M-DDC: MRI based demyelinative diseases classification with U-Net segmentation and convolutional network

Childhood demyelinative diseases classification (DDC) with brain magnetic resonance imaging (MRI) is crucial to clinical diagnosis. But few attentions have been paid to DDC in the past. How to accurately differentiate pediatric-onset neuromyelitis optica spectrum disorder (NMOSD) from acute dissemin...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 169; pp. 108 - 119
Main Authors Zhou, Deyang, Xu, Lu, Wang, Tianlei, Wei, Shaonong, Gao, Feng, Lai, Xiaoping, Cao, Jiuwen
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.01.2024
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2023.10.010

Cover

Loading…
Abstract Childhood demyelinative diseases classification (DDC) with brain magnetic resonance imaging (MRI) is crucial to clinical diagnosis. But few attentions have been paid to DDC in the past. How to accurately differentiate pediatric-onset neuromyelitis optica spectrum disorder (NMOSD) from acute disseminated encephalomyelitis (ADEM) based on MRI is challenging in DDC. In this paper, a novel architecture M-DDC based on joint U-Net segmentation network and deep convolutional network is developed. The U-Net segmentation can provide pixel-level structure information, that helps the lesion areas location and size estimation. The classification branch in DDC can detect the regions of interest inside MRIs, including the white matter regions where lesions appear. The performance of the proposed method is evaluated on MRIs of 201 subjects recorded from the Children’s Hospital of Zhejiang University School of Medicine. The comparisons show that the proposed DDC achieves the highest accuracy of 99.19% and dice of 71.1% for ADEM and NMOSD classification and segmentation, respectively.
AbstractList Childhood demyelinative diseases classification (DDC) with brain magnetic resonance imaging (MRI) is crucial to clinical diagnosis. But few attentions have been paid to DDC in the past. How to accurately differentiate pediatric-onset neuromyelitis optica spectrum disorder (NMOSD) from acute disseminated encephalomyelitis (ADEM) based on MRI is challenging in DDC. In this paper, a novel architecture M-DDC based on joint U-Net segmentation network and deep convolutional network is developed. The U-Net segmentation can provide pixel-level structure information, that helps the lesion areas location and size estimation. The classification branch in DDC can detect the regions of interest inside MRIs, including the white matter regions where lesions appear. The performance of the proposed method is evaluated on MRIs of 201 subjects recorded from the Children’s Hospital of Zhejiang University School of Medicine. The comparisons show that the proposed DDC achieves the highest accuracy of 99.19% and dice of 71.1% for ADEM and NMOSD classification and segmentation, respectively.
Childhood demyelinative diseases classification (DDC) with brain magnetic resonance imaging (MRI) is crucial to clinical diagnosis. But few attentions have been paid to DDC in the past. How to accurately differentiate pediatric-onset neuromyelitis optica spectrum disorder (NMOSD) from acute disseminated encephalomyelitis (ADEM) based on MRI is challenging in DDC. In this paper, a novel architecture M-DDC based on joint U-Net segmentation network and deep convolutional network is developed. The U-Net segmentation can provide pixel-level structure information, that helps the lesion areas location and size estimation. The classification branch in DDC can detect the regions of interest inside MRIs, including the white matter regions where lesions appear. The performance of the proposed method is evaluated on MRIs of 201 subjects recorded from the Children's Hospital of Zhejiang University School of Medicine. The comparisons show that the proposed DDC achieves the highest accuracy of 99.19% and dice of 71.1% for ADEM and NMOSD classification and segmentation, respectively.Childhood demyelinative diseases classification (DDC) with brain magnetic resonance imaging (MRI) is crucial to clinical diagnosis. But few attentions have been paid to DDC in the past. How to accurately differentiate pediatric-onset neuromyelitis optica spectrum disorder (NMOSD) from acute disseminated encephalomyelitis (ADEM) based on MRI is challenging in DDC. In this paper, a novel architecture M-DDC based on joint U-Net segmentation network and deep convolutional network is developed. The U-Net segmentation can provide pixel-level structure information, that helps the lesion areas location and size estimation. The classification branch in DDC can detect the regions of interest inside MRIs, including the white matter regions where lesions appear. The performance of the proposed method is evaluated on MRIs of 201 subjects recorded from the Children's Hospital of Zhejiang University School of Medicine. The comparisons show that the proposed DDC achieves the highest accuracy of 99.19% and dice of 71.1% for ADEM and NMOSD classification and segmentation, respectively.
