Potential and challenges of engineering mechanically flexible molecular crystals
This highlight gives an overview of recent advances in mechanically flexible molecular crystals, with qualitative and quantitative studies performed on different molecular systems. The diverse methods for the tuning of mechanical properties via crystal engineering have gained immense attention in th...
Saved in:
Published in | CrystEngComm Vol. 23; no. 34; pp. 5711 - 573 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This highlight gives an overview of recent advances in mechanically flexible molecular crystals, with qualitative and quantitative studies performed on different molecular systems. The diverse methods for the tuning of mechanical properties
via
crystal engineering have gained immense attention in the field of materials science. Such studies render support in establishing the structure to properties to function parallels. The understanding of intermolecular interactions helps in a systematic placement of different molecular crystals in the elastic-plastic spectrum. This overview helps in emphasizing the potential as well as challenges faced in predicting/designing mechanically compliant crystalline compounds.
Crystal adaptronics has undergone tremendous developments that have been utilized to rationalize dynamics in crystals. This highlight discusses about the role of intermolecular interactions in rationalizing mechanical responses in crystals. |
---|---|
AbstractList | This highlight gives an overview of recent advances in mechanically flexible molecular crystals, with qualitative and quantitative studies performed on different molecular systems. The diverse methods for the tuning of mechanical properties
via
crystal engineering have gained immense attention in the field of materials science. Such studies render support in establishing the structure to properties to function parallels. The understanding of intermolecular interactions helps in a systematic placement of different molecular crystals in the elastic-plastic spectrum. This overview helps in emphasizing the potential as well as challenges faced in predicting/designing mechanically compliant crystalline compounds. This highlight gives an overview of recent advances in mechanically flexible molecular crystals, with qualitative and quantitative studies performed on different molecular systems. The diverse methods for the tuning of mechanical properties via crystal engineering have gained immense attention in the field of materials science. Such studies render support in establishing the structure to properties to function parallels. The understanding of intermolecular interactions helps in a systematic placement of different molecular crystals in the elastic-plastic spectrum. This overview helps in emphasizing the potential as well as challenges faced in predicting/designing mechanically compliant crystalline compounds. Crystal adaptronics has undergone tremendous developments that have been utilized to rationalize dynamics in crystals. This highlight discusses about the role of intermolecular interactions in rationalizing mechanical responses in crystals. This highlight gives an overview of recent advances in mechanically flexible molecular crystals, with qualitative and quantitative studies performed on different molecular systems. The diverse methods for the tuning of mechanical properties via crystal engineering have gained immense attention in the field of materials science. Such studies render support in establishing the structure to properties to function parallels. The understanding of intermolecular interactions helps in a systematic placement of different molecular crystals in the elastic-plastic spectrum. This overview helps in emphasizing the potential as well as challenges faced in predicting/designing mechanically compliant crystalline compounds. |
Author | Hasija, Avantika Chopra, Deepak |
AuthorAffiliation | Department of Chemistry Crystallography and Crystal Chemistry Laboratory Indian Institute of Science Education and Research Bhopal |
AuthorAffiliation_xml | – name: Indian Institute of Science Education and Research Bhopal – name: Crystallography and Crystal Chemistry Laboratory – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Avantika surname: Hasija fullname: Hasija, Avantika – sequence: 2 givenname: Deepak surname: Chopra fullname: Chopra, Deepak |
BookMark | eNptkUFLAzEQhYMo2FYv3oWAN2E12WyTzVFqq0LBHvS8ZLOTmpJma5KC_fdGKyri6T1435uBmSE69L0HhM4ouaKEyeuOaiCECmYO0IBWnBc1Yezwlz9GwxhXmakoJQO0WPQJfLLKYeU7rF-Uc-CXEHFvcDbWAwTrl3gNOfNW53yHjYM32zrA696B3joVsA67mJSLJ-jIZIHTLx2h59n0aXJfzB_vHiY380KXQqSiJZ1oueoolEIaLrlkUutxTQ3UgrdMC8PHmnDBoOpoCyUnRnPgdQsS6qplI3Sxn7sJ_esWYmpW_Tb4vLIpx1zIUta1zBTZUzr0MQYwjbZJJdv7FJR1DSXNx92aWzqZft5tliuXfyqbYNcq7P6Hz_dwiPqb-3kCewdIXHp8 |
CitedBy_id | crossref_primary_10_1002_anie_202417459 crossref_primary_10_1021_acs_cgd_2c00997 crossref_primary_10_1016_j_ccr_2022_214890 crossref_primary_10_1002_anie_202114985 crossref_primary_10_1039_D2CE00203E crossref_primary_10_1039_D1CE00459J crossref_primary_10_1039_D1CE00401H crossref_primary_10_1021_acs_cgd_2c00692 crossref_primary_10_1016_j_cej_2022_138333 crossref_primary_10_1021_acs_cgd_1c01192 crossref_primary_10_1039_D1CE00441G crossref_primary_10_1039_D3TC04272C crossref_primary_10_1002_ange_202417459 crossref_primary_10_1021_acs_cgd_1c01439 crossref_primary_10_1002_smm2_1213 crossref_primary_10_1021_acs_cgd_2c01445 crossref_primary_10_1021_acs_cgd_3c01497 crossref_primary_10_1002_agt2_500 crossref_primary_10_1039_D2CE00402J crossref_primary_10_1107_S205322962201018X crossref_primary_10_1039_D2SC02969C crossref_primary_10_1002_ange_202114985 crossref_primary_10_1039_D2MA00802E crossref_primary_10_1039_D3DT00192J crossref_primary_10_1039_D2SC03729G crossref_primary_10_1039_D1TC04027H crossref_primary_10_1039_D3NJ02174B crossref_primary_10_1021_acs_cgd_4c01552 crossref_primary_10_1016_j_jphotochemrev_2021_100479 crossref_primary_10_1039_D2CC00663D crossref_primary_10_1039_D4CC00938J crossref_primary_10_1039_D3CE00928A crossref_primary_10_1021_acs_cgd_2c01137 crossref_primary_10_1002_tcr_202200173 crossref_primary_10_1021_jacsau_3c00481 crossref_primary_10_1002_adom_202200627 crossref_primary_10_1021_acs_cgd_3c00473 |
Cites_doi | 10.1039/D0CC05904H 10.1002/anie.201410730 10.1021/acs.cgd.9b00992 10.1021/acs.jpclett.0c01545 10.1002/chem.201805641 10.1002/adma.201906216 10.1002/anie.201311014 10.1002/jps.21234 10.1039/C9CE01625B 10.1002/anie.201204604 10.1039/D0CS00475H 10.1021/acs.cgd.8b00202 10.1038/s41467-019-11657-0 10.1002/anie.202002627 10.1002/anie.202007760 10.1021/acs.cgd.9b01281 10.1039/D0CS00638F 10.1039/C7CC02970E 10.1002/anie.201912236 10.1039/C8CE00454D 10.1038/nchem.2848 10.1021/ja00199a040 10.1002/anie.201810514 10.1002/adma.201800814 10.1039/C6CC03226E 10.1021/acs.molpharmaceut.9b00082 10.1002/anie.201707749 10.1002/chem.201700813 10.1021/ja8098596 10.1002/chem.200500983 10.1039/c3cp54994a 10.1021/acs.cgd.8b00360 10.1107/S205225251700848X 10.1002/anie.201800137 10.1002/anie.201411447 10.1002/anie.201802020 10.1021/jacs.5b05324 10.1107/S205225251900890X 10.1039/C9CC01702J 10.1021/acs.chemmater.9b00040 10.1002/jps.21552 10.1039/b505103g 10.1002/anie.202001060 10.1021/jacs.6b11835 10.1021/acs.cgd.7b01153 10.1021/acs.cgd.8b00534 10.1002/anie.201806149 10.1039/C5SC04057D 10.1107/S2052252519004755 10.1021/jacs.0c04434 10.1021/jacs.8b02435 10.1002/anie.201611195 10.1039/c2ce25100k 10.1021/acs.cgd.0c00521 10.1039/C9CC03542G 10.1002/anie.201701972 10.1002/asia.201801842 10.1039/c003466e 10.1038/nchem.2123 10.1021/acs.cgd.0c00250 10.1016/j.synthmet.2017.07.019 10.1002/ijch.201800030 10.1021/ja052098t 10.1038/ncomms13108 10.1021/acs.jpclett.9b00196 10.1002/anie.201811313 10.31635/ccschem.020.202000565 10.1002/anie.202003820 10.1021/acs.inorgchem.0c03295 10.1021/acs.chemmater.8b04800 10.1021/acs.accounts.8b00425 10.1021/jacs.6b05118 10.1039/C8CC00775F 10.1039/C8SC03135E 10.1039/C9CC07774J 10.1002/anie.201205002 10.1039/C8CE02086H 10.1021/acs.cgd.9b01530 10.1021/acs.chemmater.9b00441 10.1038/s41467-019-11612-z 10.1002/adom.201900927 10.1021/acs.chemrev.5b00398 10.1039/C8CC10051A 10.1002/anie.201808687 10.1039/C8CE00114F 10.1039/C9SC05640H 10.1039/C8CC02662A 10.1021/acs.cgd.8b00261 10.1002/anie.202002492 10.1021/jacs.6b11212 10.1021/acs.cgd.9b00846 10.1039/D0CE01394C |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/d1ce00173f |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 573 |
ExternalDocumentID | 10_1039_D1CE00173F d1ce00173f |
GroupedDBID | 0-7 0R 1TJ 29F 5GY 70 705 70J 7~J AAEMU AAGNR AAIWI AAJAE AANOJ AAPBV AAXPP ABASK ABDVN ABGFH ABPTK ABRYZ ACGFS ACLDK ADACO ADMRA ADSRN AENEX AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 E3Z EBS ECGLT EE0 EF- GNO H13 HZ H~N IDZ J3I JG KC5 N9A O9- OK1 P2P R7B RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SLH VH6 0R~ 6J9 70~ AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKMSF APEMP CITATION GGIMP HZ~ R56 RAOCF 7U5 8FD L7M |
ID | FETCH-LOGICAL-c277t-b0d7b6ad1e279f696939cc581fe876b3c7f65c0673e4d1be260fc6e68be9e84b3 |
ISSN | 1466-8033 |
IngestDate | Mon Jun 30 07:10:08 EDT 2025 Thu Apr 24 23:06:30 EDT 2025 Tue Jul 01 02:07:21 EDT 2025 Sun May 01 04:30:37 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c277t-b0d7b6ad1e279f696939cc581fe876b3c7f65c0673e4d1be260fc6e68be9e84b3 |
Notes | Avantika Hasija received her MSc from Panjab University in 2015. She is currently pursuing her Ph.D. under the supervision of Dr. Deepak Chopra in the field of crystal engineering at the Indian Institute of Science Education and Research (IISER) Bhopal, India. Her current research interests include understanding the micro and macroscopic behavior of mechanically responsive molecular crystals and bonding in crystalline materials assembled cocrystallization. crystallization, experimental and theoretical electron density analysis, and structure-property correlation in molecular crystals. He has edited a complete monograph entitled "Understanding Intermolecular Interactions in the Solid State: Approaches and Techniques", published by RSC in 2018. He is currently on the Editorial Board of Acta Crystallographica E Dr. Deepak Chopra is currently Associate Professor at the Department of Chemistry at Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh since March 2009. His active research interests include the investigation of polymorphism in drugs and pharmaceuticals, computational analysis of non-covalent interactions Journal of Molecular Structure in situ via Elsevier, a Co-Editor of the journal a Fellow of Royal Society of Chemistry (FRSC), and a Fellow of the Indian Chemical Society (FICS). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0018-6007 |
PQID | 2567929889 |
PQPubID | 2047491 |
PageCount | 2 |
ParticipantIDs | crossref_citationtrail_10_1039_D1CE00173F proquest_journals_2567929889 rsc_primary_d1ce00173f crossref_primary_10_1039_D1CE00173F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210901 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Ghosh (D1CE00173F/cit19) 2015; 137 Karothu (D1CE00173F/cit10) 2020; 32 Das (D1CE00173F/cit53) 2020; 49 Liu (D1CE00173F/cit94) 2019; 10 Raju (D1CE00173F/cit62) 2018; 18 Panda (D1CE00173F/cit33) 2015; 7 Ye (D1CE00173F/cit68) 2020; 22 Mackenzie (D1CE00173F/cit73) 2017; 4 Saha (D1CE00173F/cit32) 2017; 139 Saha (D1CE00173F/cit31) 2017; 53 Mishra (D1CE00173F/cit61) 2020; 20 Reddy (D1CE00173F/cit9) 2006; 6 Cappuccino (D1CE00173F/cit83) 2020; 20 Kazantsev (D1CE00173F/cit84) 2017; 232 Bryant (D1CE00173F/cit74) 2018; 20 Liu (D1CE00173F/cit27) 2018; 57 Kumari (D1CE00173F/cit89) 2019; 19 Saha (D1CE00173F/cit58) 2018; 54 Nangia (D1CE00173F/cit82) 2019; 58 Singh (D1CE00173F/cit6) 2018; 20 Wang (D1CE00173F/cit24) 2019; 31 Varughese (D1CE00173F/cit15) 2013; 52 Bhattacharya (D1CE00173F/cit49) 2020; 59 Khandavilli (D1CE00173F/cit50) 2019; 6 Wang (D1CE00173F/cit70) 2019; 16 Kato (D1CE00173F/cit79) 2019; 25 Ghosh (D1CE00173F/cit13) 2015; 54 Mir (D1CE00173F/cit38) 2017; 56 Alimi (D1CE00173F/cit41) 2018; 54 Desiraju (D1CE00173F/cit39) 1989; 111 Paikar (D1CE00173F/cit30) 2019; 21 Ghosh (D1CE00173F/cit12) 2012; 51 Chen (D1CE00173F/cit59) 2005; 127 Mei (D1CE00173F/cit18) 2020; 59 Huang (D1CE00173F/cit92) 2019; 7 Pejov (D1CE00173F/cit34) 2017; 139 Bag (D1CE00173F/cit85) 2012; 14 Lu (D1CE00173F/cit93) 2020; 59 Nath (D1CE00173F/cit17) 2019; 19 Yadava (D1CE00173F/cit20) 2019; 55 Reddy (D1CE00173F/cit7) 2005 Ahmed (D1CE00173F/cit16) 2018; 57 Worthy (D1CE00173F/cit22) 2018; 10 Lévesque (D1CE00173F/cit60) 2020; 142 Saha (D1CE00173F/cit21) 2016; 52 Saha (D1CE00173F/cit14) 2017; 23 Đaković (D1CE00173F/cit23) 2018; 57 Takamizawa (D1CE00173F/cit35) 2014; 53 Takamizawa (D1CE00173F/cit36) 2016; 7 Huang (D1CE00173F/cit26) 2018; 30 Catalano (D1CE00173F/cit80) 2019; 55 Zhao (D1CE00173F/cit25) 2018 Commins (D1CE00173F/cit57) 2020; 11 Devarapalli (D1CE00173F/cit64) 2019; 31 Takamizawa (D1CE00173F/cit37) 2015; 54 Park (D1CE00173F/cit1) 2020; 49 Catalano (D1CE00173F/cit46) 2018; 57 Sun (D1CE00173F/cit75) 2008; 97 Liu (D1CE00173F/cit56) 2020; 59 Ghosh (D1CE00173F/cit2) 2010; 12 Saha (D1CE00173F/cit3) 2018; 51 Torres-Moya (D1CE00173F/cit48) 2018; 58 Kusumoto (D1CE00173F/cit28) 2021; 60 Wang (D1CE00173F/cit55) 2019; 55 Sun (D1CE00173F/cit87) 2009; 98 Owczarek (D1CE00173F/cit81) 2016; 7 Annadhasan (D1CE00173F/cit97) 2020; 59 Hu (D1CE00173F/cit42) 2019; 31 Horstman (D1CE00173F/cit90) 2017; 56 Liu (D1CE00173F/cit78) 2019; 58 Bhandary (D1CE00173F/cit44) 2020; 56 Ahmed (D1CE00173F/cit45) 2019; 10 Krishna (D1CE00173F/cit11) 2016; 138 Cao (D1CE00173F/cit77) 2020; 2 Bhattacharya (D1CE00173F/cit43) 2020; 59 Naumov (D1CE00173F/cit4) 2015; 115 Dey (D1CE00173F/cit67) 2019; 10 Joshi (D1CE00173F/cit88) 2018; 18 Mondal (D1CE00173F/cit52) 2020; 59 Annadhasan (D1CE00173F/cit96) 2020; 59 Reddy (D1CE00173F/cit8) 2006; 12 Koshima (D1CE00173F/cit69) 2009; 131 Chandrasekar (D1CE00173F/cit47) 2014; 16 Zhuo (D1CE00173F/cit91) 2018; 57 Thomas (D1CE00173F/cit29) 2017; 56 Tong (D1CE00173F/cit5) 2019; 55 Khandavilli (D1CE00173F/cit66) 2020; 22 Rather (D1CE00173F/cit40) 2018; 18 Gupta (D1CE00173F/cit65) 2020; 20 Bhandary (D1CE00173F/cit76) 2019; 14 Wang (D1CE00173F/cit86) 2017; 17 Malla Reddy (D1CE00173F/cit51) 2019; 6 Wang (D1CE00173F/cit72) 2018; 18 Chu (D1CE00173F/cit63) 2020; 11 Liu (D1CE00173F/cit54) 2019; 10 Saha (D1CE00173F/cit71) 2018; 140 Thekkeppat (D1CE00173F/cit95) 2020; 20 |
References_xml | – volume: 56 start-page: 12841 year: 2020 ident: D1CE00173F/cit44 publication-title: Chem. Commun. doi: 10.1039/D0CC05904H – volume: 54 start-page: 2674 year: 2015 ident: D1CE00173F/cit13 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201410730 – volume: 19 start-page: 6033 year: 2019 ident: D1CE00173F/cit17 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b00992 – volume: 11 start-page: 5433 year: 2020 ident: D1CE00173F/cit63 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01545 – volume: 25 start-page: 5105 year: 2019 ident: D1CE00173F/cit79 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201805641 – volume: 32 start-page: 1906216 issue: 20 year: 2020 ident: D1CE00173F/cit10 publication-title: Adv. Mater. doi: 10.1002/adma.201906216 – volume: 53 start-page: 6970 year: 2014 ident: D1CE00173F/cit35 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201311014 – volume: 97 start-page: 8 year: 2008 ident: D1CE00173F/cit75 publication-title: J. Pharm. Sci. doi: 10.1002/jps.21234 – volume: 22 start-page: 412 year: 2020 ident: D1CE00173F/cit66 publication-title: CrystEngComm doi: 10.1039/C9CE01625B – volume: 59 start-page: 4299 year: 2020 ident: D1CE00173F/cit93 publication-title: Am. Ethnol. – volume: 51 start-page: 10319 year: 2012 ident: D1CE00173F/cit12 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204604 – volume: 49 start-page: 8878 year: 2020 ident: D1CE00173F/cit53 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00475H – volume: 18 start-page: 1909 year: 2018 ident: D1CE00173F/cit72 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b00202 – volume: 10 start-page: 3711 year: 2019 ident: D1CE00173F/cit67 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11657-0 – volume: 59 start-page: 13821 year: 2020 ident: D1CE00173F/cit96 publication-title: Angew. Chem. doi: 10.1002/anie.202002627 – volume: 59 start-page: 19878 year: 2020 ident: D1CE00173F/cit49 publication-title: Angew. Chem. doi: 10.1002/anie.202007760 – volume: 20 start-page: 884 year: 2020 ident: D1CE00173F/cit83 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b01281 – volume: 49 start-page: 8287 year: 2020 ident: D1CE00173F/cit1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00638F – volume: 53 start-page: 6371 year: 2017 ident: D1CE00173F/cit31 publication-title: Chem. Commun. doi: 10.1039/C7CC02970E – volume: 58 start-page: 19081 year: 2019 ident: D1CE00173F/cit78 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201912236 – volume: 20 start-page: 2698 year: 2018 ident: D1CE00173F/cit74 publication-title: CrystEngComm doi: 10.1039/C8CE00454D – volume: 10 start-page: 65 year: 2018 ident: D1CE00173F/cit22 publication-title: Nat. Chem. doi: 10.1038/nchem.2848 – volume: 111 start-page: 6757 year: 1989 ident: D1CE00173F/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00199a040 – volume: 59 start-page: 5557 year: 2020 ident: D1CE00173F/cit43 publication-title: Am. Ethnol. – volume: 57 start-page: 17254 year: 2018 ident: D1CE00173F/cit46 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201810514 – volume: 30 start-page: 1800814 year: 2018 ident: D1CE00173F/cit26 publication-title: Adv. Mater. doi: 10.1002/adma.201800814 – volume: 52 start-page: 7676 year: 2016 ident: D1CE00173F/cit21 publication-title: Chem. Commun. doi: 10.1039/C6CC03226E – volume: 16 start-page: 1732 year: 2019 ident: D1CE00173F/cit70 publication-title: Mol. Pharmaceutics doi: 10.1021/acs.molpharmaceut.9b00082 – volume: 56 start-page: 15882 year: 2017 ident: D1CE00173F/cit38 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201707749 – volume: 23 start-page: 4936 year: 2017 ident: D1CE00173F/cit14 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201700813 – volume: 131 start-page: 6890 year: 2009 ident: D1CE00173F/cit69 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8098596 – volume: 12 start-page: 2222 year: 2006 ident: D1CE00173F/cit8 publication-title: Chem. – Eur. J. doi: 10.1002/chem.200500983 – volume: 16 start-page: 7173 year: 2014 ident: D1CE00173F/cit47 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp54994a – volume: 18 start-page: 2712 year: 2018 ident: D1CE00173F/cit40 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b00360 – volume: 4 start-page: 575 year: 2017 ident: D1CE00173F/cit73 publication-title: IUCrJ doi: 10.1107/S205225251700848X – volume: 57 start-page: 8837 year: 2018 ident: D1CE00173F/cit16 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201800137 – volume: 54 start-page: 4815 year: 2015 ident: D1CE00173F/cit37 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201411447 – volume: 57 start-page: 8448 year: 2018 ident: D1CE00173F/cit27 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201802020 – volume: 137 start-page: 9912 year: 2015 ident: D1CE00173F/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05324 – volume: 6 start-page: 505 year: 2019 ident: D1CE00173F/cit51 publication-title: IUCrJ doi: 10.1107/S205225251900890X – volume: 55 start-page: 4921 year: 2019 ident: D1CE00173F/cit80 publication-title: Chem. Commun. doi: 10.1039/C9CC01702J – volume: 31 start-page: 1794 year: 2019 ident: D1CE00173F/cit24 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b00040 – volume: 98 start-page: 1671 year: 2009 ident: D1CE00173F/cit87 publication-title: J. Pharm. Sci. doi: 10.1002/jps.21552 – start-page: 3945 year: 2005 ident: D1CE00173F/cit7 publication-title: Chem. Commun. doi: 10.1039/b505103g – volume: 59 start-page: 10971 year: 2020 ident: D1CE00173F/cit52 publication-title: Angew. Chem. doi: 10.1002/anie.202001060 – volume: 59 start-page: 16061 year: 2020 ident: D1CE00173F/cit18 publication-title: Am. Ethnol. – volume: 139 start-page: 1975 year: 2017 ident: D1CE00173F/cit32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11835 – start-page: 9,4790 year: 2018 ident: D1CE00173F/cit25 publication-title: Nat. Commun. – volume: 17 start-page: 6030 year: 2017 ident: D1CE00173F/cit86 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.7b01153 – volume: 18 start-page: 5853 year: 2018 ident: D1CE00173F/cit88 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b00534 – volume: 57 start-page: 11300 year: 2018 ident: D1CE00173F/cit91 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201806149 – volume: 7 start-page: 1527 year: 2016 ident: D1CE00173F/cit36 publication-title: Chem. Sci. doi: 10.1039/C5SC04057D – volume: 6 start-page: 630 year: 2019 ident: D1CE00173F/cit50 publication-title: IUCrJ doi: 10.1107/S2052252519004755 – volume: 142 start-page: 11873 year: 2020 ident: D1CE00173F/cit60 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04434 – volume: 140 start-page: 6361 year: 2018 ident: D1CE00173F/cit71 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02435 – volume: 56 start-page: 1815 year: 2017 ident: D1CE00173F/cit90 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201611195 – volume: 14 start-page: 3865 year: 2012 ident: D1CE00173F/cit85 publication-title: CrystEngComm doi: 10.1039/c2ce25100k – volume: 20 start-page: 4764 issue: 7 year: 2020 ident: D1CE00173F/cit61 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c00521 – volume: 55 start-page: 8532 year: 2019 ident: D1CE00173F/cit55 publication-title: Chem. Commun. doi: 10.1039/C9CC03542G – volume: 56 start-page: 8468 year: 2017 ident: D1CE00173F/cit29 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201701972 – volume: 14 start-page: 607 year: 2019 ident: D1CE00173F/cit76 publication-title: Chem. – Asian J. doi: 10.1002/asia.201801842 – volume: 12 start-page: 2296 year: 2010 ident: D1CE00173F/cit2 publication-title: CrystEngComm doi: 10.1039/c003466e – volume: 7 start-page: 65 year: 2015 ident: D1CE00173F/cit33 publication-title: Nat. Chem. doi: 10.1038/nchem.2123 – volume: 20 start-page: 3937 year: 2020 ident: D1CE00173F/cit95 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c00250 – volume: 232 start-page: 60 year: 2017 ident: D1CE00173F/cit84 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2017.07.019 – volume: 58 start-page: 827 year: 2018 ident: D1CE00173F/cit48 publication-title: Isr. J. Chem. doi: 10.1002/ijch.201800030 – volume: 127 start-page: 9881 year: 2005 ident: D1CE00173F/cit59 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja052098t – volume: 7 start-page: 13108 year: 2016 ident: D1CE00173F/cit81 publication-title: Nat. Commun. doi: 10.1038/ncomms13108 – volume: 10 start-page: 1437 year: 2019 ident: D1CE00173F/cit94 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00196 – volume: 6 start-page: 12,2720 year: 2006 ident: D1CE00173F/cit9 publication-title: Cryst. Growth Des. – volume: 58 start-page: 4100 year: 2019 ident: D1CE00173F/cit82 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811313 – volume: 2 start-page: 2569 year: 2020 ident: D1CE00173F/cit77 publication-title: CCS Chem. doi: 10.31635/ccschem.020.202000565 – volume: 59 start-page: 13852 year: 2020 ident: D1CE00173F/cit97 publication-title: Angew. Chem. doi: 10.1002/anie.202003820 – volume: 60 start-page: 1294 issue: 3 year: 2021 ident: D1CE00173F/cit28 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c03295 – volume: 31 start-page: 1391 year: 2019 ident: D1CE00173F/cit64 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04800 – volume: 51 start-page: 2957 issue: 11 year: 2018 ident: D1CE00173F/cit3 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00425 – volume: 138 start-page: 13561 year: 2016 ident: D1CE00173F/cit11 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05118 – volume: 54 start-page: 2994 year: 2018 ident: D1CE00173F/cit41 publication-title: Chem. Commun. doi: 10.1039/C8CC00775F – volume: 10 start-page: 227 year: 2019 ident: D1CE00173F/cit54 publication-title: Chem. Sci. doi: 10.1039/C8SC03135E – volume: 55 start-page: 14749 year: 2019 ident: D1CE00173F/cit20 publication-title: Chem. Commun. doi: 10.1039/C9CC07774J – volume: 52 start-page: 2701 year: 2013 ident: D1CE00173F/cit15 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205002 – volume: 21 start-page: 589 year: 2019 ident: D1CE00173F/cit30 publication-title: CrystEngComm doi: 10.1039/C8CE02086H – volume: 20 start-page: 2847 year: 2020 ident: D1CE00173F/cit65 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b01530 – volume: 31 start-page: 3818 year: 2019 ident: D1CE00173F/cit42 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b00441 – volume: 10 start-page: 3723 year: 2019 ident: D1CE00173F/cit45 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11612-z – volume: 7 start-page: 1900927 year: 2019 ident: D1CE00173F/cit92 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900927 – volume: 115 start-page: 12440 issue: 22 year: 2015 ident: D1CE00173F/cit4 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00398 – volume: 55 start-page: 3709 year: 2019 ident: D1CE00173F/cit5 publication-title: Chem. Commun. doi: 10.1039/C8CC10051A – volume: 57 start-page: 14801 issue: 45 year: 2018 ident: D1CE00173F/cit23 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808687 – volume: 20 start-page: 2253 year: 2018 ident: D1CE00173F/cit6 publication-title: CrystEngComm doi: 10.1039/C8CE00114F – volume: 11 start-page: 2606 year: 2020 ident: D1CE00173F/cit57 publication-title: Chem. Sci. doi: 10.1039/C9SC05640H – volume: 54 start-page: 6348 year: 2018 ident: D1CE00173F/cit58 publication-title: Chem. Commun. doi: 10.1039/C8CC02662A – volume: 18 start-page: 3927 year: 2018 ident: D1CE00173F/cit62 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b00261 – volume: 59 start-page: 12944 year: 2020 ident: D1CE00173F/cit56 publication-title: Angew. Chem. doi: 10.1002/anie.202002492 – volume: 139 start-page: 2318 year: 2017 ident: D1CE00173F/cit34 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11212 – volume: 19 start-page: 5483 year: 2019 ident: D1CE00173F/cit89 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b00846 – volume: 22 start-page: 8045 year: 2020 ident: D1CE00173F/cit68 publication-title: CrystEngComm doi: 10.1039/D0CE01394C |
SSID | ssj0014110 |
Score | 2.504929 |
Snippet | This highlight gives an overview of recent advances in mechanically flexible molecular crystals, with qualitative and quantitative studies performed on... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5711 |
SubjectTerms | Crystals Materials science Mechanical properties Modulus of elasticity |
Title | Potential and challenges of engineering mechanically flexible molecular crystals |
URI | https://www.proquest.com/docview/2567929889 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXo9gKHiq-KpQVZggtaBZLYceJjtWxVEKAetlJvUeyMoXS7W-2mh_bXM07sOJW2EnCJEudDip8z8-zMvCHkfSZ4jsyiipRidcQNz6IKuImyWCktdayZsNnI33-IkzP-9Tw7DyUv2-ySRn3Ud1vzSv4HVWxDXG2W7D8g2z8UG3Af8cUtIozbv8L4dNXYYB-X7q99XZQ2OgOC0ODkCmx-r4VjcTsxVgLT5ktd-cq4E72-RZK42AyZ6tS2zZY_bQZJMFObi9_dQiwS8ObiMoT5_Fpdr7tfR4AO7nK4mJAmfbQU-oLOAHJhBYo7cQpvIbuMYDcS3NpjZ--y3JlKcIdsq1mOmVU1rRMN1isyE5xPHxIYTu6Q3RQ5fzoiu0ez-Zdv_U8hjlTFK8wy-SnccZ9ThInCztpXcWnZwvwp2XM0nx51mD0jj2D5nDwZiD--IKc9ehTRowE9ujJ0gB4dokc9erRHj3r0XpKz49l8ehK5-haRxhdsIhXXuRJVnUCaSyOkkExqnRWJAfRRiunciEzbSkLA60QBTj2NFiAKBRIKrtg-GS1XS3hFKOQxfl11XiWW3wJUaFiLShepZpXUCYzJB99DpXbi77YGyaJsgxCYLD8n01nbm8dj8q6_9rqTPNl61aHv6NJ9EpsS-XOOfLso5JjsY-f39wesXj904oA8DiPykIya9Q28QcLXqLduIPwBPThbuA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+and+challenges+of+engineering+mechanically+flexible+molecular+crystals&rft.jtitle=CrystEngComm&rft.au=Hasija%2C+Avantika&rft.au=Chopra%2C+Deepak&rft.date=2021-09-01&rft.eissn=1466-8033&rft.volume=23&rft.issue=34&rft.spage=5711&rft.epage=573&rft_id=info:doi/10.1039%2Fd1ce00173f&rft.externalDocID=d1ce00173f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |