Two regularization methods for identifying the source term of Caputo–Hadamard type time fractional diffusion-wave equation
In this paper, the inverse problem of source term identification for Caputo–Hadamard type time-fractional diffusion-wave equation is studied. Firstly, we prove that the problem is ill-posed, and give the optimal error bound and the conditional stability results. Secondly, we apply fractional Tikhono...
Saved in:
Published in | Journal of inverse and ill-posed problems Vol. 33; no. 3; pp. 369 - 399 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
01.06.2025
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 0928-0219 1569-3945 |
DOI | 10.1515/jiip-2024-0051 |
Cover
Loading…
Abstract | In this paper, the inverse problem of source term identification for Caputo–Hadamard type time-fractional diffusion-wave equation is studied.
Firstly, we prove that the problem is ill-posed, and give the optimal error bound and the conditional stability results.
Secondly, we apply fractional Tikhonov regularization method and fractional Landweber iterative regularization method to solve the problem.
Based on the conditional stability results, we give error estimates under the a priori regularization parameter selection rule and the a posteriori regularization parameter selection rule respectively.
In addition, we give three numerical examples to prove the validity and feasibility of the selected regularization method.
What is novel is that we apply L2
formula, Crank–Nicolson format and the finite difference method to discrete equation. |
---|---|
AbstractList | In this paper, the inverse problem of source term identification for Caputo–Hadamard type time-fractional diffusion-wave equation is studied. Firstly, we prove that the problem is ill-posed, and give the optimal error bound and the conditional stability results. Secondly, we apply fractional Tikhonov regularization method and fractional Landweber iterative regularization method to solve the problem. Based on the conditional stability results, we give error estimates under the a priori regularization parameter selection rule and the a posteriori regularization parameter selection rule respectively. In addition, we give three numerical examples to prove the validity and feasibility of the selected regularization method. What is novel is that we apply L21 formula, Crank–Nicolson format and the finite difference method to discrete equation. In this paper, the inverse problem of source term identification for Caputo–Hadamard type time-fractional diffusion-wave equation is studied. Firstly, we prove that the problem is ill-posed, and give the optimal error bound and the conditional stability results. Secondly, we apply fractional Tikhonov regularization method and fractional Landweber iterative regularization method to solve the problem. Based on the conditional stability results, we give error estimates under the a priori regularization parameter selection rule and the a posteriori regularization parameter selection rule respectively. In addition, we give three numerical examples to prove the validity and feasibility of the selected regularization method. What is novel is that we apply L2 1 formula, Crank–Nicolson format and the finite difference method to discrete equation. In this paper, the inverse problem of source term identification for Caputo–Hadamard type time-fractional diffusion-wave equation is studied. Firstly, we prove that the problem is ill-posed, and give the optimal error bound and the conditional stability results. Secondly, we apply fractional Tikhonov regularization method and fractional Landweber iterative regularization method to solve the problem. Based on the conditional stability results, we give error estimates under the a priori regularization parameter selection rule and the a posteriori regularization parameter selection rule respectively. In addition, we give three numerical examples to prove the validity and feasibility of the selected regularization method. What is novel is that we apply L2 formula, Crank–Nicolson format and the finite difference method to discrete equation. |
Author | Gao, Yin-Xia Li, Ruo-Hong Yang, Fan Li, Xiao-Xiao |
Author_xml | – sequence: 1 givenname: Fan surname: Yang fullname: Yang, Fan email: yfggd114@163.com organization: School of Science, 56677 Lanzhou University of Technology , Lanzhou, Gansu, 730050, P. R. China – sequence: 2 givenname: Ruo-Hong surname: Li fullname: Li, Ruo-Hong email: liruohong2024@163.com organization: School of Science, 56677 Lanzhou University of Technology , Lanzhou, Gansu, 730050, P. R. China – sequence: 3 givenname: Yin-Xia surname: Gao fullname: Gao, Yin-Xia email: yinxiagao@163.com organization: School of Science, 56677 Lanzhou University of Technology , Lanzhou, Gansu, 730050, P. R. China – sequence: 4 givenname: Xiao-Xiao surname: Li fullname: Li, Xiao-Xiao email: lixiaoxiaogood@126.com organization: School of Science, 56677 Lanzhou University of Technology , Lanzhou, Gansu, 730050, P. R. China |
BookMark | eNp1kE1LxDAQhoOs4Ppx9RzwXE3StGnBiyx-geBFzyVNJmuW3aabpC4rHvwP_kN_iakreHIuMzDzvjPzHKJJ5zpA6JSSc1rQ4mJhbZ8xwnhGSEH30JQWZZ3lNS8maEpqVmWE0foAHYawIISKgrEpen_aOOxhPiylt28yWtfhFcQXpwM2zmOroYvWbG03x_EFcHCDV4Aj-BV2Bs9kP0T39fF5J7VcSa9x3PapbVeAjZdq9JNLrK0xQ0h1tpGvgGE9_Gw6RvtGLgOc_OYj9Hxz_TS7yx4eb-9nVw-ZYkLErG3bipSqMNqAqCsiOAgluRSlqEFXRiildUty4IwXslScE8NoW0NV8RwM5EfobOfbe7ceIMRmkd5Ih4UmZ5RVLK8YTVPnuynlXQgeTNN7m37aNpQ0I-FmJNyMhJuRcBJc7gQbuUxANMz9sE3Fn_s_whRlnX8DnhyJXw |
Cites_doi | 10.4208/cicp.OA-2016-0136 10.4171/zaa/892 10.1016/j.cnsns.2011.02.022 10.1007/s00033-021-01566-y 10.1063/5.0099450 10.1016/j.cam.2020.112998 10.1515/jiip.1997.5.3.287 10.1016/j.jmaa.2011.04.058 10.1002/mma.7102 10.1007/s10473-022-0412-5 10.1080/01630560008816965 10.1002/mma.7654 10.1090/S0002-9904-1948-09132-7 10.1016/j.aml.2013.02.006 10.1515/cmam-2022-0240 10.22199/issn.0717-6279-2020-06-0093 10.1016/j.jcp.2013.11.017 10.3390/fractalfract5040154 10.1016/j.matcom.2010.11.011 10.1016/j.cnsns.2021.106096 10.1080/10652460108819360 10.1016/j.jmaa.2010.01.023 10.1007/s11075-024-01944-3 10.1007/s40314-022-01762-0 10.1007/s40314-024-02679-6 10.1155/2011/298628 10.1007/s00009-020-01605-4 10.1016/j.camwa.2010.06.002 10.1016/j.amc.2018.12.063 10.1016/j.cnsns.2016.09.006 10.1016/j.rinp.2020.103772 10.1016/j.apnum.2020.10.012 10.3934/math.2021025 10.4171/zaa/494 10.1021/jp9936289 10.3846/mma.2024.18133 10.1007/s13540-024-00304-1 10.11948/20230364 10.1016/j.apnum.2022.02.017 10.1016/j.na.2009.01.043 10.1080/01630563.2013.819515 10.4171/zaa/740 10.1088/0266-5611/32/8/085003 10.1016/j.cam.2009.09.031 10.4171/zaa/256 10.1080/00207160.2019.1626012 10.1007/s10915-020-01353-3 10.1016/j.amc.2012.10.045 10.1016/j.chaos.2024.115601 10.1002/mma.6826 10.1007/BF02365265 10.1080/01630569808816834 10.1155/2015/952057 |
ContentType | Journal Article |
Copyright | 2025 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2025 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1515/jiip-2024-0051 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1569-3945 |
EndPage | 399 |
ExternalDocumentID | 10_1515_jiip_2024_0051 10_1515_jiip_2024_0051333369 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12461083 |
GroupedDBID | 0R~ 0~D 4.4 5GY AAAEU AADQG AAFPC AAGVJ AAJBH AALGR AAOUV AAPJK AAQCX AARVR AASOL AASQH AAXCG ABAOT ABAQN ABFKT ABIQR ABJNI ABMBZ ABPLS ABSOE ABUVI ABWLS ABXMZ ABYKJ ACDEB ACEFL ACGFS ACIWK ACPMA ACUND ACZBO ADEQT ADGQD ADGYE ADJVZ ADOZN AECWL AEGVQ AEICA AEJTT AENEX AEQDQ AERZL AEXIE AFBAA AFBDD AFCXV AFQUK AFYRI AGBEV AHGBP AHVWV AHXUK AIERV AIWOI AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS ASYPN BAKPI BBCWN BCIFA CFGNV CS3 DU5 EBS HZ~ IY9 KDIRW O9- P2P PQQKQ QD8 RDG SA. SLJYH UK5 WTRAM AAYXX CITATION 7SC 7TB 8FD ADNPR FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c277t-bbb806c5fdfe798074e7ca4a7679ed8f7ccddb03e4245a6c440f21b9e8843efe3 |
ISSN | 0928-0219 |
IngestDate | Wed Aug 13 09:00:20 EDT 2025 Tue Jul 01 04:57:29 EDT 2025 Thu Jul 10 10:31:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c277t-bbb806c5fdfe798074e7ca4a7679ed8f7ccddb03e4245a6c440f21b9e8843efe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3212823821 |
PQPubID | 2030080 |
PageCount | 31 |
ParticipantIDs | proquest_journals_3212823821 crossref_primary_10_1515_jiip_2024_0051 walterdegruyter_journals_10_1515_jiip_2024_0051333369 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Journal of inverse and ill-posed problems |
PublicationYear | 2025 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2025040907332427401_j_jiip-2024-0051_ref_030 2025040907332427401_j_jiip-2024-0051_ref_021 2025040907332427401_j_jiip-2024-0051_ref_020 2025040907332427401_j_jiip-2024-0051_ref_023 2025040907332427401_j_jiip-2024-0051_ref_022 2025040907332427401_j_jiip-2024-0051_ref_025 2025040907332427401_j_jiip-2024-0051_ref_024 2025040907332427401_j_jiip-2024-0051_ref_027 2025040907332427401_j_jiip-2024-0051_ref_026 2025040907332427401_j_jiip-2024-0051_ref_029 2025040907332427401_j_jiip-2024-0051_ref_028 2025040907332427401_j_jiip-2024-0051_ref_010 2025040907332427401_j_jiip-2024-0051_ref_054 2025040907332427401_j_jiip-2024-0051_ref_053 2025040907332427401_j_jiip-2024-0051_ref_012 2025040907332427401_j_jiip-2024-0051_ref_056 2025040907332427401_j_jiip-2024-0051_ref_011 2025040907332427401_j_jiip-2024-0051_ref_055 2025040907332427401_j_jiip-2024-0051_ref_014 2025040907332427401_j_jiip-2024-0051_ref_013 2025040907332427401_j_jiip-2024-0051_ref_016 2025040907332427401_j_jiip-2024-0051_ref_015 2025040907332427401_j_jiip-2024-0051_ref_018 2025040907332427401_j_jiip-2024-0051_ref_017 2025040907332427401_j_jiip-2024-0051_ref_019 2025040907332427401_j_jiip-2024-0051_ref_050 2025040907332427401_j_jiip-2024-0051_ref_052 2025040907332427401_j_jiip-2024-0051_ref_051 2025040907332427401_j_jiip-2024-0051_ref_043 2025040907332427401_j_jiip-2024-0051_ref_042 2025040907332427401_j_jiip-2024-0051_ref_001 2025040907332427401_j_jiip-2024-0051_ref_045 2025040907332427401_j_jiip-2024-0051_ref_044 2025040907332427401_j_jiip-2024-0051_ref_003 2025040907332427401_j_jiip-2024-0051_ref_047 2025040907332427401_j_jiip-2024-0051_ref_002 2025040907332427401_j_jiip-2024-0051_ref_046 2025040907332427401_j_jiip-2024-0051_ref_005 2025040907332427401_j_jiip-2024-0051_ref_049 2025040907332427401_j_jiip-2024-0051_ref_004 2025040907332427401_j_jiip-2024-0051_ref_048 2025040907332427401_j_jiip-2024-0051_ref_007 2025040907332427401_j_jiip-2024-0051_ref_006 2025040907332427401_j_jiip-2024-0051_ref_009 2025040907332427401_j_jiip-2024-0051_ref_008 2025040907332427401_j_jiip-2024-0051_ref_041 2025040907332427401_j_jiip-2024-0051_ref_040 2025040907332427401_j_jiip-2024-0051_ref_032 2025040907332427401_j_jiip-2024-0051_ref_031 2025040907332427401_j_jiip-2024-0051_ref_034 2025040907332427401_j_jiip-2024-0051_ref_033 2025040907332427401_j_jiip-2024-0051_ref_036 2025040907332427401_j_jiip-2024-0051_ref_035 2025040907332427401_j_jiip-2024-0051_ref_038 2025040907332427401_j_jiip-2024-0051_ref_037 2025040907332427401_j_jiip-2024-0051_ref_039 |
References_xml | – ident: 2025040907332427401_j_jiip-2024-0051_ref_014 doi: 10.4208/cicp.OA-2016-0136 – ident: 2025040907332427401_j_jiip-2024-0051_ref_033 doi: 10.4171/zaa/892 – ident: 2025040907332427401_j_jiip-2024-0051_ref_020 doi: 10.1016/j.cnsns.2011.02.022 – ident: 2025040907332427401_j_jiip-2024-0051_ref_054 doi: 10.1007/s00033-021-01566-y – ident: 2025040907332427401_j_jiip-2024-0051_ref_002 doi: 10.1063/5.0099450 – ident: 2025040907332427401_j_jiip-2024-0051_ref_022 – ident: 2025040907332427401_j_jiip-2024-0051_ref_045 doi: 10.1016/j.cam.2020.112998 – ident: 2025040907332427401_j_jiip-2024-0051_ref_031 doi: 10.1515/jiip.1997.5.3.287 – ident: 2025040907332427401_j_jiip-2024-0051_ref_026 doi: 10.1016/j.jmaa.2011.04.058 – ident: 2025040907332427401_j_jiip-2024-0051_ref_036 doi: 10.1002/mma.7102 – ident: 2025040907332427401_j_jiip-2024-0051_ref_046 doi: 10.1007/s10473-022-0412-5 – ident: 2025040907332427401_j_jiip-2024-0051_ref_035 doi: 10.1080/01630560008816965 – ident: 2025040907332427401_j_jiip-2024-0051_ref_048 doi: 10.1002/mma.7654 – ident: 2025040907332427401_j_jiip-2024-0051_ref_023 doi: 10.1090/S0002-9904-1948-09132-7 – ident: 2025040907332427401_j_jiip-2024-0051_ref_038 doi: 10.1016/j.aml.2013.02.006 – ident: 2025040907332427401_j_jiip-2024-0051_ref_053 doi: 10.1515/cmam-2022-0240 – ident: 2025040907332427401_j_jiip-2024-0051_ref_029 doi: 10.22199/issn.0717-6279-2020-06-0093 – ident: 2025040907332427401_j_jiip-2024-0051_ref_006 doi: 10.1016/j.jcp.2013.11.017 – ident: 2025040907332427401_j_jiip-2024-0051_ref_019 doi: 10.3390/fractalfract5040154 – ident: 2025040907332427401_j_jiip-2024-0051_ref_004 doi: 10.1016/j.matcom.2010.11.011 – ident: 2025040907332427401_j_jiip-2024-0051_ref_005 doi: 10.1016/j.cnsns.2021.106096 – ident: 2025040907332427401_j_jiip-2024-0051_ref_017 doi: 10.1080/10652460108819360 – ident: 2025040907332427401_j_jiip-2024-0051_ref_040 doi: 10.1016/j.jmaa.2010.01.023 – ident: 2025040907332427401_j_jiip-2024-0051_ref_016 doi: 10.1007/s11075-024-01944-3 – ident: 2025040907332427401_j_jiip-2024-0051_ref_050 doi: 10.1007/s40314-022-01762-0 – ident: 2025040907332427401_j_jiip-2024-0051_ref_055 doi: 10.1007/s40314-024-02679-6 – ident: 2025040907332427401_j_jiip-2024-0051_ref_009 doi: 10.1155/2011/298628 – ident: 2025040907332427401_j_jiip-2024-0051_ref_007 doi: 10.1007/s00009-020-01605-4 – ident: 2025040907332427401_j_jiip-2024-0051_ref_028 doi: 10.1016/j.camwa.2010.06.002 – ident: 2025040907332427401_j_jiip-2024-0051_ref_041 doi: 10.1016/j.amc.2018.12.063 – ident: 2025040907332427401_j_jiip-2024-0051_ref_001 doi: 10.1016/j.cnsns.2016.09.006 – ident: 2025040907332427401_j_jiip-2024-0051_ref_018 doi: 10.1016/j.rinp.2020.103772 – ident: 2025040907332427401_j_jiip-2024-0051_ref_010 doi: 10.1016/j.apnum.2020.10.012 – ident: 2025040907332427401_j_jiip-2024-0051_ref_047 doi: 10.3934/math.2021025 – ident: 2025040907332427401_j_jiip-2024-0051_ref_052 – ident: 2025040907332427401_j_jiip-2024-0051_ref_027 doi: 10.4171/zaa/494 – ident: 2025040907332427401_j_jiip-2024-0051_ref_011 doi: 10.1021/jp9936289 – ident: 2025040907332427401_j_jiip-2024-0051_ref_051 doi: 10.3846/mma.2024.18133 – ident: 2025040907332427401_j_jiip-2024-0051_ref_043 doi: 10.1007/s13540-024-00304-1 – ident: 2025040907332427401_j_jiip-2024-0051_ref_042 doi: 10.11948/20230364 – ident: 2025040907332427401_j_jiip-2024-0051_ref_021 doi: 10.1016/j.apnum.2022.02.017 – ident: 2025040907332427401_j_jiip-2024-0051_ref_056 doi: 10.1016/j.na.2009.01.043 – ident: 2025040907332427401_j_jiip-2024-0051_ref_034 doi: 10.1080/01630563.2013.819515 – ident: 2025040907332427401_j_jiip-2024-0051_ref_030 doi: 10.4171/zaa/740 – ident: 2025040907332427401_j_jiip-2024-0051_ref_039 doi: 10.1088/0266-5611/32/8/085003 – ident: 2025040907332427401_j_jiip-2024-0051_ref_024 doi: 10.1016/j.cam.2009.09.031 – ident: 2025040907332427401_j_jiip-2024-0051_ref_049 doi: 10.1007/s40314-022-01762-0 – ident: 2025040907332427401_j_jiip-2024-0051_ref_037 doi: 10.4171/zaa/256 – ident: 2025040907332427401_j_jiip-2024-0051_ref_008 doi: 10.1080/00207160.2019.1626012 – ident: 2025040907332427401_j_jiip-2024-0051_ref_015 doi: 10.1007/s10915-020-01353-3 – ident: 2025040907332427401_j_jiip-2024-0051_ref_003 doi: 10.1016/j.amc.2012.10.045 – ident: 2025040907332427401_j_jiip-2024-0051_ref_025 doi: 10.1016/j.chaos.2024.115601 – ident: 2025040907332427401_j_jiip-2024-0051_ref_044 doi: 10.1002/mma.6826 – ident: 2025040907332427401_j_jiip-2024-0051_ref_012 doi: 10.1007/BF02365265 – ident: 2025040907332427401_j_jiip-2024-0051_ref_032 doi: 10.1080/01630569808816834 – ident: 2025040907332427401_j_jiip-2024-0051_ref_013 doi: 10.1155/2015/952057 |
SSID | ssj0017522 |
Score | 2.348333 |
Snippet | In this paper, the inverse problem of source term identification for Caputo–Hadamard type time-fractional diffusion-wave equation is studied.
Firstly, we prove... In this paper, the inverse problem of source term identification for Caputo–Hadamard type time-fractional diffusion-wave equation is studied. Firstly, we prove... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 369 |
SubjectTerms | 35R25 35R30 47A52 Caputo–Hadamard type Crank–Nicolson format error estimations Finite difference method formula fractional Landweber iterative regularization method fractional Tikhonov regularization method Inverse problems Parameters Regularization Stability Wave equations |
Title | Two regularization methods for identifying the source term of Caputo–Hadamard type time fractional diffusion-wave equation |
URI | https://www.degruyter.com/doi/10.1515/jiip-2024-0051 https://www.proquest.com/docview/3212823821 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wKHFb9iYUE-IHGoDG3sxMlxQbtUSMsB7aLuKbJjBwUtTUkbVSAOvAMPxjvwJMzETpPurhBsD1Hlxlbq-TIej7-ZIeTZOE4CGyWcxdxmTEyMZrEwikWByoyaWCMDjB0-fhdNT8XbWTgbDH71WEv1Sr_Ivl0ZV3IdqUIbyBWjZP9DsptBoQG-g3zhChKG67_JeF2OqqaYfOXDKX1F6CbJwqhognBdIBPal85RP0Jl7MKyFvWqbNkOHHSQ-oxOhcYrizXnR3nlwh6ag5w8r9GzxtZYr8h-qTuRXrZtizmyPfzJxPk5W5RLi_kImuI1Gyv-zPuqj3q8oIZc8L4u2bT0ayqSg1Tj0D0r5mxWqO17oaHE1rLvvwjCjmflSCjwMlT115aL7H2TmDa71aXWa-YoYTxxuSdb1e1yaHiI8p4e5lHSW9K5q8F0abUIm8Qan4piAbAKBEMN1a2LLRfgwnK5ITHi9glGSLF_iv1T7M_hEyU3yE4A-5ZgSHYO3rw6_LA52JI-gX37D30eURjn5fZzbNtJ3eZnd93QKIz96GatZw2d3Ca7XtT0wGHyDhnY-V1y63iTA3h5j3wHdNJtdFKPTgropD10UuhGHTopopOWOXXo_P3jZ4tLirikiEva4ZJu45K2uLxPTo8OT15Pma_1wTKYqBXTWsfjKAtzk1uZYIYmKzMllIxkYk2cyywzRo-5xZN6FWVCjPNgohMbx4Lb3PIHZDgv5_YhoTrWGdfSKC2UsKCMpJQcDDElQhOGWu2R5-3MpguX0iW9WpZ7ZL-d-NS_9suUg7EXg6EbwM_hBWF0d_0NHI-u2e8xudm9QPtkuKpq-wRM4pV-6mH2B3X5vi0 |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NctMwEN6B9AAcyv9QKKADM5zUJJZsycfSaQnQ9JQyvXn0sy4BGgfHJgPDgXfgDXkStLaTlsIJfJWlWe-uvKtd7bcAzwY6jTBJBdcCHZdDb7mW3vAkMs6bIXoVUe3w-CgZHcvXJ_HJhVoYulbp8bSsv1QtQmrfF66mQNkaayBY4P776XQeBBxJTlrVf1edfbwKG1qG80oPNnZfvth_u84lqA4zPCUs5rBBO-jGP5f53TSd-5ubyyZzvSbrggE6uAluRXp77-TDTl3ZHff1Eqrj_33bLdjs_FO22yrUbbiCsztwY7wGd13chW-TZcHKpod92VVxsrYR9YIFF5hNm9rfpn6KhWmszQ8wsgGsyNmemddV8fP7j_DTM2dBQRmFgRk1uWd52dZZBAqoc0tNoTy-NJ-R4acWk_weHB_sT_ZGvGviwF2kVMWttXqQuDj3OaqUoHdQOSONSlSKXufKOe_tQCClYE3ipBzk0dCmqLUUmKO4D71ZMcMHwKy2TljljZVGYtAypZQIFtbI2MexNVvwfCW_bN5idWR0xglMzYipGTE1I6ZuwfZKvFm3ZxeZCFZcBw8mCsPxJZGfv_X3BUV4kvThP857CtdGk_Fhdvjq6M0juB5Ri-Em0LMNvaqs8XHweyr7pFPsX1beBMo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VrYTgUChQUSjgAxInd3djJ3aOpe1SKK04tIhb5J9JtUVslmzCCsSBd-ANeZKOk-y2FE6Qq2PLmRlnxvPzDcDzgU4jTFLBtUDH5dBbrqU3PImM82aIXkWhdvjoODk4lW8-xItswlmXVunxrKy_Vi1Cat8Xrg6OsiXWAGng_vl4PCUGR5IHqepPfX4DVrWku0wPVndevdx_vwwlqA4yPA1QzHQ-O-TGP1f5XTNdmptr8yZwvdzVFf0zugN2sfM27eTjdl3ZbfftGqjjf33aXVjrrFO204rTOqzg5B7cPlpCu87uw_eTecHKpoN92dVwsrYN9YyRAczGTeVvUz3FaBprowMsaABW5GzXTOuq-PXjJ_3yzCcSTxacwCy0uGd52VZZ0A5C35Y6OPL43HxBhp9bRPIHcDraP9k94F0LB-4ipSpurdWDxMW5z1GlAXgHlTPSqESl6HWunPPeDgSGAKxJnJSDPBraFLWWAnMUG9CbFBN8CMxq64RV3lhpJJKMKaUE6VcjYx_H1mzCiwX7smmL1JGFGw7RNAs0zQJNs0DTTdhacDfrTuwsE6TDNdkvEQ3H1zh--dbfFxT0JOmjf5z3DG6-2xtlb18fHz6GW1HoL9x4ebagV5U1PiGjp7JPO7G-AFRRA3E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+regularization+methods+for+identifying+the+source+term+of+Caputo%E2%80%93Hadamard+type+time+fractional+diffusion-wave+equation&rft.jtitle=Journal+of+inverse+and+ill-posed+problems&rft.au=Yang%2C+Fan&rft.au=Li%2C+Ruo-Hong&rft.au=Gao%2C+Yin-Xia&rft.au=Li%2C+Xiao-Xiao&rft.date=2025-06-01&rft.pub=De+Gruyter&rft.issn=0928-0219&rft.eissn=1569-3945&rft.volume=33&rft.issue=3&rft.spage=369&rft.epage=399&rft_id=info:doi/10.1515%2Fjiip-2024-0051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jiip_2024_0051333369 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0219&client=summon |