Author Wang, Tianlei
Cao, Jiuwen
Xu, Lu
Lai, Xiaoping
Wei, Shaonong
Gao, Feng
Zhou, Deyang
Author_xml – sequence: 1
  givenname: Deyang
  surname: Zhou
  fullname: Zhou, Deyang
  email: kanielzhou@gmail.com
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China
– sequence: 2
  givenname: Lu
  surname: Xu
  fullname: Xu, Lu
  email: pass_019@163.com
  organization: Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, 310018, China
– sequence: 3
  givenname: Tianlei
  surname: Wang
  fullname: Wang, Tianlei
  email: tianlei.wang.cn@gmail.com
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China
– sequence: 4
  givenname: Shaonong
  surname: Wei
  fullname: Wei, Shaonong
  email: weishaonong@foxmail.com
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China
– sequence: 5
  givenname: Feng
  surname: Gao
  fullname: Gao, Feng
  email: epilepsy@zju.edu.cn
  organization: Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, 310018, China
– sequence: 6
  givenname: Xiaoping
  surname: Lai
  fullname: Lai, Xiaoping
  email: laixp@hdu.edu.cn
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China
– sequence: 7
  givenname: Jiuwen
  surname: Cao
  fullname: Cao, Jiuwen
  email: jwcao@hdu.edu.cn
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37890361$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAUha0KVAboGyDkZTcZbCdxHBZI1VB-JGglVNaWY9-Ah8QG2xnE29ejwKaLsrryp3OOru_ZRzvOO0DoiJIlJZSfrJcOJgdpyQgrM1oSSr6gBRVNW7BGsB20IKItC04E2UP7Ma4JIVxU5Ve0VzaiJSWnC_R4W5yfr07x7d017lQEgw2MbzBYp5LdADY2QsYR60HFaHurM_cOv9r0iO-LX5BwhIcRXJq5cgZr7zZ-mLZvNeC84qsPT4dot1dDhG_v8wDdX_z8s7oqbn5fXq9-3BSaNU0qBOOk5gRE3Yu-A6O5UZWgTae6jnLe1IooIRiFSuiqZ0y1baXKXjWaKai4Lg_Q9zn3OfiXCWKSo40ahkE58FOUTIiyFrxuRZYev0unbgQjn4MdVXiTH9fJgtNZoIOPMUAvtZ3_mYKyg6REbquQazlXIbdVbGmuIpurf8wf-Z_YzmYb5CNtLAQZtQWnwdgAOknj7f8D_gLpVKX_
CitedBy_id crossref_primary_10_3390_app15052830
crossref_primary_10_1016_j_neunet_2025_107207
crossref_primary_10_1016_j_apt_2024_104492
crossref_primary_10_1016_j_neucom_2024_128847
crossref_primary_10_1016_j_neurol_2024_04_004
crossref_primary_10_1016_j_bspc_2024_106764
Cites_doi 10.1016/j.compbiomed.2019.03.014
10.1109/CVPR.2015.7298965
10.1109/CVPR.2018.00464
10.1016/j.autrev.2018.01.001
10.1016/S0140-6736(16)30959-X
10.1136/jcp.2005.031195
10.1016/j.neunet.2019.08.025
10.1212/WNL.0000000000001367
10.1016/j.compbiomed.2019.103345
10.1186/s12967-021-03015-w
10.1007/978-3-030-00889-5_1
10.1111/ene.13819
10.3174/ajnr.A6003
10.1177/1352458513484547
10.3390/brainsci11081055
10.1007/s12553-018-00293-1
10.1016/j.neunet.2021.12.008
10.1016/j.neunet.2022.06.014
10.1109/CVPR.2017.683
10.1016/j.nicl.2017.10.007
10.1002/ana.25411
10.1609/aaai.v31i1.11231
10.1016/j.neunet.2012.02.023
10.1016/j.nicl.2017.12.022
10.1097/RLI.0000000000000735
10.1542/peds.2007-2758
10.1007/s10111-018-0472-4
10.1016/j.patrec.2019.11.017
10.1016/j.neunet.2020.03.017
10.1088/0031-9155/58/13/R97
10.1109/TMI.2016.2528821
10.1109/ICCV.2017.324
10.1212/WNL.0000000000006583
10.1007/s00415-018-8835-6
10.1016/j.artmed.2018.08.008
10.7861/clinmedicine.19-2-169
10.1016/j.future.2020.03.054
10.1016/j.jocn.2021.02.018
10.1016/j.neurol.2016.03.003
10.1016/j.cmpb.2018.01.003
10.1109/iccsp.2013.6577136
10.1109/TPAMI.2015.2389824
10.1371/journal.pone.0236493
10.1007/978-3-319-24574-4_28
10.1109/TPAMI.2016.2644615
10.3389/fneur.2019.01070
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2023.10.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 119
ExternalDocumentID 37890361
10_1016_j_neunet_2023_10_010
S0893608023005646
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c277t-8260560e85f8fbedc6da4817babb16675a0a8821e48c4f22a994a3fa7c2ae46c3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Tue Aug 05 09:43:18 EDT 2025
Thu Apr 03 07:05:19 EDT 2025
Tue Jul 01 03:32:16 EDT 2025
Thu Apr 24 23:10:24 EDT 2025
Fri Feb 23 02:35:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Image segmentation
Magnetic resonance imaging
Pediatric demyelinating disease
U-Net
Image classification
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c277t-8260560e85f8fbedc6da4817babb16675a0a8821e48c4f22a994a3fa7c2ae46c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37890361
PQID 2883586598
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2883586598
pubmed_primary_37890361
crossref_citationtrail_10_1016_j_neunet_2023_10_010
crossref_primary_10_1016_j_neunet_2023_10_010
elsevier_sciencedirect_doi_10_1016_j_neunet_2023_10_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
2024-Jan
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fawzi, Achuthan, Belaton (b18) 2021; 11
He, Zhang, Ren, Sun (b22) 2016
Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., et al. (2017). Residual attention network for image classification. In
Guerrero, Qin, Oktay, Bowles, Chen, Joules (b19) 2018; 17
Solomon, Naismith, Cross (b49) 2019; 92
Krupp, Tardieu, Amato, Banwell, Chitnis, Dale (b30) 2013; 19
Nitta, Sravani, Nitta, Muthu (b40) 2020; 10
De Seze, Kremer, Collongues (b15) 2016; 172
Deepak, Ameer (b16) 2019; 111
(pp. 2980–2988).
