M-DDC: MRI based demyelinative diseases classification with U-Net segmentation and convolutional network
Childhood demyelinative diseases classification (DDC) with brain magnetic resonance imaging (MRI) is crucial to clinical diagnosis. But few attentions have been paid to DDC in the past. How to accurately differentiate pediatric-onset neuromyelitis optica spectrum disorder (NMOSD) from acute dissemin...
Saved in:
Published in | Neural networks Vol. 169; pp. 108 - 119 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2023.10.010 |
Cover
Loading…
Abstract | Childhood demyelinative diseases classification (DDC) with brain magnetic resonance imaging (MRI) is crucial to clinical diagnosis. But few attentions have been paid to DDC in the past. How to accurately differentiate pediatric-onset neuromyelitis optica spectrum disorder (NMOSD) from acute disseminated encephalomyelitis (ADEM) based on MRI is challenging in DDC. In this paper, a novel architecture M-DDC based on joint U-Net segmentation network and deep convolutional network is developed. The U-Net segmentation can provide pixel-level structure information, that helps the lesion areas location and size estimation. The classification branch in DDC can detect the regions of interest inside MRIs, including the white matter regions where lesions appear. The performance of the proposed method is evaluated on MRIs of 201 subjects recorded from the Children’s Hospital of Zhejiang University School of Medicine. The comparisons show that the proposed DDC achieves the highest accuracy of 99.19% and dice of 71.1% for ADEM and NMOSD classification and segmentation, respectively. |
---|---|
AbstractList | Childhood demyelinative diseases classification (DDC) with brain magnetic resonance imaging (MRI) is crucial to clinical diagnosis. But few attentions have been paid to DDC in the past. How to accurately differentiate pediatric-onset neuromyelitis optica spectrum disorder (NMOSD) from acute disseminated encephalomyelitis (ADEM) based on MRI is challenging in DDC. In this paper, a novel architecture M-DDC based on joint U-Net segmentation network and deep convolutional network is developed. The U-Net segmentation can provide pixel-level structure information, that helps the lesion areas location and size estimation. The classification branch in DDC can detect the regions of interest inside MRIs, including the white matter regions where lesions appear. The performance of the proposed method is evaluated on MRIs of 201 subjects recorded from the Children’s Hospital of Zhejiang University School of Medicine. The comparisons show that the proposed DDC achieves the highest accuracy of 99.19% and dice of 71.1% for ADEM and NMOSD classification and segmentation, respectively. Childhood demyelinative diseases classification (DDC) with brain magnetic resonance imaging (MRI) is crucial to clinical diagnosis. But few attentions have been paid to DDC in the past. How to accurately differentiate pediatric-onset neuromyelitis optica spectrum disorder (NMOSD) from acute disseminated encephalomyelitis (ADEM) based on MRI is challenging in DDC. In this paper, a novel architecture M-DDC based on joint U-Net segmentation network and deep convolutional network is developed. The U-Net segmentation can provide pixel-level structure information, that helps the lesion areas location and size estimation. The classification branch in DDC can detect the regions of interest inside MRIs, including the white matter regions where lesions appear. The performance of the proposed method is evaluated on MRIs of 201 subjects recorded from the Children's Hospital of Zhejiang University School of Medicine. The comparisons show that the proposed DDC achieves the highest accuracy of 99.19% and dice of 71.1% for ADEM and NMOSD classification and segmentation, respectively.Childhood demyelinative diseases classification (DDC) with brain magnetic resonance imaging (MRI) is crucial to clinical diagnosis. But few attentions have been paid to DDC in the past. How to accurately differentiate pediatric-onset neuromyelitis optica spectrum disorder (NMOSD) from acute disseminated encephalomyelitis (ADEM) based on MRI is challenging in DDC. In this paper, a novel architecture M-DDC based on joint U-Net segmentation network and deep convolutional network is developed. The U-Net segmentation can provide pixel-level structure information, that helps the lesion areas location and size estimation. The classification branch in DDC can detect the regions of interest inside MRIs, including the white matter regions where lesions appear. The performance of the proposed method is evaluated on MRIs of 201 subjects recorded from the Children's Hospital of Zhejiang University School of Medicine. The comparisons show that the proposed DDC achieves the highest accuracy of 99.19% and dice of 71.1% for ADEM and NMOSD classification and segmentation, respectively. |
