Two regularization methods for identifying the source term of Caputo–Hadamard type time fractional diffusion-wave equation

In this paper, the inverse problem of source term identification for Caputo–Hadamard type time-fractional diffusion-wave equation is studied. Firstly, we prove that the problem is ill-posed, and give the optimal error bound and the conditional stability results. Secondly, we apply fractional Tikhono...

Full description

Saved in:
Bibliographic Details
Published inJournal of inverse and ill-posed problems Vol. 33; no. 3; pp. 369 - 399
Main Authors Yang, Fan, Li, Ruo-Hong, Gao, Yin-Xia, Li, Xiao-Xiao
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.06.2025
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN0928-0219
1569-3945
DOI10.1515/jiip-2024-0051

Cover

Loading…
Abstract In this paper, the inverse problem of source term identification for Caputo–Hadamard type time-fractional diffusion-wave equation is studied. Firstly, we prove that the problem is ill-posed, and give the optimal error bound and the conditional stability results. Secondly, we apply fractional Tikhonov regularization method and fractional Landweber iterative regularization method to solve the problem. Based on the conditional stability results, we give error estimates under the a priori regularization parameter selection rule and the a posteriori regularization parameter selection rule respectively. In addition, we give three numerical examples to prove the validity and feasibility of the selected regularization method. What is novel is that we apply L2 formula, Crank–Nicolson format and the finite difference method to discrete equation.
AbstractList In this paper, the inverse problem of source term identification for Caputo–Hadamard type time-fractional diffusion-wave equation is studied. Firstly, we prove that the problem is ill-posed, and give the optimal error bound and the conditional stability results. Secondly, we apply fractional Tikhonov regularization method and fractional Landweber iterative regularization method to solve the problem. Based on the conditional stability results, we give error estimates under the a priori regularization parameter selection rule and the a posteriori regularization parameter selection rule respectively. In addition, we give three numerical examples to prove the validity and feasibility of the selected regularization method. What is novel is that we apply L21 formula, Crank–Nicolson format and the finite difference method to discrete equation.
In this paper, the inverse problem of source term identification for Caputo–Hadamard type time-fractional diffusion-wave equation is studied. Firstly, we prove that the problem is ill-posed, and give the optimal error bound and the conditional stability results. Secondly, we apply fractional Tikhonov regularization method and fractional Landweber iterative regularization method to solve the problem. Based on the conditional stability results, we give error estimates under the a priori regularization parameter selection rule and the a posteriori regularization parameter selection rule respectively. In addition, we give three numerical examples to prove the validity and feasibility of the selected regularization method. What is novel is that we apply L2 1 formula, Crank–Nicolson format and the finite difference method to discrete equation.
In this paper, the inverse problem of source term identification for Caputo–Hadamard type time-fractional diffusion-wave equation is studied. Firstly, we prove that the problem is ill-posed, and give the optimal error bound and the conditional stability results. Secondly, we apply fractional Tikhonov regularization method and fractional Landweber iterative regularization method to solve the problem. Based on the conditional stability results, we give error estimates under the a priori regularization parameter selection rule and the a posteriori regularization parameter selection rule respectively. In addition, we give three numerical examples to prove the validity and feasibility of the selected regularization method. What is novel is that we apply L2 formula, Crank–Nicolson format and the finite difference method to discrete equation.
Author Gao, Yin-Xia
Li, Ruo-Hong
Yang, Fan
Li, Xiao-Xiao
Author_xml – sequence: 1
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  email: yfggd114@163.com
  organization: School of Science, 56677 Lanzhou University of Technology , Lanzhou, Gansu, 730050, P. R. China
– sequence: 2
  givenname: Ruo-Hong
  surname: Li
  fullname: Li, Ruo-Hong
  email: liruohong2024@163.com
  organization: School of Science, 56677 Lanzhou University of Technology , Lanzhou, Gansu, 730050, P. R. China
– sequence: 3
  givenname: Yin-Xia
  surname: Gao
  fullname: Gao, Yin-Xia
  email: yinxiagao@163.com
  organization: School of Science, 56677 Lanzhou University of Technology , Lanzhou, Gansu, 730050, P. R. China
– sequence: 4
  givenname: Xiao-Xiao
  surname: Li
  fullname: Li, Xiao-Xiao
  email: lixiaoxiaogood@126.com
  organization: School of Science, 56677 Lanzhou University of Technology , Lanzhou, Gansu, 730050, P. R. China
BookMark eNp1kE1LxDAQhoOs4Ppx9RzwXE3StGnBiyx-geBFzyVNJmuW3aabpC4rHvwP_kN_iakreHIuMzDzvjPzHKJJ5zpA6JSSc1rQ4mJhbZ8xwnhGSEH30JQWZZ3lNS8maEpqVmWE0foAHYawIISKgrEpen_aOOxhPiylt28yWtfhFcQXpwM2zmOroYvWbG03x_EFcHCDV4Aj-BV2Bs9kP0T39fF5J7VcSa9x3PapbVeAjZdq9JNLrK0xQ0h1tpGvgGE9_Gw6RvtGLgOc_OYj9Hxz_TS7yx4eb-9nVw-ZYkLErG3bipSqMNqAqCsiOAgluRSlqEFXRiildUty4IwXslScE8NoW0NV8RwM5EfobOfbe7ceIMRmkd5Ih4UmZ5RVLK8YTVPnuynlXQgeTNN7m37aNpQ0I-FmJNyMhJuRcBJc7gQbuUxANMz9sE3Fn_s_whRlnX8DnhyJXw
Cites_doi 10.4208/cicp.OA-2016-0136
10.4171/zaa/892
10.1016/j.cnsns.2011.02.022
10.1007/s00033-021-01566-y
10.1063/5.0099450
10.1016/j.cam.2020.112998
10.1515/jiip.1997.5.3.287
10.1016/j.jmaa.2011.04.058
10.1002/mma.7102
10.1007/s10473-022-0412-5
10.1080/01630560008816965
10.1002/mma.7654
10.1090/S0002-9904-1948-09132-7
10.1016/j.aml.2013.02.006
10.1515/cmam-2022-0240
10.22199/issn.0717-6279-2020-06-0093
10.1016/j.jcp.2013.11.017
10.3390/fractalfract5040154
10.1016/j.matcom.2010.11.011
10.1016/j.cnsns.2021.106096
10.1080/10652460108819360
10.1016/j.jmaa.2010.01.023
10.1007/s11075-024-01944-3
10.1007/s40314-022-01762-0
10.1007/s40314-024-02679-6
10.1155/2011/298628
10.1007/s00009-020-01605-4
10.1016/j.camwa.2010.06.002
10.1016/j.amc.2018.12.063
10.1016/j.cnsns.2016.09.006
10.1016/j.rinp.2020.103772
10.1016/j.apnum.2020.10.012
10.3934/math.2021025
10.4171/zaa/494
10.1021/jp9936289
10.3846/mma.2024.18133
10.1007/s13540-024-00304-1
10.11948/20230364
10.1016/j.apnum.2022.02.017
10.1016/j.na.2009.01.043
10.1080/01630563.2013.819515
10.4171/zaa/740
10.1088/0266-5611/32/8/085003
10.1016/j.cam.2009.09.031
10.4171/zaa/256
10.1080/00207160.2019.1626012
10.1007/s10915-020-01353-3
10.1016/j.amc.2012.10.045
10.1016/j.chaos.2024.115601
10.1002/mma.6826
10.1007/BF02365265
10.1080/01630569808816834
10.1155/2015/952057
ContentType Journal Article
Copyright 2025 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2025 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1515/jiip-2024-0051
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1569-3945
EndPage 399
ExternalDocumentID 10_1515_jiip_2024_0051
10_1515_jiip_2024_0051333369
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12461083
GroupedDBID 0R~
0~D
4.4
5GY
AAAEU
AADQG
AAFPC
AAGVJ
AAJBH
AALGR
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABMBZ
ABPLS
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACIWK
ACPMA
ACUND
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADOZN
AECWL
AEGVQ
AEICA
AEJTT
AENEX
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFQUK
AFYRI
AGBEV
AHGBP
AHVWV
AHXUK
AIERV
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ASYPN
BAKPI
BBCWN
BCIFA
CFGNV
CS3
DU5
EBS
HZ~
IY9
KDIRW
O9-
P2P
PQQKQ
QD8
RDG
SA.
SLJYH
UK5
WTRAM
AAYXX
CITATION
7SC
7TB
8FD
ADNPR
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c277t-bbb806c5fdfe798074e7ca4a7679ed8f7ccddb03e4245a6c440f21b9e8843efe3
ISSN 0928-0219
IngestDate Wed Aug 13 09:00:20 EDT 2025
Tue Jul 01 04:57:29 EDT 2025
Thu Jul 10 10:31:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c277t-bbb806c5fdfe798074e7ca4a7679ed8f7ccddb03e4245a6c440f21b9e8843efe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3212823821
PQPubID 2030080
PageCount 31
ParticipantIDs proquest_journals_3212823821
crossref_primary_10_1515_jiip_2024_0051
walterdegruyter_journals_10_1515_jiip_2024_0051333369
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of inverse and ill-posed problems
PublicationYear 2025
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2025040907332427401_j_jiip-2024-0051_ref_030
2025040907332427401_j_jiip-2024-0051_ref_021
2025040907332427401_j_jiip-2024-0051_ref_020
2025040907332427401_j_jiip-2024-0051_ref_023
2025040907332427401_j_jiip-2024-0051_ref_022
2025040907332427401_j_jiip-2024-0051_ref_025
2025040907332427401_j_jiip-2024-0051_ref_024
2025040907332427401_j_jiip-2024-0051_ref_027
2025040907332427401_j_jiip-2024-0051_ref_026
2025040907332427401_j_jiip-2024-0051_ref_029
2025040907332427401_j_jiip-2024-0051_ref_028
2025040907332427401_j_jiip-2024-0051_ref_010
2025040907332427401_j_jiip-2024-0051_ref_054
2025040907332427401_j_jiip-2024-0051_ref_053
2025040907332427401_j_jiip-2024-0051_ref_012
2025040907332427401_j_jiip-2024-0051_ref_056
2025040907332427401_j_jiip-2024-0051_ref_011
2025040907332427401_j_jiip-2024-0051_ref_055
2025040907332427401_j_jiip-2024-0051_ref_014
2025040907332427401_j_jiip-2024-0051_ref_013
2025040907332427401_j_jiip-2024-0051_ref_016
2025040907332427401_j_jiip-2024-0051_ref_015
2025040907332427401_j_jiip-2024-0051_ref_018
2025040907332427401_j_jiip-2024-0051_ref_017
2025040907332427401_j_jiip-2024-0051_ref_019
2025040907332427401_j_jiip-2024-0051_ref_050
2025040907332427401_j_jiip-2024-0051_ref_052
2025040907332427401_j_jiip-2024-0051_ref_051
2025040907332427401_j_jiip-2024-0051_ref_043
2025040907332427401_j_jiip-2024-0051_ref_042
2025040907332427401_j_jiip-2024-0051_ref_001
2025040907332427401_j_jiip-2024-0051_ref_045
2025040907332427401_j_jiip-2024-0051_ref_044
2025040907332427401_j_jiip-2024-0051_ref_003
2025040907332427401_j_jiip-2024-0051_ref_047
2025040907332427401_j_jiip-2024-0051_ref_002
2025040907332427401_j_jiip-2024-0051_ref_046
2025040907332427401_j_jiip-2024-0051_ref_005
2025040907332427401_j_jiip-2024-0051_ref_049
2025040907332427401_j_jiip-2024-0051_ref_004
2025040907332427401_j_jiip-2024-0051_ref_048
2025040907332427401_j_jiip-2024-0051_ref_007
2025040907332427401_j_jiip-2024-0051_ref_006
2025040907332427401_j_jiip-2024-0051_ref_009
2025040907332427401_j_jiip-2024-0051_ref_008
2025040907332427401_j_jiip-2024-0051_ref_041
2025040907332427401_j_jiip-2024-0051_ref_040
2025040907332427401_j_jiip-2024-0051_ref_032
2025040907332427401_j_jiip-2024-0051_ref_031
2025040907332427401_j_jiip-2024-0051_ref_034
2025040907332427401_j_jiip-2024-0051_ref_033
2025040907332427401_j_jiip-2024-0051_ref_036
2025040907332427401_j_jiip-2024-0051_ref_035
2025040907332427401_j_jiip-2024-0051_ref_038
2025040907332427401_j_jiip-2024-0051_ref_037
2025040907332427401_j_jiip-2024-0051_ref_039
References_xml – ident: 2025040907332427401_j_jiip-2024-0051_ref_014
  doi: 10.4208/cicp.OA-2016-0136
– ident: 2025040907332427401_j_jiip-2024-0051_ref_033
  doi: 10.4171/zaa/892
– ident: 2025040907332427401_j_jiip-2024-0051_ref_020
  doi: 10.1016/j.cnsns.2011.02.022
– ident: 2025040907332427401_j_jiip-2024-0051_ref_054
  doi: 10.1007/s00033-021-01566-y
– ident: 2025040907332427401_j_jiip-2024-0051_ref_002
  doi: 10.1063/5.0099450
– ident: 2025040907332427401_j_jiip-2024-0051_ref_022
– ident: 2025040907332427401_j_jiip-2024-0051_ref_045
  doi: 10.1016/j.cam.2020.112998
– ident: 2025040907332427401_j_jiip-2024-0051_ref_031
  doi: 10.1515/jiip.1997.5.3.287
– ident: 2025040907332427401_j_jiip-2024-0051_ref_026
  doi: 10.1016/j.jmaa.2011.04.058
– ident: 2025040907332427401_j_jiip-2024-0051_ref_036
  doi: 10.1002/mma.7102
– ident: 2025040907332427401_j_jiip-2024-0051_ref_046
  doi: 10.1007/s10473-022-0412-5
– ident: 2025040907332427401_j_jiip-2024-0051_ref_035
  doi: 10.1080/01630560008816965
– ident: 2025040907332427401_j_jiip-2024-0051_ref_048
  doi: 10.1002/mma.7654
– ident: 2025040907332427401_j_jiip-2024-0051_ref_023
  doi: 10.1090/S0002-9904-1948-09132-7
– ident: 2025040907332427401_j_jiip-2024-0051_ref_038
  doi: 10.1016/j.aml.2013.02.006
– ident: 2025040907332427401_j_jiip-2024-0051_ref_053
  doi: 10.1515/cmam-2022-0240
– ident: 2025040907332427401_j_jiip-2024-0051_ref_029
  doi: 10.22199/issn.0717-6279-2020-06-0093
– ident: 2025040907332427401_j_jiip-2024-0051_ref_006
  doi: 10.1016/j.jcp.2013.11.017
– ident: 2025040907332427401_j_jiip-2024-0051_ref_019
  doi: 10.3390/fractalfract5040154
– ident: 2025040907332427401_j_jiip-2024-0051_ref_004
  doi: 10.1016/j.matcom.2010.11.011
– ident: 2025040907332427401_j_jiip-2024-0051_ref_005
  doi: 10.1016/j.cnsns.2021.106096
– ident: 2025040907332427401_j_jiip-2024-0051_ref_017
  doi: 10.1080/10652460108819360
– ident: 2025040907332427401_j_jiip-2024-0051_ref_040
  doi: 10.1016/j.jmaa.2010.01.023
– ident: 2025040907332427401_j_jiip-2024-0051_ref_016
  doi: 10.1007/s11075-024-01944-3
– ident: 2025040907332427401_j_jiip-2024-0051_ref_050
  doi: 10.1007/s40314-022-01762-0
– ident: 2025040907332427401_j_jiip-2024-0051_ref_055
  doi: 10.1007/s40314-024-02679-6
– ident: 2025040907332427401_j_jiip-2024-0051_ref_009
  doi: 10.1155/2011/298628
– ident: 2025040907332427401_j_jiip-2024-0051_ref_007
  doi: 10.1007/s00009-020-01605-4
– ident: 2025040907332427401_j_jiip-2024-0051_ref_028
  doi: 10.1016/j.camwa.2010.06.002
– ident: 2025040907332427401_j_jiip-2024-0051_ref_041
  doi: 10.1016/j.amc.2018.12.063
– ident: 2025040907332427401_j_jiip-2024-0051_ref_001
  doi: 10.1016/j.cnsns.2016.09.006
– ident: 2025040907332427401_j_jiip-2024-0051_ref_018
  doi: 10.1016/j.rinp.2020.103772
– ident: 2025040907332427401_j_jiip-2024-0051_ref_010
  doi: 10.1016/j.apnum.2020.10.012
– ident: 2025040907332427401_j_jiip-2024-0051_ref_047
  doi: 10.3934/math.2021025
– ident: 2025040907332427401_j_jiip-2024-0051_ref_052
– ident: 2025040907332427401_j_jiip-2024-0051_ref_027
  doi: 10.4171/zaa/494
– ident: 2025040907332427401_j_jiip-2024-0051_ref_011
  doi: 10.1021/jp9936289
– ident: 2025040907332427401_j_jiip-2024-0051_ref_051
  doi: 10.3846/mma.2024.18133
– ident: 2025040907332427401_j_jiip-2024-0051_ref_043
  doi: 10.1007/s13540-024-00304-1
– ident: 2025040907332427401_j_jiip-2024-0051_ref_042
  doi: 10.11948/20230364
– ident: 2025040907332427401_j_jiip-2024-0051_ref_021
  doi: 10.1016/j.apnum.2022.02.017
– ident: 2025040907332427401_j_jiip-2024-0051_ref_056
  doi: 10.1016/j.na.2009.01.043
– ident: 2025040907332427401_j_jiip-2024-0051_ref_034
  doi: 10.1080/01630563.2013.819515
– ident: 2025040907332427401_j_jiip-2024-0051_ref_030
  doi: 10.4171/zaa/740
– ident: 2025040907332427401_j_jiip-2024-0051_ref_039
  doi: 10.1088/0266-5611/32/8/085003
– ident: 2025040907332427401_j_jiip-2024-0051_ref_024
  doi: 10.1016/j.cam.2009.09.031
– ident: 2025040907332427401_j_jiip-2024-0051_ref_049
  doi: 10.1007/s40314-022-01762-0
– ident: 2025040907332427401_j_jiip-2024-0051_ref_037
  doi: 10.4171/zaa/256
– ident: 2025040907332427401_j_jiip-2024-0051_ref_008
  doi: 10.1080/00207160.2019.1626012
– ident: 2025040907332427401_j_jiip-2024-0051_ref_015
  doi: 10.1007/s10915-020-01353-3
– ident: 2025040907332427401_j_jiip-2024-0051_ref_003
  doi: 10.1016/j.amc.2012.10.045
– ident: 2025040907332427401_j_jiip-2024-0051_ref_025
  doi: 10.1016/j.chaos.2024.115601
– ident: 2025040907332427401_j_jiip-2024-0051_ref_044
  doi: 10.1002/mma.6826
– ident: 2025040907332427401_j_jiip-2024-0051_ref_012
  doi: 10.1007/BF02365265
– ident: 2025040907332427401_j_jiip-2024-0051_ref_032
  doi: 10.1080/01630569808816834
– ident: 2025040907332427401_j_jiip-2024-0051_ref_013
  doi: 10.1155/2015/952057
SSID ssj0017522
Score 2.348333
Snippet In this paper, the inverse problem of source term identification for Caputo–Hadamard type time-fractional diffusion-wave equation is studied. Firstly, we prove...
In this paper, the inverse problem of source term identification for Caputo–Hadamard type time-fractional diffusion-wave equation is studied. Firstly, we prove...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Publisher
StartPage 369
SubjectTerms 35R25
35R30
47A52
Caputo–Hadamard type
Crank–Nicolson format
error estimations
Finite difference method
formula
fractional Landweber iterative regularization method
fractional Tikhonov regularization method
Inverse problems
Parameters
Regularization
Stability
Wave equations
Title Two regularization methods for identifying the source term of Caputo–Hadamard type time fractional diffusion-wave equation
URI https://www.degruyter.com/doi/10.1515/jiip-2024-0051
https://www.proquest.com/docview/3212823821
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wKHFb9iYUE-IHGoDG3sxMlxQbtUSMsB7aLuKbJjBwUtTUkbVSAOvAMPxjvwJMzETpPurhBsD1Hlxlbq-TIej7-ZIeTZOE4CGyWcxdxmTEyMZrEwikWByoyaWCMDjB0-fhdNT8XbWTgbDH71WEv1Sr_Ivl0ZV3IdqUIbyBWjZP9DsptBoQG-g3zhChKG67_JeF2OqqaYfOXDKX1F6CbJwqhognBdIBPal85RP0Jl7MKyFvWqbNkOHHSQ-oxOhcYrizXnR3nlwh6ag5w8r9GzxtZYr8h-qTuRXrZtizmyPfzJxPk5W5RLi_kImuI1Gyv-zPuqj3q8oIZc8L4u2bT0ayqSg1Tj0D0r5mxWqO17oaHE1rLvvwjCjmflSCjwMlT115aL7H2TmDa71aXWa-YoYTxxuSdb1e1yaHiI8p4e5lHSW9K5q8F0abUIm8Qan4piAbAKBEMN1a2LLRfgwnK5ITHi9glGSLF_iv1T7M_hEyU3yE4A-5ZgSHYO3rw6_LA52JI-gX37D30eURjn5fZzbNtJ3eZnd93QKIz96GatZw2d3Ca7XtT0wGHyDhnY-V1y63iTA3h5j3wHdNJtdFKPTgropD10UuhGHTopopOWOXXo_P3jZ4tLirikiEva4ZJu45K2uLxPTo8OT15Pma_1wTKYqBXTWsfjKAtzk1uZYIYmKzMllIxkYk2cyywzRo-5xZN6FWVCjPNgohMbx4Lb3PIHZDgv5_YhoTrWGdfSKC2UsKCMpJQcDDElQhOGWu2R5-3MpguX0iW9WpZ7ZL-d-NS_9suUg7EXg6EbwM_hBWF0d_0NHI-u2e8xudm9QPtkuKpq-wRM4pV-6mH2B3X5vi0
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NctMwEN6B9AAcyv9QKKADM5zUJJZsycfSaQnQ9JQyvXn0sy4BGgfHJgPDgXfgDXkStLaTlsIJfJWlWe-uvKtd7bcAzwY6jTBJBdcCHZdDb7mW3vAkMs6bIXoVUe3w-CgZHcvXJ_HJhVoYulbp8bSsv1QtQmrfF66mQNkaayBY4P776XQeBBxJTlrVf1edfbwKG1qG80oPNnZfvth_u84lqA4zPCUs5rBBO-jGP5f53TSd-5ubyyZzvSbrggE6uAluRXp77-TDTl3ZHff1Eqrj_33bLdjs_FO22yrUbbiCsztwY7wGd13chW-TZcHKpod92VVxsrYR9YIFF5hNm9rfpn6KhWmszQ8wsgGsyNmemddV8fP7j_DTM2dBQRmFgRk1uWd52dZZBAqoc0tNoTy-NJ-R4acWk_weHB_sT_ZGvGviwF2kVMWttXqQuDj3OaqUoHdQOSONSlSKXufKOe_tQCClYE3ipBzk0dCmqLUUmKO4D71ZMcMHwKy2TljljZVGYtAypZQIFtbI2MexNVvwfCW_bN5idWR0xglMzYipGTE1I6ZuwfZKvFm3ZxeZCFZcBw8mCsPxJZGfv_X3BUV4kvThP857CtdGk_Fhdvjq6M0juB5Ri-Em0LMNvaqs8XHweyr7pFPsX1beBMo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VrYTgUChQUSjgAxInd3djJ3aOpe1SKK04tIhb5J9JtUVslmzCCsSBd-ANeZKOk-y2FE6Qq2PLmRlnxvPzDcDzgU4jTFLBtUDH5dBbrqU3PImM82aIXkWhdvjoODk4lW8-xItswlmXVunxrKy_Vi1Cat8Xrg6OsiXWAGng_vl4PCUGR5IHqepPfX4DVrWku0wPVndevdx_vwwlqA4yPA1QzHQ-O-TGP1f5XTNdmptr8yZwvdzVFf0zugN2sfM27eTjdl3ZbfftGqjjf33aXVjrrFO204rTOqzg5B7cPlpCu87uw_eTecHKpoN92dVwsrYN9YyRAczGTeVvUz3FaBprowMsaABW5GzXTOuq-PXjJ_3yzCcSTxacwCy0uGd52VZZ0A5C35Y6OPL43HxBhp9bRPIHcDraP9k94F0LB-4ipSpurdWDxMW5z1GlAXgHlTPSqESl6HWunPPeDgSGAKxJnJSDPBraFLWWAnMUG9CbFBN8CMxq64RV3lhpJJKMKaUE6VcjYx_H1mzCiwX7smmL1JGFGw7RNAs0zQJNs0DTTdhacDfrTuwsE6TDNdkvEQ3H1zh--dbfFxT0JOmjf5z3DG6-2xtlb18fHz6GW1HoL9x4ebagV5U1PiGjp7JPO7G-AFRRA3E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+regularization+methods+for+identifying+the+source+term+of+Caputo%E2%80%93Hadamard+type+time+fractional+diffusion-wave+equation&rft.jtitle=Journal+of+inverse+and+ill-posed+problems&rft.au=Yang%2C+Fan&rft.au=Li%2C+Ruo-Hong&rft.au=Gao%2C+Yin-Xia&rft.au=Li%2C+Xiao-Xiao&rft.date=2025-06-01&rft.pub=De+Gruyter&rft.issn=0928-0219&rft.eissn=1569-3945&rft.volume=33&rft.issue=3&rft.spage=369&rft.epage=399&rft_id=info:doi/10.1515%2Fjiip-2024-0051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jiip_2024_0051333369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0219&client=summon