Love (b37) 2006; 59
Wang, C., Yan, X., Smith, M., Kochhar, K., & Lee, H. (2015). A unified framework for automatic wound segmentation and analysis with deep convolutional neural networks. In
Wang, Yu, Wang, Zhang, Luo, Shi (b56) 2020
Berman, M., Triki, A. R., & Blaschko, M. B. (2018). The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In
Dobson, Giovannoni (b17) 2019; 26
Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. In
Kim, Paul, Lana-Peixoto, Tenembaum, Asgari, Palace (b29) 2015; 84
Cacciaguerra, Meani, Mesaros, Radaelli, Palace, Dujmovic-Basuroski (b11) 2019; 85
(pp. 3431–3440).
Lee, Yamanakkanavar, Choi (b31) 2020; 15
Zhang, Sabuncu (b57) 2018; 31
Cireşan, Meier, Masci, Schmidhuber (b13) 2012; 32
Van der Maaten, Hinton (b52) 2008; 9
.
(pp. 3156–3164).
He, Zhang, Ren, Sun (b21) 2015; 37
Bulut, Karakaya, Salama, Levy, Tag, Huisman (b10) 2019
Shahamat, Abadeh (b46) 2020; 126
Bauer, Wiest, Nolte, Reyes (b3) 2013; 58
Bottou (b6) 2010
Ibtehaz, Rahman (b27) 2020; 121
(pp. 2415–2418).
Huang, Liu, Maaten, Weinberger (b23) 2017
Huda, Whittam, Bhojak, Chamberlain, Noonan, Jacob (b25) 2019; 19
Huang, Xin, Wang, Qi, Dong, Li (b24) 2021; 19
Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (b26) 2016
Simonyan, Zisserman (b48) 2015
Brosch, Tang, Yoo, Li, Traboulsee, Tam (b7) 2016; 35
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In
Vijay, J., & Subhashini, J. (2013). An efficient brain tumor detection methodology using K-means clustering algoriftnn. In
Li, Li, Wang (b32) 2019; 108
Liu, Huang, Qiu, Alzheimer’s Disease Neuroimaging Initiative (b34) 2022
Pieper, Halle, Kikinis (b41) 2004
Rocca, Anzalone, Storelli, Del Poggio, Cacciaguerra, Manfredi (b43) 2021; 56
Moeskops, de Bresser, Kuijf, Mendrik, Biessels, Pluim (b39) 2018; 17
Soltaninejad, Yang, Lambrou, Allinson, Jones, Barrick (b50) 2018; 157
Chen, You, Zhang, Xi, Le (b12) 2022; 147
Khan, Sikandar, Almogren, Din, Guerrieri, Fortino (b28) 2020; 109
Bernal, Kushibar, Asfaw, Valverde, Oliver, Martí (b5) 2019; 95
Sharif, Amin, Raza, Yasmin, Satapathy (b47) 2020; 129
Zhou, Z., Siddiquee, M., Tajbakhsh, N., & Liang, J. (2018). UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In
Malik, Bzdok (b38) 2022; 153
Hagiwara, Otsuka, Andica, Kato, Yokoyama, Hori (b20) 2021; 87
Amarapur (b1) 2019; 21
(pp. 4413–4421).
Qiu, He, Chen, Liu, Lu (b42) 2019; 10
(pp. 4278–4284).
(pp. 653–657).
Safavian, Batouli, Oghabian (b45) 2020; 8
Brownlee, Hardy, Fazekas, Miller (b8) 2017; 389
De Mol, Wong, Van Pelt, Ketelslegers, Bakker, Boon (b14) 2018; 265
Bruscolini, Sacchetti, La Cava, Gharbiya, Ralli, Lambiase (b9) 2018; 17
Badrinarayanan, Kendall, Cipolla (b2) 2017; 39
Lotze, Northrop, Hutton, Ross, Schiffman, Hunter (b36) 2008; 122
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In
Love (10.1016/j.neunet.2023.10.010_b37) 2006; 59
Malik (10.1016/j.neunet.2023.10.010_b38) 2022; 153
Deepak (10.1016/j.neunet.2023.10.010_b16) 2019; 111
Cacciaguerra (10.1016/j.neunet.2023.10.010_b11) 2019; 85
Khan (10.1016/j.neunet.2023.10.010_b28) 2020; 109
Cireşan (10.1016/j.neunet.2023.10.010_b13) 2012; 32
He (10.1016/j.neunet.2023.10.010_b21) 2015; 37
Badrinarayanan (10.1016/j.neunet.2023.10.010_b2) 2017; 39
Hagiwara (10.1016/j.neunet.2023.10.010_b20) 2021; 87
Huda (10.1016/j.neunet.2023.10.010_b25) 2019; 19
Guerrero (10.1016/j.neunet.2023.10.010_b19) 2018; 17
Simonyan (10.1016/j.neunet.2023.10.010_b48) 2015
10.1016/j.neunet.2023.10.010_b35
10.1016/j.neunet.2023.10.010_b33
Brownlee (10.1016/j.neunet.2023.10.010_b8) 2017; 389
Dobson (10.1016/j.neunet.2023.10.010_b17) 2019; 26
Lee (10.1016/j.neunet.2023.10.010_b31) 2020; 15
10.1016/j.neunet.2023.10.010_b51
Chen (10.1016/j.neunet.2023.10.010_b12) 2022; 147
Huang (10.1016/j.neunet.2023.10.010_b23) 2017
Bottou (10.1016/j.neunet.2023.10.010_b6) 2010
Bernal (10.1016/j.neunet.2023.10.010_b5) 2019; 95
Rocca (10.1016/j.neunet.2023.10.010_b43) 2021; 56
De Mol (10.1016/j.neunet.2023.10.010_b14) 2018; 265
Lotze (10.1016/j.neunet.2023.10.010_b36) 2008; 122
Wang (10.1016/j.neunet.2023.10.010_b56) 2020
Bauer (10.1016/j.neunet.2023.10.010_b3) 2013; 58
10.1016/j.neunet.2023.10.010_b44
Zhang (10.1016/j.neunet.2023.10.010_b57) 2018; 31
Brosch (10.1016/j.neunet.2023.10.010_b7) 2016; 35
Iandola (10.1016/j.neunet.2023.10.010_b26) 2016
Qiu (10.1016/j.neunet.2023.10.010_b42) 2019; 10
Fawzi (10.1016/j.neunet.2023.10.010_b18) 2021; 11
Bulut (10.1016/j.neunet.2023.10.010_b10) 2019
Sharif (10.1016/j.neunet.2023.10.010_b47) 2020; 129
Amarapur (10.1016/j.neunet.2023.10.010_b1) 2019; 21
Safavian (10.1016/j.neunet.2023.10.010_b45) 2020; 8
Kim (10.1016/j.neunet.2023.10.010_b29) 2015; 84
He (10.1016/j.neunet.2023.10.010_b22) 2016
Liu (10.1016/j.neunet.2023.10.010_b34) 2022
10.1016/j.neunet.2023.10.010_b58
Huang (10.1016/j.neunet.2023.10.010_b24) 2021; 19
10.1016/j.neunet.2023.10.010_b53
10.1016/j.neunet.2023.10.010_b55
10.1016/j.neunet.2023.10.010_b54
Solomon (10.1016/j.neunet.2023.10.010_b49) 2019; 92
Ibtehaz (10.1016/j.neunet.2023.10.010_b27) 2020; 121
Soltaninejad (10.1016/j.neunet.2023.10.010_b50) 2018; 157
Bruscolini (10.1016/j.neunet.2023.10.010_b9) 2018; 17
Krupp (10.1016/j.neunet.2023.10.010_b30) 2013; 19
Li (10.1016/j.neunet.2023.10.010_b32) 2019; 108
Moeskops (10.1016/j.neunet.2023.10.010_b39) 2018; 17
Van der Maaten (10.1016/j.neunet.2023.10.010_b52) 2008; 9
Pieper (10.1016/j.neunet.2023.10.010_b41) 2004
10.1016/j.neunet.2023.10.010_b4
De Seze (10.1016/j.neunet.2023.10.010_b15) 2016; 172
Nitta (10.1016/j.neunet.2023.10.010_b40) 2020; 10
Shahamat (10.1016/j.neunet.2023.10.010_b46) 2020; 126
References_xml – volume: 84
  year: 2015
  ident: b29
  article-title: MRI characteristics of neuromyelitis optica spectrum disorder: an international update
  publication-title: Neurology
– volume: 19
  start-page: 1261
  year: 2013
  end-page: 1267
  ident: b30
  article-title: International pediatric multiple sclerosis study group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions
  publication-title: Multiple Sclerosis Journal
– reference: (pp. 653–657).
– year: 2022
  ident: b34
  article-title: Monte Carlo ensemble neural network for the diagnosis of Alzheimer’s disease
  publication-title: Neural Networks
– reference: Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In
– volume: 389
  start-page: 1336
  year: 2017
  end-page: 1346
  ident: b8
  article-title: Diagnosis of multiple sclerosis: progress and challenges
  publication-title: The Lancet
– volume: 109
  start-page: 360
  year: 2020
  end-page: 367
  ident: b28
  article-title: IoMT-based computational approach for detecting brain tumor
  publication-title: Future Generation Computer Systems
– reference: Berman, M., Triki, A. R., & Blaschko, M. B. (2018). The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In
– year: 2019
  ident: b10
  article-title: Brain MRI findings in pediatric-onset neuromyelitis optica spectrum disorder: Challenges in differentiation from acute disseminated encephalomyelitis
  publication-title: AJNR. American Journal of Neuroradiology
– volume: 15
  year: 2020
  ident: b31
  article-title: Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture
  publication-title: PLoS One
– volume: 58
  start-page: R97
  year: 2013
  ident: b3
  article-title: A survey of MRI-based medical image analysis for brain tumor studies
  publication-title: Physics in Medicine and Biology
– reference: (pp. 4413–4421).
– volume: 126
  start-page: 218
  year: 2020
  end-page: 234
  ident: b46
  article-title: Brain MRI analysis using a deep learning based evolutionary approach
  publication-title: Neural Networks
– reference: Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. In
– year: 2010
  ident: b6
  article-title: Large-scale machine learning with stochastic gradient descent
  publication-title: Physica-Verlag HD
– reference: (pp. 4278–4284).
– volume: 35
  start-page: 1229
  year: 2016
  end-page: 1239
  ident: b7
  article-title: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
  publication-title: IEEE Transactions on Medical Imaging
– reference: (pp. 2415–2418).
– reference: (pp. 3156–3164).