Author | Wang, Tianlei Cao, Jiuwen Xu, Lu Lai, Xiaoping Wei, Shaonong Gao, Feng Zhou, Deyang |
Author_xml | – sequence: 1 givenname: Deyang surname: Zhou fullname: Zhou, Deyang email: kanielzhou@gmail.com organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China – sequence: 2 givenname: Lu surname: Xu fullname: Xu, Lu email: pass_019@163.com organization: Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, 310018, China – sequence: 3 givenname: Tianlei surname: Wang fullname: Wang, Tianlei email: tianlei.wang.cn@gmail.com organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China – sequence: 4 givenname: Shaonong surname: Wei fullname: Wei, Shaonong email: weishaonong@foxmail.com organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China – sequence: 5 givenname: Feng surname: Gao fullname: Gao, Feng email: epilepsy@zju.edu.cn organization: Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, 310018, China – sequence: 6 givenname: Xiaoping surname: Lai fullname: Lai, Xiaoping email: laixp@hdu.edu.cn organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China – sequence: 7 givenname: Jiuwen surname: Cao fullname: Cao, Jiuwen email: jwcao@hdu.edu.cn organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37890361$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1O3DAUha0KVAboGyDkZTcZbCdxHBZI1VB-JGglVNaWY9-Ah8QG2xnE29ejwKaLsrryp3OOru_ZRzvOO0DoiJIlJZSfrJcOJgdpyQgrM1oSSr6gBRVNW7BGsB20IKItC04E2UP7Ma4JIVxU5Ve0VzaiJSWnC_R4W5yfr07x7d017lQEgw2MbzBYp5LdADY2QsYR60HFaHurM_cOv9r0iO-LX5BwhIcRXJq5cgZr7zZ-mLZvNeC84qsPT4dot1dDhG_v8wDdX_z8s7oqbn5fXq9-3BSaNU0qBOOk5gRE3Yu-A6O5UZWgTae6jnLe1IooIRiFSuiqZ0y1baXKXjWaKai4Lg_Q9zn3OfiXCWKSo40ahkE58FOUTIiyFrxuRZYev0unbgQjn4MdVXiTH9fJgtNZoIOPMUAvtZ3_mYKyg6REbquQazlXIbdVbGmuIpurf8wf-Z_YzmYb5CNtLAQZtQWnwdgAOknj7f8D_gLpVKX_ |
CitedBy_id | crossref_primary_10_3390_app15052830 crossref_primary_10_1016_j_neunet_2025_107207 crossref_primary_10_1016_j_apt_2024_104492 crossref_primary_10_1016_j_neucom_2024_128847 crossref_primary_10_1016_j_neurol_2024_04_004 crossref_primary_10_1016_j_bspc_2024_106764 |
Cites_doi | 10.1016/j.compbiomed.2019.03.014 10.1109/CVPR.2015.7298965 10.1109/CVPR.2018.00464 10.1016/j.autrev.2018.01.001 10.1016/S0140-6736(16)30959-X 10.1136/jcp.2005.031195 10.1016/j.neunet.2019.08.025 10.1212/WNL.0000000000001367 10.1016/j.compbiomed.2019.103345 10.1186/s12967-021-03015-w 10.1007/978-3-030-00889-5_1 10.1111/ene.13819 10.3174/ajnr.A6003 10.1177/1352458513484547 10.3390/brainsci11081055 10.1007/s12553-018-00293-1 10.1016/j.neunet.2021.12.008 10.1016/j.neunet.2022.06.014 10.1109/CVPR.2017.683 10.1016/j.nicl.2017.10.007 10.1002/ana.25411 10.1609/aaai.v31i1.11231 10.1016/j.neunet.2012.02.023 10.1016/j.nicl.2017.12.022 10.1097/RLI.0000000000000735 10.1542/peds.2007-2758 10.1007/s10111-018-0472-4 10.1016/j.patrec.2019.11.017 10.1016/j.neunet.2020.03.017 10.1088/0031-9155/58/13/R97 10.1109/TMI.2016.2528821 10.1109/ICCV.2017.324 10.1212/WNL.0000000000006583 10.1007/s00415-018-8835-6 10.1016/j.artmed.2018.08.008 10.7861/clinmedicine.19-2-169 10.1016/j.future.2020.03.054 10.1016/j.jocn.2021.02.018 10.1016/j.neurol.2016.03.003 10.1016/j.cmpb.2018.01.003 10.1109/iccsp.2013.6577136 10.1109/TPAMI.2015.2389824 10.1371/journal.pone.0236493 10.1007/978-3-319-24574-4_28 10.1109/TPAMI.2016.2644615 10.3389/fneur.2019.01070 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.neunet.2023.10.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 119 |
ExternalDocumentID | 37890361 10_1016_j_neunet_2023_10_010 S0893608023005646 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c277t-8260560e85f8fbedc6da4817babb16675a0a8821e48c4f22a994a3fa7c2ae46c3 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 1879-2782 |
IngestDate | Tue Aug 05 09:43:18 EDT 2025 Thu Apr 03 07:05:19 EDT 2025 Tue Jul 01 03:32:16 EDT 2025 Thu Apr 24 23:10:24 EDT 2025 Fri Feb 23 02:35:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Image segmentation Magnetic resonance imaging Pediatric demyelinating disease U-Net Image classification |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c277t-8260560e85f8fbedc6da4817babb16675a0a8821e48c4f22a994a3fa7c2ae46c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 37890361 |
PQID | 2883586598 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2883586598 pubmed_primary_37890361 crossref_citationtrail_10_1016_j_neunet_2023_10_010 crossref_primary_10_1016_j_neunet_2023_10_010 elsevier_sciencedirect_doi_10_1016_j_neunet_2023_10_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 2024-Jan 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fawzi, Achuthan, Belaton (b18) 2021; 11 He, Zhang, Ren, Sun (b22) 2016 Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., et al. (2017). Residual attention network for image classification. In Guerrero, Qin, Oktay, Bowles, Chen, Joules (b19) 2018; 17 Solomon, Naismith, Cross (b49) 2019; 92 Krupp, Tardieu, Amato, Banwell, Chitnis, Dale (b30) 2013; 19 Nitta, Sravani, Nitta, Muthu (b40) 2020; 10 De Seze, Kremer, Collongues (b15) 2016; 172 Deepak, Ameer (b16) 2019; 111 (pp. 2980–2988). Love (b37) 2006; 59 Wang, C., Yan, X., Smith, M., Kochhar, K., & Lee, H. (2015). A unified framework for automatic wound segmentation and analysis with deep convolutional neural networks. In Wang, Yu, Wang, Zhang, Luo, Shi (b56) 2020 Berman, M., Triki, A. R., & Blaschko, M. B. (2018). The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In Dobson, Giovannoni (b17) 2019; 26 Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. In Kim, Paul, Lana-Peixoto, Tenembaum, Asgari, Palace (b29) 2015; 84 Cacciaguerra, Meani, Mesaros, Radaelli, Palace, Dujmovic-Basuroski (b11) 2019; 85 (pp. 3431–3440). Lee, Yamanakkanavar, Choi (b31) 2020; 15 Zhang, Sabuncu (b57) 2018; 31 Cireşan, Meier, Masci, Schmidhuber (b13) 2012; 32 Van der Maaten, Hinton (b52) 2008; 9 . (pp. 3156–3164). He, Zhang, Ren, Sun (b21) 2015; 37 Bulut, Karakaya, Salama, Levy, Tag, Huisman (b10) 2019 Shahamat, Abadeh (b46) 2020; 126 Bauer, Wiest, Nolte, Reyes (b3) 2013; 58 Bottou (b6) 2010 Ibtehaz, Rahman (b27) 2020; 121 (pp. 2415–2418). Huang, Liu, Maaten, Weinberger (b23) 2017 Huda, Whittam, Bhojak, Chamberlain, Noonan, Jacob (b25) 2019; 19 Huang, Xin, Wang, Qi, Dong, Li (b24) 2021; 19 Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (b26) 2016 Simonyan, Zisserman (b48) 2015 Brosch, Tang, Yoo, Li, Traboulsee, Tam (b7) 2016; 35 Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Vijay, J., & Subhashini, J. (2013). An efficient brain tumor detection methodology using K-means clustering algoriftnn. In Li, Li, Wang (b32) 2019; 108 Liu, Huang, Qiu, Alzheimer’s Disease Neuroimaging Initiative (b34) 2022 Pieper, Halle, Kikinis (b41) 2004 Rocca, Anzalone, Storelli, Del Poggio, Cacciaguerra, Manfredi (b43) 2021; 56 Moeskops, de Bresser, Kuijf, Mendrik, Biessels, Pluim (b39) 2018; 17 Soltaninejad, Yang, Lambrou, Allinson, Jones, Barrick (b50) 2018; 157 Chen, You, Zhang, Xi, Le (b12) 2022; 147 Khan, Sikandar, Almogren, Din, Guerrieri, Fortino (b28) 2020; 109 Bernal, Kushibar, Asfaw, Valverde, Oliver, Martí (b5) 2019; 95 Sharif, Amin, Raza, Yasmin, Satapathy (b47) 2020; 129 Zhou, Z., Siddiquee, M., Tajbakhsh, N., & Liang, J. (2018). UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Malik, Bzdok (b38) 2022; 153 Hagiwara, Otsuka, Andica, Kato, Yokoyama, Hori (b20) 2021; 87 Amarapur (b1) 2019; 21 (pp. 4413–4421). Qiu, He, Chen, Liu, Lu (b42) 2019; 10 (pp. 4278–4284). (pp. 653–657). Safavian, Batouli, Oghabian (b45) 2020; 8 Brownlee, Hardy, Fazekas, Miller (b8) 2017; 389 De Mol, Wong, Van Pelt, Ketelslegers, Bakker, Boon (b14) 2018; 265 Bruscolini, Sacchetti, La Cava, Gharbiya, Ralli, Lambiase (b9) 2018; 17 Badrinarayanan, Kendall, Cipolla (b2) 2017; 39 Lotze, Northrop, Hutton, Ross, Schiffman, Hunter (b36) 2008; 122 Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In Love (10.1016/j.neunet.2023.10.010_b37) 2006; 59 Malik (10.1016/j.neunet.2023.10.010_b38) 2022; 153 Deepak (10.1016/j.neunet.2023.10.010_b16) 2019; 111 Cacciaguerra (10.1016/j.neunet.2023.10.010_b11) 2019; 85 Khan (10.1016/j.neunet.2023.10.010_b28) 2020; 109 Cireşan (10.1016/j.neunet.2023.10.010_b13) 2012; 32 He (10.1016/j.neunet.2023.10.010_b21) 2015; 37 Badrinarayanan (10.1016/j.neunet.2023.10.010_b2) 2017; 39 Hagiwara (10.1016/j.neunet.2023.10.010_b20) 2021; 87 Huda (10.1016/j.neunet.2023.10.010_b25) 2019; 19 Guerrero (10.1016/j.neunet.2023.10.010_b19) 2018; 17 Simonyan (10.1016/j.neunet.2023.10.010_b48) 2015 10.1016/j.neunet.2023.10.010_b35 10.1016/j.neunet.2023.10.010_b33 Brownlee (10.1016/j.neunet.2023.10.010_b8) 2017; 389 Dobson (10.1016/j.neunet.2023.10.010_b17) 2019; 26 Lee (10.1016/j.neunet.2023.10.010_b31) 2020; 15 10.1016/j.neunet.2023.10.010_b51 Chen (10.1016/j.neunet.2023.10.010_b12) 2022; 147 Huang (10.1016/j.neunet.2023.10.010_b23) 2017 Bottou (10.1016/j.neunet.2023.10.010_b6) 2010 Bernal (10.1016/j.neunet.2023.10.010_b5) 2019; 95 Rocca (10.1016/j.neunet.2023.10.010_b43) 2021; 56 De Mol (10.1016/j.neunet.2023.10.010_b14) 2018; 265 Lotze (10.1016/j.neunet.2023.10.010_b36) 2008; 122 Wang (10.1016/j.neunet.2023.10.010_b56) 2020 Bauer (10.1016/j.neunet.2023.10.010_b3) 2013; 58 10.1016/j.neunet.2023.10.010_b44 Zhang (10.1016/j.neunet.2023.10.010_b57) 2018; 31 Brosch (10.1016/j.neunet.2023.10.010_b7) 2016; 35 Iandola (10.1016/j.neunet.2023.10.010_b26) 2016 Qiu (10.1016/j.neunet.2023.10.010_b42) 2019; 10 Fawzi (10.1016/j.neunet.2023.10.010_b18) 2021; 11 Bulut (10.1016/j.neunet.2023.10.010_b10) 2019 Sharif (10.1016/j.neunet.2023.10.010_b47) 2020; 129 Amarapur (10.1016/j.neunet.2023.10.010_b1) 2019; 21 Safavian (10.1016/j.neunet.2023.10.010_b45) 2020; 8 Kim (10.1016/j.neunet.2023.10.010_b29) 2015; 84 He (10.1016/j.neunet.2023.10.010_b22) 2016 Liu (10.1016/j.neunet.2023.10.010_b34) 2022 10.1016/j.neunet.2023.10.010_b58 Huang (10.1016/j.neunet.2023.10.010_b24) 2021; 19 10.1016/j.neunet.2023.10.010_b53 10.1016/j.neunet.2023.10.010_b55 10.1016/j.neunet.2023.10.010_b54 Solomon (10.1016/j.neunet.2023.10.010_b49) 2019; 92 Ibtehaz (10.1016/j.neunet.2023.10.010_b27) 2020; 121 Soltaninejad (10.1016/j.neunet.2023.10.010_b50) 2018; 157 Bruscolini (10.1016/j.neunet.2023.10.010_b9) 2018; 17 Krupp (10.1016/j.neunet.2023.10.010_b30) 2013; 19 Li (10.1016/j.neunet.2023.10.010_b32) 2019; 108 Moeskops (10.1016/j.neunet.2023.10.010_b39) 2018; 17 Van der Maaten (10.1016/j.neunet.2023.10.010_b52) 2008; 9 Pieper (10.1016/j.neunet.2023.10.010_b41) 2004 10.1016/j.neunet.2023.10.010_b4 De Seze (10.1016/j.neunet.2023.10.010_b15) 2016; 172 Nitta (10.1016/j.neunet.2023.10.010_b40) 2020; 10 Shahamat (10.1016/j.neunet.2023.10.010_b46) 2020; 126 |
References_xml | – volume: 84 year: 2015 ident: b29 article-title: MRI characteristics of neuromyelitis optica spectrum disorder: an international update publication-title: Neurology – volume: 19 start-page: 1261 year: 2013 end-page: 1267 ident: b30 article-title: International pediatric multiple sclerosis study group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions publication-title: Multiple Sclerosis Journal – reference: (pp. 653–657). – year: 2022 ident: b34 article-title: Monte Carlo ensemble neural network for the diagnosis of Alzheimer’s disease publication-title: Neural Networks – reference: Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In – volume: 389 start-page: 1336 year: 2017 end-page: 1346 ident: b8 article-title: Diagnosis of multiple sclerosis: progress and challenges publication-title: The Lancet – volume: 109 start-page: 360 year: 2020 end-page: 367 ident: b28 article-title: IoMT-based computational approach for detecting brain tumor publication-title: Future Generation Computer Systems – reference: Berman, M., Triki, A. R., & Blaschko, M. B. (2018). The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In – year: 2019 ident: b10 article-title: Brain MRI findings in pediatric-onset neuromyelitis optica spectrum disorder: Challenges in differentiation from acute disseminated encephalomyelitis publication-title: AJNR. American Journal of Neuroradiology – volume: 15 year: 2020 ident: b31 article-title: Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture publication-title: PLoS One – volume: 58 start-page: R97 year: 2013 ident: b3 article-title: A survey of MRI-based medical image analysis for brain tumor studies publication-title: Physics in Medicine and Biology – reference: (pp. 4413–4421). – volume: 126 start-page: 218 year: 2020 end-page: 234 ident: b46 article-title: Brain MRI analysis using a deep learning based evolutionary approach publication-title: Neural Networks – reference: Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. In – year: 2010 ident: b6 article-title: Large-scale machine learning with stochastic gradient descent publication-title: Physica-Verlag HD – reference: (pp. 4278–4284). – volume: 35 start-page: 1229 year: 2016 end-page: 1239 ident: b7 article-title: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation publication-title: IEEE Transactions on Medical Imaging – reference: (pp. 2415–2418). – reference: (pp. 3156–3164). – volume: 19 start-page: 169 year: 2019 ident: b25 article-title: Neuromyelitis optica spectrum disorders publication-title: Clinical Medicine – volume: 56 start-page: 252 year: 2021 end-page: 260 ident: b43 article-title: Deep learning on conventional magnetic resonance imaging improves the diagnosis of multiple sclerosis mimics publication-title: Investigative Radiology – start-page: 2261 year: 2017 end-page: 2269 ident: b23 article-title: Densely connected convolutional networks publication-title: Los Alamitos, CA, USA: 2017 IEEE conference on computer vision and pattern recognition – reference: Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., et al. (2017). Residual attention network for image classification. In – volume: 59 start-page: 1151 year: 2006 end-page: 1159 ident: b37 article-title: Demyelinating diseases publication-title: Journal of Clinical Pathology – volume: 129 start-page: 150 year: 2020 end-page: 157 ident: b47 article-title: An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor publication-title: Pattern Recognition Letters – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: b21 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 10 year: 2019 ident: b42 article-title: Pregnancy-related immune changes and demyelinating diseases of the central nervous system publication-title: Frontiers in Neurology – volume: 21 start-page: 357 year: 2019 end-page: 369 ident: b1 article-title: Cognition-based MRI brain tumor segmentation technique using modified level set method publication-title: Cognition, Technology & Work – year: 2016 ident: b26 article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and ¡0.5MB model size – volume: 153 start-page: 325 year: 2022 end-page: 338 ident: b38 article-title: From YouTube to the brain: Transfer learning can improve brain-imaging predictions with deep learning publication-title: Neural Networks – volume: 9 year: 2008 ident: b52 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – volume: 11 start-page: 1055 year: 2021 ident: b18 article-title: Brain image segmentation in recent years: A narrative review publication-title: Brain Sciences – reference: Wang, C., Yan, X., Smith, M., Kochhar, K., & Lee, H. (2015). A unified framework for automatic wound segmentation and analysis with deep convolutional neural networks. In – reference: (pp. 2980–2988). – volume: 26 start-page: 27 year: 2019 end-page: 40 ident: b17 article-title: Multiple sclerosis–a review publication-title: European Journal of Neurology – volume: 122 year: 2008 ident: b36 article-title: Spectrum of pediatric neuromyelitis optica publication-title: Pediatrics – reference: Zhou, Z., Siddiquee, M., Tajbakhsh, N., & Liang, J. (2018). UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In – year: 2016 ident: b22 article-title: Deep residual learning for image recognition publication-title: IEEE – year: 2015 ident: b48 article-title: Very deep convolutional networks for large-scale image recognition – volume: 17 start-page: 251 year: 2018 end-page: 262 ident: b39 article-title: Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI publication-title: NeuroImage: Clinical – start-page: 632 year: 2004 end-page: 635 ident: b41 article-title: 3D slicer publication-title: 2004 2nd IEEE international symposium on biomedical imaging: Nano to macro (IEEE Cat No. 04EX821) – volume: 8 start-page: 400 year: 2020 end-page: 410 ident: b45 article-title: An automatic level set method for hippocampus segmentation in MR images publication-title: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization – volume: 17 start-page: 918 year: 2018 end-page: 934 ident: b19 article-title: White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks publication-title: NeuroImage: Clinical – volume: 85 start-page: 371 year: 2019 end-page: 384 ident: b11 article-title: Brain and cord imaging features in neuromyelitis optica spectrum disorders publication-title: Annals of Neurology – volume: 31 year: 2018 ident: b57 article-title: Generalized cross entropy loss for training deep neural networks with noisy labels publication-title: Advances in Neural Information Processing Systems – volume: 92 start-page: 26 year: 2019 end-page: 33 ident: b49 article-title: Misdiagnosis of multiple sclerosis: Impact of the 2017 McDonald criteria on clinical practice publication-title: Neurology – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b2 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 10 start-page: 281 year: 2020 end-page: 287 ident: b40 article-title: Dominant gray level based K-means algorithm for MRI images publication-title: Health and Technology – volume: 265 start-page: 1310 year: 2018 end-page: 1319 ident: b14 article-title: Incidence and outcome of acquired demyelinating syndromes in dutch children: update of a nationwide and prospective study publication-title: Journal of Neurology – volume: 172 start-page: 256 year: 2016 end-page: 262 ident: b15 article-title: Neuromyelitis optica spectrum disorder (NMOSD): a new concept publication-title: Revue Neurologique – volume: 17 start-page: 195 year: 2018 end-page: 200 ident: b9 article-title: Diagnosis and management of neuromyelitis optica spectrum disorders-An update publication-title: Autoimmunity Reviews – reference: Vijay, J., & Subhashini, J. (2013). An efficient brain tumor detection methodology using K-means clustering algoriftnn. In – volume: 147 start-page: 53 year: 2022 end-page: 62 ident: b12 article-title: UTRAD: Anomaly detection and localization with U-transformer publication-title: Neural Networks – volume: 32 start-page: 333 year: 2012 end-page: 338 ident: b13 article-title: Multi-column deep neural network for traffic sign classification publication-title: Neural Networks – volume: 111 year: 2019 ident: b16 article-title: Brain tumor classification using deep CNN features via transfer learning publication-title: Computers in Biology and Medicine – volume: 19 start-page: 1 year: 2021 end-page: 12 ident: b24 article-title: Multi-parametric MRI phenotype with trustworthy machine learning for differentiating CNS demyelinating diseases publication-title: Journal of Translational Medicine – volume: 157 start-page: 69 year: 2018 end-page: 84 ident: b50 article-title: Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels publication-title: Computer Methods and Programs in Biomedicine – start-page: 1736 year: 2020 ident: b56 article-title: 3D compressed convolutional neural network differentiates neuromyelitis optical spectrum disorders from multiple sclerosis using automated white matter hyperintensities segmentations publication-title: Frontiers in Physiology – volume: 121 start-page: 74 year: 2020 end-page: 87 ident: b27 article-title: MultiResUNet: Rethinking the U-net architecture for multimodal biomedical image segmentation publication-title: Neural Networks – reference: Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In – reference: . – volume: 108 start-page: 150 year: 2019 end-page: 160 ident: b32 article-title: A novel end-to-end brain tumor segmentation method using improved fully convolutional networks publication-title: Computers in Biology and Medicine – reference: (pp. 3431–3440). – volume: 87 start-page: 55 year: 2021 end-page: 58 ident: b20 article-title: Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorders by multiparametric quantitative MRI using convolutional neural network publication-title: Journal of Clinical Neuroscience – volume: 95 start-page: 64 year: 2019 end-page: 81 ident: b5 article-title: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review publication-title: Artificial Intelligence in Medicine – reference: Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In – volume: 108 start-page: 150 year: 2019 ident: 10.1016/j.neunet.2023.10.010_b32 article-title: A novel end-to-end brain tumor segmentation method using improved fully convolutional networks publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2019.03.014 – ident: 10.1016/j.neunet.2023.10.010_b35 doi: 10.1109/CVPR.2015.7298965 – ident: 10.1016/j.neunet.2023.10.010_b4 doi: 10.1109/CVPR.2018.00464 – volume: 17 start-page: 195 issue: 3 year: 2018 ident: 10.1016/j.neunet.2023.10.010_b9 article-title: Diagnosis and management of neuromyelitis optica spectrum disorders-An update publication-title: Autoimmunity Reviews doi: 10.1016/j.autrev.2018.01.001 – volume: 8 start-page: 400 issue: 4 year: 2020 ident: 10.1016/j.neunet.2023.10.010_b45 article-title: An automatic level set method for hippocampus segmentation in MR images publication-title: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization – volume: 389 start-page: 1336 issue: 10076 year: 2017 ident: 10.1016/j.neunet.2023.10.010_b8 article-title: Diagnosis of multiple sclerosis: progress and challenges publication-title: The Lancet doi: 10.1016/S0140-6736(16)30959-X – volume: 59 start-page: 1151 issue: 11 year: 2006 ident: 10.1016/j.neunet.2023.10.010_b37 article-title: Demyelinating diseases publication-title: Journal of Clinical Pathology doi: 10.1136/jcp.2005.031195 – start-page: 632 year: 2004 ident: 10.1016/j.neunet.2023.10.010_b41 article-title: 3D slicer – volume: 121 start-page: 74 year: 2020 ident: 10.1016/j.neunet.2023.10.010_b27 article-title: MultiResUNet: Rethinking the U-net architecture for multimodal biomedical image segmentation publication-title: Neural Networks doi: 10.1016/j.neunet.2019.08.025 – volume: 84 year: 2015 ident: 10.1016/j.neunet.2023.10.010_b29 article-title: MRI characteristics of neuromyelitis optica spectrum disorder: an international update publication-title: Neurology doi: 10.1212/WNL.0000000000001367 – volume: 111 year: 2019 ident: 10.1016/j.neunet.2023.10.010_b16 article-title: Brain tumor classification using deep CNN features via transfer learning publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2019.103345 – volume: 19 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.neunet.2023.10.010_b24 article-title: Multi-parametric MRI phenotype with trustworthy machine learning for differentiating CNS demyelinating diseases publication-title: Journal of Translational Medicine doi: 10.1186/s12967-021-03015-w – ident: 10.1016/j.neunet.2023.10.010_b58 doi: 10.1007/978-3-030-00889-5_1 – volume: 26 start-page: 27 issue: 1 year: 2019 ident: 10.1016/j.neunet.2023.10.010_b17 article-title: Multiple sclerosis–a review publication-title: European Journal of Neurology doi: 10.1111/ene.13819 – year: 2015 ident: 10.1016/j.neunet.2023.10.010_b48 – year: 2019 ident: 10.1016/j.neunet.2023.10.010_b10 article-title: Brain MRI findings in pediatric-onset neuromyelitis optica spectrum disorder: Challenges in differentiation from acute disseminated encephalomyelitis publication-title: AJNR. American Journal of Neuroradiology doi: 10.3174/ajnr.A6003 – volume: 9 issue: 11 year: 2008 ident: 10.1016/j.neunet.2023.10.010_b52 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – volume: 19 start-page: 1261 issue: 10 year: 2013 ident: 10.1016/j.neunet.2023.10.010_b30 article-title: International pediatric multiple sclerosis study group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions publication-title: Multiple Sclerosis Journal doi: 10.1177/1352458513484547 – volume: 11 start-page: 1055 issue: 8 year: 2021 ident: 10.1016/j.neunet.2023.10.010_b18 article-title: Brain image segmentation in recent years: A narrative review publication-title: Brain Sciences doi: 10.3390/brainsci11081055 – volume: 10 start-page: 281 issue: 1 year: 2020 ident: 10.1016/j.neunet.2023.10.010_b40 article-title: Dominant gray level based K-means algorithm for MRI images publication-title: Health and Technology doi: 10.1007/s12553-018-00293-1 – volume: 147 start-page: 53 year: 2022 ident: 10.1016/j.neunet.2023.10.010_b12 article-title: UTRAD: Anomaly detection and localization with U-transformer publication-title: Neural Networks doi: 10.1016/j.neunet.2021.12.008 – volume: 153 start-page: 325 year: 2022 ident: 10.1016/j.neunet.2023.10.010_b38 article-title: From YouTube to the brain: Transfer learning can improve brain-imaging predictions with deep learning publication-title: Neural Networks doi: 10.1016/j.neunet.2022.06.014 – ident: 10.1016/j.neunet.2023.10.010_b54 doi: 10.1109/CVPR.2017.683 – volume: 17 start-page: 251 year: 2018 ident: 10.1016/j.neunet.2023.10.010_b39 article-title: Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2017.10.007 – volume: 85 start-page: 371 issue: 3 year: 2019 ident: 10.1016/j.neunet.2023.10.010_b11 article-title: Brain and cord imaging features in neuromyelitis optica spectrum disorders publication-title: Annals of Neurology doi: 10.1002/ana.25411 – ident: 10.1016/j.neunet.2023.10.010_b51 doi: 10.1609/aaai.v31i1.11231 – volume: 32 start-page: 333 issn: 0893-6080 year: 2012 ident: 10.1016/j.neunet.2023.10.010_b13 article-title: Multi-column deep neural network for traffic sign classification publication-title: Neural Networks doi: 10.1016/j.neunet.2012.02.023 – volume: 17 start-page: 918 year: 2018 ident: 10.1016/j.neunet.2023.10.010_b19 article-title: White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2017.12.022 – volume: 56 start-page: 252 issue: 4 year: 2021 ident: 10.1016/j.neunet.2023.10.010_b43 article-title: Deep learning on conventional magnetic resonance imaging improves the diagnosis of multiple sclerosis mimics publication-title: Investigative Radiology doi: 10.1097/RLI.0000000000000735 – volume: 122 issue: 5 year: 2008 ident: 10.1016/j.neunet.2023.10.010_b36 article-title: Spectrum of pediatric neuromyelitis optica publication-title: Pediatrics doi: 10.1542/peds.2007-2758 – volume: 21 start-page: 357 issue: 3 year: 2019 ident: 10.1016/j.neunet.2023.10.010_b1 article-title: Cognition-based MRI brain tumor segmentation technique using modified level set method publication-title: Cognition, Technology & Work doi: 10.1007/s10111-018-0472-4 – volume: 129 start-page: 150 year: 2020 ident: 10.1016/j.neunet.2023.10.010_b47 article-title: An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2019.11.017 – ident: 10.1016/j.neunet.2023.10.010_b55 – year: 2022 ident: 10.1016/j.neunet.2023.10.010_b34 article-title: Monte Carlo ensemble neural network for the diagnosis of Alzheimer’s disease publication-title: Neural Networks – volume: 126 start-page: 218 year: 2020 ident: 10.1016/j.neunet.2023.10.010_b46 article-title: Brain MRI analysis using a deep learning based evolutionary approach publication-title: Neural Networks doi: 10.1016/j.neunet.2020.03.017 – volume: 58 start-page: R97 issue: 13 year: 2013 ident: 10.1016/j.neunet.2023.10.010_b3 article-title: A survey of MRI-based medical image analysis for brain tumor studies publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/58/13/R97 – volume: 35 start-page: 1229 issue: 5 year: 2016 ident: 10.1016/j.neunet.2023.10.010_b7 article-title: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2016.2528821 – ident: 10.1016/j.neunet.2023.10.010_b33 doi: 10.1109/ICCV.2017.324 – volume: 92 start-page: 26 issue: 1 year: 2019 ident: 10.1016/j.neunet.2023.10.010_b49 article-title: Misdiagnosis of multiple sclerosis: Impact of the 2017 McDonald criteria on clinical practice publication-title: Neurology doi: 10.1212/WNL.0000000000006583 – volume: 265 start-page: 1310 issue: 6 year: 2018 ident: 10.1016/j.neunet.2023.10.010_b14 article-title: Incidence and outcome of acquired demyelinating syndromes in dutch children: update of a nationwide and prospective study publication-title: Journal of Neurology doi: 10.1007/s00415-018-8835-6 – volume: 95 start-page: 64 year: 2019 ident: 10.1016/j.neunet.2023.10.010_b5 article-title: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2018.08.008 – year: 2010 ident: 10.1016/j.neunet.2023.10.010_b6 article-title: Large-scale machine learning with stochastic gradient descent publication-title: Physica-Verlag HD – volume: 19 start-page: 169 issue: 2 year: 2019 ident: 10.1016/j.neunet.2023.10.010_b25 article-title: Neuromyelitis optica spectrum disorders publication-title: Clinical Medicine doi: 10.7861/clinmedicine.19-2-169 – volume: 109 start-page: 360 year: 2020 ident: 10.1016/j.neunet.2023.10.010_b28 article-title: IoMT-based computational approach for detecting brain tumor publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2020.03.054 – volume: 31 year: 2018 ident: 10.1016/j.neunet.2023.10.010_b57 article-title: Generalized cross entropy loss for training deep neural networks with noisy labels publication-title: Advances in Neural Information Processing Systems – start-page: 1736 year: 2020 ident: 10.1016/j.neunet.2023.10.010_b56 article-title: 3D compressed convolutional neural network differentiates neuromyelitis optical spectrum disorders from multiple sclerosis using automated white matter hyperintensities segmentations publication-title: Frontiers in Physiology – volume: 87 start-page: 55 year: 2021 ident: 10.1016/j.neunet.2023.10.010_b20 article-title: Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorders by multiparametric quantitative MRI using convolutional neural network publication-title: Journal of Clinical Neuroscience doi: 10.1016/j.jocn.2021.02.018 – volume: 172 start-page: 256 issue: 4–5 year: 2016 ident: 10.1016/j.neunet.2023.10.010_b15 article-title: Neuromyelitis optica spectrum disorder (NMOSD): a new concept publication-title: Revue Neurologique doi: 10.1016/j.neurol.2016.03.003 – volume: 157 start-page: 69 year: 2018 ident: 10.1016/j.neunet.2023.10.010_b50 article-title: Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2018.01.003 – year: 2016 ident: 10.1016/j.neunet.2023.10.010_b22 article-title: Deep residual learning for image recognition publication-title: IEEE – start-page: 2261 issn: 1063-6919 year: 2017 ident: 10.1016/j.neunet.2023.10.010_b23 article-title: Densely connected convolutional networks – ident: 10.1016/j.neunet.2023.10.010_b53 doi: 10.1109/iccsp.2013.6577136 – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 10.1016/j.neunet.2023.10.010_b21 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2015.2389824 – volume: 15 issue: 8 year: 2020 ident: 10.1016/j.neunet.2023.10.010_b31 article-title: Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture publication-title: PLoS One doi: 10.1371/journal.pone.0236493 – year: 2016 ident: 10.1016/j.neunet.2023.10.010_b26 – ident: 10.1016/j.neunet.2023.10.010_b44 doi: 10.1007/978-3-319-24574-4_28 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.neunet.2023.10.010_b2 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2016.2644615 – volume: 10 year: 2019 ident: 10.1016/j.neunet.2023.10.010_b42 article-title: Pregnancy-related immune changes and demyelinating diseases of the central nervous system publication-title: Frontiers in Neurology doi: 10.3389/fneur.2019.01070 |
SSID | ssj0006843 |
Score | 2.4718757 |
Snippet | Childhood demyelinative diseases classification (DDC) with brain magnetic resonance imaging (MRI) is crucial to clinical diagnosis. But few attentions have... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108 |
SubjectTerms | Aromatic-L-Amino-Acid Decarboxylases Brain - diagnostic imaging Child Deep learning Humans Image classification Image Processing, Computer-Assisted - methods Image segmentation Magnetic resonance imaging Magnetic Resonance Imaging - methods Neuromyelitis Optica - diagnostic imaging Neuromyelitis Optica - pathology Pediatric demyelinating disease U-Net |
Title | M-DDC: MRI based demyelinative diseases classification with U-Net segmentation and convolutional network |
URI | https://dx.doi.org/10.1016/j.neunet.2023.10.010 https://www.ncbi.nlm.nih.gov/pubmed/37890361 https://www.proquest.com/docview/2883586598 |
Volume | 169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhECZGL158P-ormHjFbhcWWG9Nq6ma9qA28bZhgWqN0sZur_52mV1WY6Jp4nEJZAkz8A3wfQNCZyaOjAcCSwQoZFhqBVGSpSTNWWJEYqgoFd79Ae8N2c1j8riEOrUWBmiVYe2v1vRytQ4lzTCazel43LyPPNRykIpCxnXOIO02ZK_zPn3-8U3z4LJizvnKBGrX8rmS4-Xs3FlgVMb0HDheoKP9HZ7-Cj9LGLraQGshfsTtqoubaMm6LbRev82Aw1TdRs990u12LnD_7hoDUhkMwhEQn5eZvnG4mJlhDeEz8IVKE2E4l8VDMrAFntmnt6BMclg5g4GhHjzVd8FVBPIdNLy6fOj0SHhVgehYiIJI2MHwyMpkJEe5NZobxWRL5CrPW9zvH1SkfNjdskxqNopjlaZM0ZESOlaWcU130bKbOLuPcK4Np8pE0jf1IAeclST3gC8sjbSRpoFoPZiZDinH4eWL16zmlr1klQkyMAGUehM0EPlqNa1SbiyoL2o7ZT9cJ_OosKDlaW3WzM8quCpRzk7mswzeYE4kT1LZQHuVvb_6QkE7THnr4N__PUSr_otVJzlHaLl4n9tjH9sU-UnpvCdopX192xt8As7R-TQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB3RcGgvQEsLgX4YqVc3m7XX9nJDAZQUkgMlEjfLazstCAwiyf_Hs-uNVAmExNXr0Voee2ZsvzcD8NPlmYuOwFOJDBleekmN4iUtK144WTgma4b3eCKGU_77qrhag0HLhUFYZbL9jU2vrXVq6aXZ7D1cX_f-ZNHVCqSKYsZ1wcU7WMfsVLwD60ejs-FkZZCFasBzsT9FgZZBV8O8gl8Gj6DKnP1CmBdSaZ_3UC9FoLUnOt2CjRRCkqNmlB9hzYdPsNmWZyBpt27DvzE9Ph4ckvHFiKCzcgS5I8g_r5N9k_Q2MycWI2iEDNVaIng1S6Z04hdk7v_eJXJSICY4giD1tFjjEEKDIf8M09OTy8GQpsIK1OZSLqjCQ4zIvCpmalZ5Z4UzXPVlZaqqL-IRwmQmRt59z5Xlszw3ZckNmxlpc-O5sOwLdMJ98LtAKusEMy5TUTT6OYStFFX0-dKzzDrlusDaydQ2ZR3H4he3uoWX3ehGBRpVgK1RBV2gK6mHJuvGK_1lqyf93-rR0TG8InnQqlXHjYWvJSb4--VcYxnmQomiVF3YafS9GgtD-jAT_b03__cHvB9ejs_1-Whytg8f4hfeXOx8hc7icem_xVBnUX1PS_kJVFz75Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M-DDC%3A+MRI+based+demyelinative+diseases+classification+with+U-Net+segmentation+and+convolutional+network&rft.jtitle=Neural+networks&rft.au=Zhou%2C+Deyang&rft.au=Xu%2C+Lu&rft.au=Wang%2C+Tianlei&rft.au=Wei%2C+Shaonong&rft.date=2024-01-01&rft.issn=0893-6080&rft.volume=169&rft.spage=108&rft.epage=119&rft_id=info:doi/10.1016%2Fj.neunet.2023.10.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2023_10_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |