Joint estimation for SOC and capacity after current measurement offset redress with two-stage forgetting factor recursive least square method

To ensure the safe operation of electric vehicles (EVs), it is essential to estimate the internal status of lithium-ion batteries online. When current sensors are faulty, current measurement offset (CMO) interference occurs, and traditional state estimation algorithms become invalid due to incorrect...

Full description

Saved in:
Bibliographic Details
Published inJOURNAL OF POWER ELECTRONICS Vol. 23; no. 12; pp. 1942 - 1953
Main Authors Huo, Weiwei, Jia, Yunxu, Chen, Yong, Wang, Aobo
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2023
전력전자학회
Subjects
Online AccessGet full text
ISSN1598-2092
2093-4718
DOI10.1007/s43236-023-00683-3

Cover

Loading…
Abstract To ensure the safe operation of electric vehicles (EVs), it is essential to estimate the internal status of lithium-ion batteries online. When current sensors are faulty, current measurement offset (CMO) interference occurs, and traditional state estimation algorithms become invalid due to incorrect current data. In this paper, a two-stage forgetting factor recursive least squares (FFRLS) algorithm is proposed for online identification of battery parameters and estimation of the CMO. Afterwards, a joint estimation framework is established to obtain the state of charge (SOC) and capacity with adaptive extended Kalman filter (AEKF) and iterative reweighted least squares (IRLS) algorithms, respectively. The open-source dataset of the CALCE Battery Research Group is used to verify the accuracy and robustness of the algorithm. The results show that the mean absolute error (MAE) of the CMO online estimation is less than 2.5 mA, the mean absolute percentage error (MAPE) of the SOC estimation is less than 2%, and the error in estimating the usable capacity is less than 2.5%.
AbstractList To ensure the safe operation of electric vehicles (EVs), it is essential to estimate the internal status of lithium-ion batteries online. When current sensors are faulty, current measurement offset (CMO) interference occurs, and traditional state estimation algorithms become invalid due to incorrect current data. In this paper, a two-stage forgetting factor recursive least squares (FFRLS) algorithm is proposed for online identification of battery parameters and estimation of the CMO. Afterwards, a joint estimation framework is established to obtain the state of charge (SOC) and capacity with adaptive extended Kalman filter (AEKF) and iterative reweighted least squares (IRLS) algorithms, respectively. The open-source dataset of the CALCE Battery Research Group is used to verify the accuracy and robustness of the algorithm. The results show that the mean absolute error (MAE) of the CMO online estimation is less than 2.5 mA, the mean absolute percentage error (MAPE) of the SOC estimation is less than 2%, and the error in estimating the usable capacity is less than 2.5%.
To ensure the safe operation of electric vehicles (EVs), it is essential to estimate the internal status of lithium-ion batteries online. When current sensors are faulty, current measurement offset (CMO) interference occurs, and traditional state estimation algorithms become invalid due to incorrect current data. In this paper, a two-stage forgetting factor recursive least squares (FFRLS) algorithm is proposed for online identification of battery parameters and estimation of the CMO. Afterwards, a joint estimation framework is established to obtain the state of charge (SOC) and capacity with adaptive extended Kalman filter (AEKF) and iterative reweighted least squares (IRLS) algorithms, respectively. The open-source dataset of the CALCE Battery Research Group is used to verify the accuracy and robustness of the algorithm. The results show that the mean absolute error (MAE) of the CMO online estimation is less than 2.5 mA, the mean absolute percentage error (MAPE) of the SOC estimation is less than 2%, and the error in estimating the usable capacity is less than 2.5%. KCI Citation Count: 0
Author Jia, Yunxu
Wang, Aobo
Chen, Yong
Huo, Weiwei
Author_xml – sequence: 1
  givenname: Weiwei
  surname: Huo
  fullname: Huo, Weiwei
  organization: School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Information Science and Technology University
– sequence: 2
  givenname: Yunxu
  orcidid: 0000-0001-8694-1722
  surname: Jia
  fullname: Jia, Yunxu
  email: xiyunss@163.com
  organization: School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University
– sequence: 3
  givenname: Yong
  surname: Chen
  fullname: Chen, Yong
  organization: School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Information Science and Technology University
– sequence: 4
  givenname: Aobo
  surname: Wang
  fullname: Wang, Aobo
  organization: School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003024632$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kUtuFDEQhi0UJIaQC7DyGsngR3fbvYxGPIIiRYKwtqrd5Y5Jph3KHqJcgjNwFk6GJ8OaVVnW939S1f-Snax5RcZeK_lWSWnflc5oMwipjZBycEaYZ2yj5WhEZ5U7YRvVj060D_2CnZWSJtlJrZ2TbsN-fc5prRxLTTuoKa88ZuJfr7Yc1pkHuIeQ6iOHWJF42BNho3cIZU-4O7xzjAUrJ5wJS-EPqd7w-pBFqbDgQbZgrWldeIRQM_35Tdg0Jf1Eftc0lZcfeyBsznqT51fseYS7gmf_5in79uH99faTuLz6eLE9vxRBW1vF1A_SdW5QYQDrrNLOxg66tvLs3IQw9qYPRtt-VIO0GGGCWQ8WRnR2GiOYU_bm6F0p-tuQfIb0NJfsb8mff7m-8Eoa0yvnGqyPcKBcCmH099SuRY8N8YcG_LEB3xrwTw1400LmGCoNXhck_z3vaW1L_S_1F-vKjl8
Cites_doi 10.1016/j.est.2018.07.006
10.1109/TTE.2017.2776558
10.1016/j.apenergy.2013.07.008
10.1016/j.jpowsour.2004.02.033
10.1016/j.apenergy.2016.09.010
10.1109/TPEL.2020.2978230
10.1016/j.rser.2017.05.001
10.1016/j.jpowsour.2014.08.089
10.1002/er.6265
10.1002/er.4503
10.20965/jaciii.2016.p0861
10.1016/j.energy.2011.03.059
10.1016/j.jpowsour.2015.07.028
10.1016/j.jpowsour.2013.10.114
10.1016/j.energy.2018.03.023
10.3390/en11071810
10.1016/j.apenergy.2017.05.136
10.1109/TVT.2011.2132812
10.1002/er.6088
10.1016/j.etran.2019.100004
10.1016/j.jpowsour.2017.11.094
10.1016/j.jpowsour.2019.227108
10.1109/JESTPE.2022.3151351
10.1016/j.est.2021.103487
10.1016/j.apenergy.2019.113619
10.1109/IEVC.2014.7056126
10.1109/CCTA.2017.8062643
10.1109/VPPC.2016.7791782
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Korean Institute of Power Electronics 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s) under exclusive licence to The Korean Institute of Power Electronics 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s43236-023-00683-3
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-4718
EndPage 1953
ExternalDocumentID oai_kci_go_kr_ARTI_10335188
10_1007_s43236_023_00683_3
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52172354; 52077007
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: R&D Program of Beijing Municipal Education Commission
  grantid: KM202211232023
GroupedDBID .UV
0R~
406
5GY
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAYYP
ABAKF
ABECU
ABMQK
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADTPH
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AGMZJ
AGQEE
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
BGNMA
DBRKI
DPUIP
EBLON
EBS
FIGPU
FNLPD
GW5
IKXTQ
IWAJR
JDI
JZLTJ
LLZTM
M4Y
MZR
NPVJJ
NQJWS
NU0
OK1
P2P
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
ZMTXR
ZZE
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ACYCR
ID FETCH-LOGICAL-c277t-b56084861c6a7871287f4a4093d88bea9535c327591607efabad267a9e87b9fa3
ISSN 1598-2092
IngestDate Sat Mar 16 03:24:50 EDT 2024
Tue Jul 01 03:15:36 EDT 2025
Fri Feb 21 02:41:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Lithium-ion battery
Joint estimation
Current measurement offset
Status estimation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c277t-b56084861c6a7871287f4a4093d88bea9535c327591607efabad267a9e87b9fa3
Notes https://link.springer.com/article/10.1007/s43236-023-00683-3
ORCID 0000-0001-8694-1722
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10335188
crossref_primary_10_1007_s43236_023_00683_3
springer_journals_10_1007_s43236_023_00683_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
2023-12
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle JOURNAL OF POWER ELECTRONICS
PublicationTitleAbbrev J. Power Electron
PublicationYear 2023
Publisher Springer Nature Singapore
전력전자학회
Publisher_xml – name: Springer Nature Singapore
– name: 전력전자학회
References Guha, Patra (CR20) 2018; 4
Al-Gabalawy, Hosny, Dawson, Omar (CR7) 2021; 45
Hannan, Lipu, Hussain, Mohamed (CR1) 2017; 78
Lee, Kim, Lee (CR14) 2022; 10
Zhang, Zhu, Dong, Wei (CR10) 2019; 43
Zhang, Xiong, He, Qu, Pecht (CR17) 2019; 1
Zheng, Xing, Jiang, Sun, Kim (CR29) 2016; 183
Yang, Wang, Yang, Wang (CR2) 2019; 443
Hu, Hua, Wu, Dai, Xiao, Wang (CR25) 2020; 35
Zheng, Cui, Han, Dai, Ouyang (CR24) 2021; 44
Plett (CR5) 2004; 134
Xiong, Yu, Wang, Lin (CR11) 2017; 207
He, Xiong, Zhang, Sun, Fan (CR12) 2011; 60
Guo, Qiu, Hou, Liaw, Zhang (CR18) 2014; 249
Zheng, Ouyang, Han (CR15) 2018; 377
CR6
CR27
CR23
Manoharan, Mohankumar, Karthick, Sowmya (CR3) 2018; 6
Zheng, Zhu, Lu, Wang, He (CR19) 2018; 150
Tang, Wang, Chen (CR26) 2015; 296
Asghar, Talha, Kim, Ra (CR4) 2016; 20
Han, Ouyang, Lu, Li (CR16) 2015; 278
Xing, He, Pecht, Tsui (CR30) 2014; 113
Wassiliadis, Adermann, Frericks, Pak, Reiter, Lohmann, Lienkamp (CR22) 2018; 19
Peng, Zhang, Guo, Zhang (CR8) 2021; 45
Wei, Leng, He, Zhang, Li (CR21) 2018; 11
Cui, He, Li, Cheng (CR9) 2019; 43
Jiang, Dai, Wei, Xu (CR28) 2019; 253
Sun, Hu, Zou, Li (CR13) 2011; 36
N Wassiliadis (683_CR22) 2018; 19
MA Hannan (683_CR1) 2017; 78
683_CR6
683_CR23
F Zheng (683_CR29) 2016; 183
M Al-Gabalawy (683_CR7) 2021; 45
F Asghar (683_CR4) 2016; 20
B Jiang (683_CR28) 2019; 253
S Lee (683_CR14) 2022; 10
Y Zhang (683_CR17) 2019; 1
Y Xing (683_CR30) 2014; 113
P Manoharan (683_CR3) 2018; 6
C Zhang (683_CR10) 2019; 43
X Tang (683_CR26) 2015; 296
Z Wei (683_CR21) 2018; 11
Z Guo (683_CR18) 2014; 249
F Sun (683_CR13) 2011; 36
H He (683_CR12) 2011; 60
A Guha (683_CR20) 2018; 4
GL Plett (683_CR5) 2004; 134
N Peng (683_CR8) 2021; 45
R Xiong (683_CR11) 2017; 207
Y Zheng (683_CR24) 2021; 44
X Cui (683_CR9) 2019; 43
M Hu (683_CR25) 2020; 35
Y Zheng (683_CR15) 2018; 377
A Yang (683_CR2) 2019; 443
L Zheng (683_CR19) 2018; 150
X Han (683_CR16) 2015; 278
683_CR27
References_xml – volume: 19
  start-page: 73
  year: 2018
  end-page: 87
  ident: CR22
  article-title: Revisiting the dual extended kalman filter for battery state-of-charge and state-of-health estimation: a use-case life cycle analysis
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2018.07.006
– volume: 4
  start-page: 135
  issue: 1
  year: 2018
  end-page: 146
  ident: CR20
  article-title: State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models
  publication-title: IEEE Trans. Transp Electr.
  doi: 10.1109/TTE.2017.2776558
– volume: 113
  start-page: 106
  year: 2014
  end-page: 115
  ident: CR30
  article-title: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.07.008
– volume: 134
  start-page: 277
  issue: 2
  year: 2004
  end-page: 292
  ident: CR5
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. State and parameter estimation
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2004.02.033
– volume: 183
  start-page: 513
  year: 2016
  end-page: 525
  ident: CR29
  article-title: Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.09.010
– volume: 35
  start-page: 11119
  issue: 10
  year: 2020
  end-page: 11128
  ident: CR25
  article-title: Compensation of current measurement offset error for permanent magnet synchronous machines
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.2978230
– volume: 78
  start-page: 834
  year: 2017
  end-page: 854
  ident: CR1
  article-title: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.001
– ident: CR6
– volume: 278
  start-page: 814
  year: 2015
  end-page: 825
  ident: CR16
  article-title: Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part II: pseudo-two-dimensional model simplification and state of charge estimation
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2014.08.089
– volume: 45
  start-page: 6708
  issue: 5
  year: 2021
  end-page: 6726
  ident: CR7
  article-title: State of charge estimation of a Li-ion battery based on extended Kalman filtering and sensor bias
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6265
– volume: 43
  start-page: 3561
  issue: 8
  year: 2019
  end-page: 3577
  ident: CR9
  article-title: State-of-charge estimation of power lithium-ion batteries based on an embedded micro control unit using a square root cubature Kalman filter at various ambient temperatures
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4503
– volume: 6
  start-page: 418
  issue: 4
  year: 2018
  end-page: 427
  ident: CR3
  article-title: SoC estimation and monitoring of li-ion cell using kalman-filter algorithm
  publication-title: Indonesian J. Electr. Eng. Inform.
– ident: CR27
– volume: 20
  start-page: 861
  issue: 6
  year: 2016
  end-page: 866
  ident: CR4
  article-title: Simulation study on battery state of charge estimation using Kalman filter
  publication-title: J. Adv. Comput. Intell. Intell. Inform.
  doi: 10.20965/jaciii.2016.p0861
– volume: 36
  start-page: 3531
  issue: 5
  year: 2011
  end-page: 3540
  ident: CR13
  article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.059
– ident: CR23
– volume: 296
  start-page: 23
  year: 2015
  end-page: 29
  ident: CR26
  article-title: A method for state-of-charge estimation of LiFePO4 batteries based on a dual-circuit state observer
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.07.028
– volume: 249
  start-page: 457
  year: 2014
  end-page: 462
  ident: CR18
  article-title: State of health estimation for lithium ion batteries based on charging curves
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.10.114
– volume: 150
  start-page: 759
  year: 2018
  end-page: 769
  ident: CR19
  article-title: Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.023
– volume: 11
  start-page: 1810
  issue: 7
  year: 2018
  ident: CR21
  article-title: Online state of charge and state of health estimation for a lithium-ion battery based on a data-model fusion method
  publication-title: Energies
  doi: 10.3390/en11071810
– volume: 207
  start-page: 346
  year: 2017
  end-page: 353
  ident: CR11
  article-title: A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.136
– volume: 60
  start-page: 1461
  issue: 4
  year: 2011
  end-page: 1469
  ident: CR12
  article-title: State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved thevenin model
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2011.2132812
– volume: 45
  start-page: 975
  issue: 1
  year: 2021
  end-page: 990
  ident: CR8
  article-title: Online parameters identification and state of charge estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6088
– volume: 1
  start-page: 100004
  year: 2019
  ident: CR17
  article-title: Aging characteristics-based health diagnosis and remaining useful life prognostics for lithium-ion batteries
  publication-title: eTransportation.
  doi: 10.1016/j.etran.2019.100004
– volume: 377
  start-page: 161
  year: 2018
  end-page: 188
  ident: CR15
  article-title: Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.094
– volume: 443
  year: 2019
  ident: CR2
  article-title: A comprehensive investigation of lithium-ion battery degradation performance at different discharge rates
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227108
– volume: 10
  start-page: 2619
  issue: 2
  year: 2022
  end-page: 2628
  ident: CR14
  article-title: Current measurement offset error compensation in vector-controlled SPMSM drive systems
  publication-title: IEEE J. Emerg. Topics Power Electron.
  doi: 10.1109/JESTPE.2022.3151351
– volume: 44
  year: 2021
  ident: CR24
  article-title: Lithium-ion battery capacity estimation based on open circuit voltage identification using the iteratively reweighted least squares at different aging levels
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2021.103487
– volume: 253
  year: 2019
  ident: CR28
  article-title: Joint estimation of lithium-ion battery state of charge and capacity within an adaptive variable multi-timescale framework considering current measurement offset
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113619
– volume: 43
  start-page: 8230
  issue: 14
  year: 2019
  end-page: 8241
  ident: CR10
  article-title: Data-driven lithium-ion battery states estimation using neural networks and particle filtering
  publication-title: Int. J. Energy Res.
– volume: 278
  start-page: 814
  year: 2015
  ident: 683_CR16
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2014.08.089
– volume: 249
  start-page: 457
  year: 2014
  ident: 683_CR18
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.10.114
– volume: 183
  start-page: 513
  year: 2016
  ident: 683_CR29
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.09.010
– volume: 43
  start-page: 8230
  issue: 14
  year: 2019
  ident: 683_CR10
  publication-title: Int. J. Energy Res.
– volume: 60
  start-page: 1461
  issue: 4
  year: 2011
  ident: 683_CR12
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2011.2132812
– volume: 35
  start-page: 11119
  issue: 10
  year: 2020
  ident: 683_CR25
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.2978230
– volume: 1
  start-page: 100004
  year: 2019
  ident: 683_CR17
  publication-title: eTransportation.
  doi: 10.1016/j.etran.2019.100004
– volume: 45
  start-page: 6708
  issue: 5
  year: 2021
  ident: 683_CR7
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6265
– volume: 43
  start-page: 3561
  issue: 8
  year: 2019
  ident: 683_CR9
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4503
– volume: 36
  start-page: 3531
  issue: 5
  year: 2011
  ident: 683_CR13
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.059
– volume: 443
  year: 2019
  ident: 683_CR2
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227108
– ident: 683_CR6
  doi: 10.1109/IEVC.2014.7056126
– volume: 44
  year: 2021
  ident: 683_CR24
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2021.103487
– volume: 377
  start-page: 161
  year: 2018
  ident: 683_CR15
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.094
– volume: 253
  year: 2019
  ident: 683_CR28
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113619
– volume: 20
  start-page: 861
  issue: 6
  year: 2016
  ident: 683_CR4
  publication-title: J. Adv. Comput. Intell. Intell. Inform.
  doi: 10.20965/jaciii.2016.p0861
– volume: 19
  start-page: 73
  year: 2018
  ident: 683_CR22
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2018.07.006
– volume: 45
  start-page: 975
  issue: 1
  year: 2021
  ident: 683_CR8
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6088
– volume: 207
  start-page: 346
  year: 2017
  ident: 683_CR11
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.136
– volume: 134
  start-page: 277
  issue: 2
  year: 2004
  ident: 683_CR5
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2004.02.033
– volume: 11
  start-page: 1810
  issue: 7
  year: 2018
  ident: 683_CR21
  publication-title: Energies
  doi: 10.3390/en11071810
– volume: 78
  start-page: 834
  year: 2017
  ident: 683_CR1
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.001
– volume: 113
  start-page: 106
  year: 2014
  ident: 683_CR30
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.07.008
– ident: 683_CR27
  doi: 10.1109/CCTA.2017.8062643
– volume: 4
  start-page: 135
  issue: 1
  year: 2018
  ident: 683_CR20
  publication-title: IEEE Trans. Transp Electr.
  doi: 10.1109/TTE.2017.2776558
– volume: 150
  start-page: 759
  year: 2018
  ident: 683_CR19
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.023
– ident: 683_CR23
  doi: 10.1109/VPPC.2016.7791782
– volume: 10
  start-page: 2619
  issue: 2
  year: 2022
  ident: 683_CR14
  publication-title: IEEE J. Emerg. Topics Power Electron.
  doi: 10.1109/JESTPE.2022.3151351
– volume: 6
  start-page: 418
  issue: 4
  year: 2018
  ident: 683_CR3
  publication-title: Indonesian J. Electr. Eng. Inform.
– volume: 296
  start-page: 23
  year: 2015
  ident: 683_CR26
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.07.028
SSID ssib040228808
ssj0003009991
ssib036278191
ssib001106542
ssib053376762
Score 2.2972906
Snippet To ensure the safe operation of electric vehicles (EVs), it is essential to estimate the internal status of lithium-ion batteries online. When current sensors...
SourceID nrf
crossref
springer
SourceType Open Website
Index Database
Publisher
StartPage 1942
SubjectTerms Electrical Machines and Networks
Engineering
Original Article
Power Electronics
전기공학
Title Joint estimation for SOC and capacity after current measurement offset redress with two-stage forgetting factor recursive least square method
URI https://link.springer.com/article/10.1007/s43236-023-00683-3
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003024632
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Power Electronics, 2023, 23(12), , pp.1942-1953
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2l6TMCASII0ErQJ7NVvLu-PaZRqlJBgkqqtk-W11lHaakNia0iPoJv4E-Q-DJmL76UFkR5cZKVsrI9R3PbMzMIvVInZSL1XQLWb0G4OwyJgCiMhJ5IacTBx9YJt3dT_-CYH556p73ejw5rqSrFbvr11rqS_5EqrIFcVZXsHSTbbAoL8B3kC1eQMFz_ScaHxSovHdUn47LlDH6YGT5mCmYwVT62GQOe2kZMl21SUPWP2MjSWcuFLhgxOdmrgoDHuNTNwJfS0KLNVJ6dMd0ZDdcqQ69J7x_V3B9n87lS7DEzivqar9vyit7PTiZHzuTtZDw_mk3rsYkaTTpVeyJXV3LVsHkMgfesyr9ULf3A6MezwppafQhgFNWoEEU3e0FZhwliFW6kZGrm4e1KvQY_GVFGs6ulTVVyjUba0bluxGnHfqtzwVttg6GDbDijTPGuGVHlMYyw1hLWp_-_GciGtti0eNZ7xLBHrPeI2RbaphCnDPtoe7S_tzetVRpX7YVC2z7pXAeg2iXXXXztk9tSLl3QeePmrrlLW_k6u3Firx2h-X10z0YweGTg-AD1ZP4QfdNQxC0UMaAHAxQxQBHXUMQaithCEXegiA0UsYUiVlDEDRRxC0VsoPjzewNDrGGIDQyxgeEjdLw_mY8PiB31QVJ4byUR4HiHPPTd1E_AhIDTFGQ84QCERRgKmYBMvZTRwItUQ0SZJSJZUD9IIhkGIsoS9hj18yKXTxAOIaaAxYWgkvOMBYkfci-gkvquyITwBsip32j8yXR0if8s2AF6CS89vkhXsWrErj6XRXyxjiHcfAN_Ykx1NByg17VQYqsfNn_Z9OmdbuEZ6pfrSj4H57cULyzAfgFoKKuG
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+estimation+for+SOC+and+capacity+after+current+measurement+offset+redress+with+two-stage+forgetting+factor%C2%A0recursive+least+square+method&rft.jtitle=JOURNAL+OF+POWER+ELECTRONICS&rft.au=Huo%2C+Weiwei&rft.au=Jia%2C+Yunxu&rft.au=Chen%2C+Yong&rft.au=Wang%2C+Aobo&rft.date=2023-12-01&rft.issn=1598-2092&rft.eissn=2093-4718&rft.volume=23&rft.issue=12&rft.spage=1942&rft.epage=1953&rft_id=info:doi/10.1007%2Fs43236-023-00683-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43236_023_00683_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-2092&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-2092&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-2092&client=summon