– volume: 19
  start-page: 169
  year: 2019
  ident: b25
  article-title: Neuromyelitis optica spectrum disorders
  publication-title: Clinical Medicine
– volume: 56
  start-page: 252
  year: 2021
  end-page: 260
  ident: b43
  article-title: Deep learning on conventional magnetic resonance imaging improves the diagnosis of multiple sclerosis mimics
  publication-title: Investigative Radiology
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: b23
  article-title: Densely connected convolutional networks
  publication-title: Los Alamitos, CA, USA: 2017 IEEE conference on computer vision and pattern recognition
– reference: Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., et al. (2017). Residual attention network for image classification. In
– volume: 59
  start-page: 1151
  year: 2006
  end-page: 1159
  ident: b37
  article-title: Demyelinating diseases
  publication-title: Journal of Clinical Pathology
– volume: 129
  start-page: 150
  year: 2020
  end-page: 157
  ident: b47
  article-title: An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor
  publication-title: Pattern Recognition Letters
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: b21
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 10
  year: 2019
  ident: b42
  article-title: Pregnancy-related immune changes and demyelinating diseases of the central nervous system
  publication-title: Frontiers in Neurology
– volume: 21
  start-page: 357
  year: 2019
  end-page: 369
  ident: b1
  article-title: Cognition-based MRI brain tumor segmentation technique using modified level set method
  publication-title: Cognition, Technology & Work
– year: 2016
  ident: b26
  article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and ¡0.5MB model size
– volume: 153
  start-page: 325
  year: 2022
  end-page: 338
  ident: b38
  article-title: From YouTube to the brain: Transfer learning can improve brain-imaging predictions with deep learning
  publication-title: Neural Networks
– volume: 9
  year: 2008
  ident: b52
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume: 11
  start-page: 1055
  year: 2021
  ident: b18
  article-title: Brain image segmentation in recent years: A narrative review
  publication-title: Brain Sciences
– reference: Wang, C., Yan, X., Smith, M., Kochhar, K., & Lee, H. (2015). A unified framework for automatic wound segmentation and analysis with deep convolutional neural networks. In
– reference: (pp. 2980–2988).
– volume: 26
  start-page: 27
  year: 2019
  end-page: 40
  ident: b17
  article-title: Multiple sclerosis–a review
  publication-title: European Journal of Neurology
– volume: 122
  year: 2008
  ident: b36
  article-title: Spectrum of pediatric neuromyelitis optica
  publication-title: Pediatrics
– reference: Zhou, Z., Siddiquee, M., Tajbakhsh, N., & Liang, J. (2018). UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In
– year: 2016
  ident: b22
  article-title: Deep residual learning for image recognition
  publication-title: IEEE
– year: 2015
  ident: b48
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 17
  start-page: 251
  year: 2018
  end-page: 262
  ident: b39
  article-title: Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI
  publication-title: NeuroImage: Clinical
– start-page: 632
  year: 2004
  end-page: 635
  ident: b41
  article-title: 3D slicer
  publication-title: 2004 2nd IEEE international symposium on biomedical imaging: Nano to macro (IEEE Cat No. 04EX821)
– volume: 8
  start-page: 400
  year: 2020
  end-page: 410
  ident: b45
  article-title: An automatic level set method for hippocampus segmentation in MR images
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
– volume: 17
  start-page: 918
  year: 2018
  end-page: 934
  ident: b19
  article-title: White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks
  publication-title: NeuroImage: Clinical
– volume: 85
  start-page: 371
  year: 2019
  end-page: 384
  ident: b11
  article-title: Brain and cord imaging features in neuromyelitis optica spectrum disorders
  publication-title: Annals of Neurology
– volume: 31
  year: 2018
  ident: b57
  article-title: Generalized cross entropy loss for training deep neural networks with noisy labels
  publication-title: Advances in Neural Information Processing Systems
– volume: 92
  start-page: 26
  year: 2019
  end-page: 33
  ident: b49
  article-title: Misdiagnosis of multiple sclerosis: Impact of the 2017 McDonald criteria on clinical practice
  publication-title: Neurology
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b2
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 10
  start-page: 281
  year: 2020
  end-page: 287
  ident: b40
  article-title: Dominant gray level based K-means algorithm for MRI images
  publication-title: Health and Technology
– volume: 265
  start-page: 1310
  year: 2018
  end-page: 1319
  ident: b14
  article-title: Incidence and outcome of acquired demyelinating syndromes in dutch children: update of a nationwide and prospective study
  publication-title: Journal of Neurology
– volume: 172
  start-page: 256
  year: 2016
  end-page: 262
  ident: b15
  article-title: Neuromyelitis optica spectrum disorder (NMOSD): a new concept
  publication-title: Revue Neurologique
– volume: 17
  start-page: 195
  year: 2018
  end-page: 200
  ident: b9
  article-title: Diagnosis and management of neuromyelitis optica spectrum disorders-An update
  publication-title: Autoimmunity Reviews
– reference: Vijay, J., & Subhashini, J. (2013). An efficient brain tumor detection methodology using K-means clustering algoriftnn. In
– volume: 147
  start-page: 53
  year: 2022
  end-page: 62
  ident: b12
  article-title: UTRAD: Anomaly detection and localization with U-transformer
  publication-title: Neural Networks
– volume: 32
  start-page: 333
  year: 2012
  end-page: 338
  ident: b13
  article-title: Multi-column deep neural network for traffic sign classification
  publication-title: Neural Networks
– volume: 111
  year: 2019
  ident: b16
  article-title: Brain tumor classification using deep CNN features via transfer learning
  publication-title: Computers in Biology and Medicine
– volume: 19
  start-page: 1
  year: 2021
  end-page: 12
  ident: b24
  article-title: Multi-parametric MRI phenotype with trustworthy machine learning for differentiating CNS demyelinating diseases
  publication-title: Journal of Translational Medicine
– volume: 157
  start-page: 69
  year: 2018
  end-page: 84
  ident: b50
  article-title: Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels
  publication-title: Computer Methods and Programs in Biomedicine
– start-page: 1736
  year: 2020
  ident: b56
  article-title: 3D compressed convolutional neural network differentiates neuromyelitis optical spectrum disorders from multiple sclerosis using automated white matter hyperintensities segmentations
  publication-title: Frontiers in Physiology
– volume: 121
  start-page: 74
  year: 2020
  end-page: 87
  ident: b27
  article-title: MultiResUNet: Rethinking the U-net architecture for multimodal biomedical image segmentation
  publication-title: Neural Networks
– reference: Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In
– reference: .
– volume: 108
  start-page: 150
  year: 2019
  end-page: 160
  ident: b32
  article-title: A novel end-to-end brain tumor segmentation method using improved fully convolutional networks
  publication-title: Computers in Biology and Medicine
– reference: (pp. 3431–3440).
– volume: 87
  start-page: 55
  year: 2021
  end-page: 58
  ident: b20
  article-title: Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorders by multiparametric quantitative MRI using convolutional neural network
  publication-title: Journal of Clinical Neuroscience
– volume: 95
  start-page: 64
  year: 2019
  end-page: 81
  ident: b5
  article-title: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review
  publication-title: Artificial Intelligence in Medicine
– reference: Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In
– volume: 108
  start-page: 150
  year: 2019
  ident: 10.1016/j.neunet.2023.10.010_b32
  article-title: A novel end-to-end brain tumor segmentation method using improved fully convolutional networks
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2019.03.014
– ident: 10.1016/j.neunet.2023.10.010_b35
  doi: 10.1109/CVPR.2015.7298965
– ident: 10.1016/j.neunet.2023.10.010_b4
  doi: 10.1109/CVPR.2018.00464
– volume: 17
  start-page: 195
  issue: 3
  year: 2018
  ident: 10.1016/j.neunet.2023.10.010_b9
  article-title: Diagnosis and management of neuromyelitis optica spectrum disorders-An update
  publication-title: Autoimmunity Reviews
  doi: 10.1016/j.autrev.2018.01.001
– volume: 8
  start-page: 400
  issue: 4
  year: 2020
  ident: 10.1016/j.neunet.2023.10.010_b45
  article-title: An automatic level set method for hippocampus segmentation in MR images
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
– volume: 389
  start-page: 1336
  issue: 10076
  year: 2017
  ident: 10.1016/j.neunet.2023.10.010_b8
  article-title: Diagnosis of multiple sclerosis: progress and challenges
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(16)30959-X
– volume: 59
  start-page: 1151
  issue: 11
  year: 2006
  ident: 10.1016/j.neunet.2023.10.010_b37
  article-title: Demyelinating diseases
  publication-title: Journal of Clinical Pathology
  doi: 10.1136/jcp.2005.031195
– start-page: 632
  year: 2004
  ident: 10.1016/j.neunet.2023.10.010_b41
  article-title: 3D slicer
– volume: 121
  start-page: 74
  year: 2020
  ident: 10.1016/j.neunet.2023.10.010_b27
  article-title: MultiResUNet: Rethinking the U-net architecture for multimodal biomedical image segmentation
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.08.025
– volume: 84
  year: 2015
  ident: 10.1016/j.neunet.2023.10.010_b29
  article-title: MRI characteristics of neuromyelitis optica spectrum disorder: an international update
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000001367
– volume: 111
  year: 2019
  ident: 10.1016/j.neunet.2023.10.010_b16
  article-title: Brain tumor classification using deep CNN features via transfer learning
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2019.103345
– volume: 19
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.neunet.2023.10.010_b24
  article-title: Multi-parametric MRI phenotype with trustworthy machine learning for differentiating CNS demyelinating diseases
  publication-title: Journal of Translational Medicine
  doi: 10.1186/s12967-021-03015-w
– ident: 10.1016/j.neunet.2023.10.010_b58
  doi: 10.1007/978-3-030-00889-5_1
– volume: 26
  start-page: 27
  issue: 1
  year: 2019
  ident: 10.1016/j.neunet.2023.10.010_b17
  article-title: Multiple sclerosis–a review
  publication-title: European Journal of Neurology
  doi: 10.1111/ene.13819
– year: 2015
  ident: 10.1016/j.neunet.2023.10.010_b48
– year: 2019
  ident: 10.1016/j.neunet.2023.10.010_b10
  article-title: Brain MRI findings in pediatric-onset neuromyelitis optica spectrum disorder: Challenges in differentiation from acute disseminated encephalomyelitis
  publication-title: AJNR. American Journal of Neuroradiology
  doi: 10.3174/ajnr.A6003
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.neunet.2023.10.010_b52
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume: 19
  start-page: 1261
  issue: 10
  year: 2013
  ident: 10.1016/j.neunet.2023.10.010_b30
  article-title: International pediatric multiple sclerosis study group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions
  publication-title: Multiple Sclerosis Journal
  doi: 10.1177/1352458513484547
– volume: 11
  start-page: 1055
  issue: 8
  year: 2021
  ident: 10.1016/j.neunet.2023.10.010_b18
  article-title: Brain image segmentation in recent years: A narrative review
  publication-title: Brain Sciences
  doi: 10.3390/brainsci11081055
– volume: 10
  start-page: 281
  issue: 1
  year: 2020
  ident: 10.1016/j.neunet.2023.10.010_b40
  article-title: Dominant gray level based K-means algorithm for MRI images
  publication-title: Health and Technology
  doi: 10.1007/s12553-018-00293-1
– volume: 147
  start-page: 53
  year: 2022
  ident: 10.1016/j.neunet.2023.10.010_b12
  article-title: UTRAD: Anomaly detection and localization with U-transformer
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.12.008
– volume: 153
  start-page: 325
  year: 2022
  ident: 10.1016/j.neunet.2023.10.010_b38
  article-title: From YouTube to the brain: Transfer learning can improve brain-imaging predictions with deep learning
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2022.06.014
– ident: 10.1016/j.neunet.2023.10.010_b54
  doi: 10.1109/CVPR.2017.683
– volume: 17
  start-page: 251
  year: 2018
  ident: 10.1016/j.neunet.2023.10.010_b39
  article-title: Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2017.10.007
– volume: 85
  start-page: 371
  issue: 3
  year: 2019
  ident: 10.1016/j.neunet.2023.10.010_b11
  article-title: Brain and cord imaging features in neuromyelitis optica spectrum disorders
  publication-title: Annals of Neurology
  doi: 10.1002/ana.25411
– ident: 10.1016/j.neunet.2023.10.010_b51
  doi: 10.1609/aaai.v31i1.11231
– volume: 32
  start-page: 333
  issn: 0893-6080
  year: 2012
  ident: 10.1016/j.neunet.2023.10.010_b13
  article-title: Multi-column deep neural network for traffic sign classification
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.02.023
– volume: 17
  start-page: 918
  year: 2018
  ident: 10.1016/j.neunet.2023.10.010_b19
  article-title: White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2017.12.022
– volume: 56
  start-page: 252
  issue: 4
  year: 2021
  ident: 10.1016/j.neunet.2023.10.010_b43
  article-title: Deep learning on conventional magnetic resonance imaging improves the diagnosis of multiple sclerosis mimics
  publication-title: Investigative Radiology
  doi: 10.1097/RLI.0000000000000735
– volume: 122
  issue: 5
  year: 2008
  ident: 10.1016/j.neunet.2023.10.010_b36
  article-title: Spectrum of pediatric neuromyelitis optica
  publication-title: Pediatrics
  doi: 10.1542/peds.2007-2758
– volume: 21
  start-page: 357
  issue: 3
  year: 2019
  ident: 10.1016/j.neunet.2023.10.010_b1
  article-title: Cognition-based MRI brain tumor segmentation technique using modified level set method
  publication-title: Cognition, Technology & Work
  doi: 10.1007/s10111-018-0472-4
– volume: 129
  start-page: 150
  year: 2020
  ident: 10.1016/j.neunet.2023.10.010_b47
  article-title: An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2019.11.017
– ident: 10.1016/j.neunet.2023.10.010_b55
– year: 2022
  ident: 10.1016/j.neunet.2023.10.010_b34
  article-title: Monte Carlo ensemble neural network for the diagnosis of Alzheimer’s disease
  publication-title: Neural Networks
– volume: 126
  start-page: 218
  year: 2020
  ident: 10.1016/j.neunet.2023.10.010_b46
  article-title: Brain MRI analysis using a deep learning based evolutionary approach
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.03.017
– volume: 58
  start-page: R97
  issue: 13
  year: 2013
  ident: 10.1016/j.neunet.2023.10.010_b3
  article-title: A survey of MRI-based medical image analysis for brain tumor studies
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/58/13/R97
– volume: 35
  start-page: 1229
  issue: 5
  year: 2016
  ident: 10.1016/j.neunet.2023.10.010_b7
  article-title: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2528821
– ident: 10.1016/j.neunet.2023.10.010_b33
  doi: 10.1109/ICCV.2017.324
– volume: 92
  start-page: 26
  issue: 1
  year: 2019
  ident: 10.1016/j.neunet.2023.10.010_b49
  article-title: Misdiagnosis of multiple sclerosis: Impact of the 2017 McDonald criteria on clinical practice
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000006583
– volume: 265
  start-page: 1310
  issue: 6
  year: 2018
  ident: 10.1016/j.neunet.2023.10.010_b14
  article-title: Incidence and outcome of acquired demyelinating syndromes in dutch children: update of a nationwide and prospective study
  publication-title: Journal of Neurology
  doi: 10.1007/s00415-018-8835-6
– volume: 95
  start-page: 64
  year: 2019
  ident: 10.1016/j.neunet.2023.10.010_b5
  article-title: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2018.08.008
– year: 2010
  ident: 10.1016/j.neunet.2023.10.010_b6
  article-title: Large-scale machine learning with stochastic gradient descent
  publication-title: Physica-Verlag HD
– volume: 19
  start-page: 169
  issue: 2
  year: 2019
  ident: 10.1016/j.neunet.2023.10.010_b25
  article-title: Neuromyelitis optica spectrum disorders
  publication-title: Clinical Medicine
  doi: 10.7861/clinmedicine.19-2-169
– volume: 109
  start-page: 360
  year: 2020
  ident: 10.1016/j.neunet.2023.10.010_b28
  article-title: IoMT-based computational approach for detecting brain tumor
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2020.03.054
– volume: 31
  year: 2018
  ident: 10.1016/j.neunet.2023.10.010_b57
  article-title: Generalized cross entropy loss for training deep neural networks with noisy labels
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1736
  year: 2020
  ident: 10.1016/j.neunet.2023.10.010_b56
  article-title: 3D compressed convolutional neural network differentiates neuromyelitis optical spectrum disorders from multiple sclerosis using automated white matter hyperintensities segmentations
  publication-title: Frontiers in Physiology
– volume: 87
  start-page: 55
  year: 2021
  ident: 10.1016/j.neunet.2023.10.010_b20
  article-title: Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorders by multiparametric quantitative MRI using convolutional neural network
  publication-title: Journal of Clinical Neuroscience
  doi: 10.1016/j.jocn.2021.02.018
– volume: 172
  start-page: 256
  issue: 4–5
  year: 2016
  ident: 10.1016/j.neunet.2023.10.010_b15
  article-title: Neuromyelitis optica spectrum disorder (NMOSD): a new concept
  publication-title: Revue Neurologique
  doi: 10.1016/j.neurol.2016.03.003
– volume: 157
  start-page: 69
  year: 2018
  ident: 10.1016/j.neunet.2023.10.010_b50
  article-title: Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2018.01.003
– year: 2016
  ident: 10.1016/j.neunet.2023.10.010_b22
  article-title: Deep residual learning for image recognition
  publication-title: IEEE
– start-page: 2261
  issn: 1063-6919
  year: 2017
  ident: 10.1016/j.neunet.2023.10.010_b23
  article-title: Densely connected convolutional networks
– ident: 10.1016/j.neunet.2023.10.010_b53
  doi: 10.1109/iccsp.2013.6577136
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 10.1016/j.neunet.2023.10.010_b21
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2015.2389824
– volume: 15
  issue: 8
  year: 2020
  ident: 10.1016/j.neunet.2023.10.010_b31
  article-title: Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0236493
– year: 2016
  ident: 10.1016/j.neunet.2023.10.010_b26
– ident: 10.1016/j.neunet.2023.10.010_b44
  doi: 10.1007/978-3-319-24574-4_28
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.neunet.2023.10.010_b2
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2644615
– volume: 10
  year: 2019
  ident: 10.1016/j.neunet.2023.10.010_b42
  article-title: Pregnancy-related immune changes and demyelinating diseases of the central nervous system
  publication-title: Frontiers in Neurology
  doi: 10.3389/fneur.2019.01070
SSID ssj0006843
Score 2.4718757
Snippet Childhood demyelinative diseases classification (DDC) with brain magnetic resonance imaging (MRI) is crucial to clinical diagnosis. But few attentions have...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108
SubjectTerms Aromatic-L-Amino-Acid Decarboxylases
Brain - diagnostic imaging
Child
Deep learning
Humans
Image classification
Image Processing, Computer-Assisted - methods
Image segmentation
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Neuromyelitis Optica - diagnostic imaging
Neuromyelitis Optica - pathology
Pediatric demyelinating disease
U-Net
Title M-DDC: MRI based demyelinative diseases classification with U-Net segmentation and convolutional network
URI https://dx.doi.org/10.1016/j.neunet.2023.10.010
https://www.ncbi.nlm.nih.gov/pubmed/37890361
https://www.proquest.com/docview/2883586598
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhECZGL158P-ormHjFbhcWWG9Nq6ma9qA28bZhgWqN0sZur_52mV1WY6Jp4nEJZAkz8A3wfQNCZyaOjAcCSwQoZFhqBVGSpSTNWWJEYqgoFd79Ae8N2c1j8riEOrUWBmiVYe2v1vRytQ4lzTCazel43LyPPNRykIpCxnXOIO02ZK_zPn3-8U3z4LJizvnKBGrX8rmS4-Xs3FlgVMb0HDheoKP9HZ7-Cj9LGLraQGshfsTtqoubaMm6LbRev82Aw1TdRs990u12LnD_7hoDUhkMwhEQn5eZvnG4mJlhDeEz8IVKE2E4l8VDMrAFntmnt6BMclg5g4GhHjzVd8FVBPIdNLy6fOj0SHhVgehYiIJI2MHwyMpkJEe5NZobxWRL5CrPW9zvH1SkfNjdskxqNopjlaZM0ZESOlaWcU130bKbOLuPcK4Np8pE0jf1IAeclST3gC8sjbSRpoFoPZiZDinH4eWL16zmlr1klQkyMAGUehM0EPlqNa1SbiyoL2o7ZT9cJ_OosKDlaW3WzM8quCpRzk7mswzeYE4kT1LZQHuVvb_6QkE7THnr4N__PUSr_otVJzlHaLl4n9tjH9sU-UnpvCdopX192xt8As7R-TQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB3RcGgvQEsLgX4YqVc3m7XX9nJDAZQUkgMlEjfLazstCAwiyf_Hs-uNVAmExNXr0Voee2ZsvzcD8NPlmYuOwFOJDBleekmN4iUtK144WTgma4b3eCKGU_77qrhag0HLhUFYZbL9jU2vrXVq6aXZ7D1cX_f-ZNHVCqSKYsZ1wcU7WMfsVLwD60ejs-FkZZCFasBzsT9FgZZBV8O8gl8Gj6DKnP1CmBdSaZ_3UC9FoLUnOt2CjRRCkqNmlB9hzYdPsNmWZyBpt27DvzE9Ph4ckvHFiKCzcgS5I8g_r5N9k_Q2MycWI2iEDNVaIng1S6Z04hdk7v_eJXJSICY4giD1tFjjEEKDIf8M09OTy8GQpsIK1OZSLqjCQ4zIvCpmalZ5Z4UzXPVlZaqqL-IRwmQmRt59z5Xlszw3ZckNmxlpc-O5sOwLdMJ98LtAKusEMy5TUTT6OYStFFX0-dKzzDrlusDaydQ2ZR3H4he3uoWX3ehGBRpVgK1RBV2gK6mHJuvGK_1lqyf93-rR0TG8InnQqlXHjYWvJSb4--VcYxnmQomiVF3YafS9GgtD-jAT_b03__cHvB9ejs_1-Whytg8f4hfeXOx8hc7icem_xVBnUX1PS_kJVFz75Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M-DDC%3A+MRI+based+demyelinative+diseases+classification+with+U-Net+segmentation+and+convolutional+network&rft.jtitle=Neural+networks&rft.au=Zhou%2C+Deyang&rft.au=Xu%2C+Lu&rft.au=Wang%2C+Tianlei&rft.au=Wei%2C+Shaonong&rft.date=2024-01-01&rft.issn=0893-6080&rft.volume=169&rft.spage=108&rft.epage=119&rft_id=info:doi/10.1016%2Fj.neunet.2023.10.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2023_10_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon