401-429, 2021. – reference: Z. Avetisyan. The structure of almost Abelian Lie algebras. International Journal of Mathematics, 33(08):2250057, 2022. – reference: L. Fuchs. Infinite Abelian groups. Vol 1. Academic Press, 1970. – reference: A. Andrada and M. Origlia. Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures. Manuscripta Mathematica, 155:389-417, 2017. – reference: M. Ryan and L. Shepley. Homogeneous relativistic cosmologies. Princeton University Press, 1975. – reference: G. Rudolph, M. Schmidt. Differential geometry and mathematical physics. Part I. Springer, 2013. – reference: Gerald B. Folland. Harmonic Analysis in Phase Space. (AM-122). Princeton University Press, 1989. – reference: A. Fino, F. Paradiso. Balanced Hermitian structures on almost Abelian Lie algebras. Journal of Pure and Applied Algebra, 227(2):107186, 2023. – reference: Christoph Bock. On low dimensional solvmanifolds. Asian Journal of Mathematics, 20(2):199–262, 2016. – reference: G. Parry. Discrete structures in continuum description of defective crystals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2066), 2016. – reference: L. Bagaglini and A. Fino. The Laplacian coflow on almost-abelian Lie groups. Annali di Matematica, 197:1855–1873, 2018. – reference: A. Petrov, V. Kaygorodov and V. Abdullin. Classification of gravitational fields of general form by motion groups. Izvestiia Visshikh Uchebnikh Zavedeniy. Matematika, 6(13):118—130, 1959. – reference: F. Paradiso. Locally conformally balanced metrics on almost Abelian Lie algebras. Complex Manifolds, 8(1):196–207, 2021. – reference: G. F. R. Ellis and H. van Elst. Cosmological models. (Cargese lectures 1998). Theoretical and Observational Cosmology, edited by M. Lachieze-Rey, 1998. – reference: J. Lauret and C. Will. The Ricci pinching functional on solvmanifolds. The Quarterly Journal of Mathematics, 70(4):1281–1304, 2019. – reference: M. Osinovsky. Bianchi universes admitting full groups of motions. Ann. Inst. Henri Poincaré (Section A: Physique théorique), 19:197—210, 1973. – reference: M. Freibert, A. Swann. The shear construction. Geometriae Dedicata, 198:71—101, 2018. – reference: D. Burde, K. Dekimpe, B. Verbeke. Almost inner derivations of Lie algebras. Journal of Algebra and Its Applications, 17(11):1850214, 2018. – reference: Sundaram Thangavelu. Harmonic Analysis on the Heisenberg Group (Progress in Mathematics). Birkhäuser, 1 edition, 1998. – reference: Z. Avetisyan and R. Verch. Explicit harmonic and spectral analysis in Bianchi I-VII-type cosmologies. Classical and Quantum Gravity, 30(15):155006, 2013. – ident: 5872_CR13 doi: 10.1007/s10231-020-01059-1 – ident: 5872_CR11 – ident: 5872_CR18 doi: 10.1007/s10711-018-0330-9 – ident: 5872_CR29 doi: 10.1007/s10455-021-09782-5 – ident: 5872_CR23 – ident: 5872_CR9 doi: 10.4310/AJM.2016.v20.n2.a1 – ident: 5872_CR28 – ident: 5872_CR14 doi: 10.1016/j.jpaa.2022.107186 – ident: 5872_CR30 doi: 10.1201/9781439864081 – ident: 5872_CR24 doi: 10.1515/coma-2020-0111 – ident: 5872_CR21 doi: 10.1007/978-3-319-13467-3 – ident: 5872_CR3 doi: 10.1088/0264-9381/30/15/155006 – ident: 5872_CR10 – ident: 5872_CR6 doi: 10.1007/s10231-018-0753-9 – ident: 5872_CR8 doi: 10.1142/S0218196721500181 – ident: 5872_CR2 doi: 10.1007/JHEP05(2011)028 – ident: 5872_CR15 doi: 10.1007/978-3-319-29558-9 – ident: 5872_CR25 doi: 10.1098/rsta.2015.0172 – ident: 5872_CR20 – ident: 5872_CR4 doi: 10.1142/S0129167X22500574 – ident: 5872_CR5 – ident: 5872_CR27 doi: 10.1007/978-94-007-5345-7 – ident: 5872_CR19 doi: 10.1093/qmathj/haz036 – ident: 5872_CR22 doi: 10.1093/qmath/haz020 – ident: 5872_CR12 doi: 10.1007/978-94-011-4455-1_1 – ident: 5872_CR26 – ident: 5872_CR7 doi: 10.1142/S0219498818502146 – ident: 5872_CR31 doi: 10.1007/978-1-4612-1772-5_1 – ident: 5872_CR16 doi: 10.1515/9781400882427 – ident: 5872_CR17 doi: 10.1007/s10455-012-9326-0 – ident: 5872_CR1 doi: 10.1007/s00229-017-0938-3 |
SSID | ssj0007683 |
Score | 2.2621713 |
Snippet | An almost Abelian Lie group is a non-Abelian Lie group with a codimension 1 Abelian normal subgroup. The majority of 3-dimensional real Lie groups are almost... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 42 |
SubjectTerms | Anisotropic media Automorphisms Cosmology Crystallography Differential geometry Lie groups Mathematics Mathematics and Statistics Matrix representation Quotients Subgroups Theoretical physics |
Title | ALMOST ABELIAN LIE GROUPS, SUBGROUPS AND QUOTIENTS |
URI | https://link.springer.com/article/10.1007/s10958-022-05872-2 https://www.proquest.com/docview/2748855398 |
Volume | 266 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kvehBfGK1lhy82YXNPprdY2JTrbYpkgbqKSSb5CRVbP3_zubRqqjgKYFMFjKbnfmG_eZbhK6EU9hpwRXOGckwL3SBVaIFzgijCVQUSuemwXkaDO4ifr8Qi7opbNWw3ZstyTJSf2p2U0Jiwz4nQjoUQ-BtC6jdDZErou4m_gKArmj1YMOYw-tWmZ_H-JqOthjz27ZomW1GB2i_homWW83rIdrJl0dob7rRWF0dI-pOprNwbrmeD_V4YE3GvlWS6MO-FUZedWu5wdB6jGbzsR_MwxMUjfz5zR2uT0DAmkLqNqfj5CzjSSILyYs0I5lRv9d2Igd2RrjDlU0dyHJSpJwznsPXAr6hSmuWkATq5FPUWr4s8zNk5VAFE6UBoUmjZ5MqRwD0IkwXGpYh5R1kN46IdS0Pbk6peI63wsbGeTE4Ly6dF9MOut6881qJY_xp3W38G9cLZRVDUSylEEzJDuo3Pt8-_n208_-ZX6BdWk67YYd1UWv99p5fApxYpz3Udr2hNzLX26cHv1f-TR_dqLtF |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kHtSD-MRq1T14swvJPprdY6oprSYp0gR6C8kmOUkVW_-_s3m0Kip4C2SykG9nZ75h54HQjXBKOyu5IgWzcsJLXRKVakFyi9EUIgqlC1PgHISDccwf5mLeFIUt22z39kqystSfit2UkMRkn1tCOpSA4d0GMiCNLsfUXdtfINB1Wj3IMObwplTm5zW-uqMNx_x2LVp5m9EB2m9oInbrfT1EW8XiCO0F6x6ry2NEXT-YziLsDj2Ix0PsTzxcJdHP-ngWD-tH7Ib3-CmeRhMvjGYnKB550d2YNBMQiKbgus10nILlPE1lKXmZ5VZuut9rO5UDO7e4w5VNHfByUmScM17A3wK_oUprllopxMmnqLN4WRRnCBcQBVtKA0OTpp9NphwB1MtiutRwDCnvIrsFItFNe3AzpeI52TQ2NuAlAF5SgZfQLrpdf_NaN8f4U7rX4ps0B2WZQFAspRBMyS7qt5hvXv--2vn_xK_RzjgK_MSfhI8XaJdWKmAyxXqos3p7Ly6BWqyyq0qTPgAZx7sy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kguhBfGK1ag7ebGiyj2b3mNqUVttUSQO9hWSTPUkstv5_Z_Noq6jgLZDJQr6d3fmGnfkWoTvmKDtRVJgZsVKTKqlMEUtmphbBMWQUQma6wXnid4chfZyz-VYXf1HtXh9Jlj0NWqUpX3UWqepsNb4Jxk1diW4x7mATNuFdqruBwaND7K73YiDTZYk92BDi0Kpt5ucxvoamDd_8dkRaRJ7BETqsKKPhlnN8jHay_AQdTNZ6q8tThN3xZBrMDLfnQW7uG-ORZxQF9UHbCMJe-Wi4ft94CaezkefPgjMUDrzZw9CsbkMwJYYwrm_KyUhK45grTlWSWqlWwpd2zLt2alGHChs7EPE4SyglNIO_Ba6DhZQktmLImc9RI3_LswtkZJARW0ICW-Na2yYRDgMaZhGpJCxJTJvIroGIZCUVrm-seI02IscavAjAiwrwItxE9-tvFqVQxp_WrRrfqFo0ywgSZM4ZI4I3UbvGfPP699Eu_2d-i_ae-4NoPPKfrtA-LjxAF421UGP1_pFdA8tYJTeFI30CsVa_ZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ALMOST+ABELIAN+LIE+GROUPS%2C+SUBGROUPS+AND+QUOTIENTS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Rios%2C+Marcelo+Almora&rft.au=Avetisyan%2C+Zhirayr&rft.au=Berlow%2C+Katalin&rft.au=Martin%2C+Isaac&rft.date=2022-09-01&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=266&rft.issue=1&rft.spage=42&rft.epage=65&rft_id=info:doi/10.1007%2Fs10958-022-05872-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10958_022_05872_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |