Neuron Perception Inspired EEG Emotion Recognition With Parallel Contrastive Learning

Considerable interindividual variability exists in electroencephalogram (EEG) signals, resulting in challenges for subject-independent emotion recognition tasks. Current research in cross-subject EEG emotion recognition has been insufficient in uncovering the shared neural underpinnings of affective...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 36; no. 8; pp. 14049 - 14062
Main Authors Li, Dongdong, Huang, Shengyao, Xie, Li, Wang, Zhe, Xu, Jiazhen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2025
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2025.3546283

Cover

Loading…
Abstract Considerable interindividual variability exists in electroencephalogram (EEG) signals, resulting in challenges for subject-independent emotion recognition tasks. Current research in cross-subject EEG emotion recognition has been insufficient in uncovering the shared neural underpinnings of affective processing in the human brain. To address this issue, we propose the parallel contrastive multisource domain adaptation (PCMDA) model, inspired by the neural representation mechanism in the ventral visual cortex. Our model employs a neuron-perception-inspired contrastive learning architecture for EEG-based emotion recognition in subject-independent scenarios. A two-stage alignment methodology is employed for the purpose of aligning numerous source domains with the target domain. This approach integrates a parallel contrastive loss (PCL) which simulates the self-supervised learning mechanism inherent in the neural representation of the human brain. Furthermore, a self-attention mechanism is integrated to extract emotion weights for each frequency band. Extensive experiments were conducted on three publicly available EEG emotion datasets, SJTU emotion EEG dataset (SEED), database for emotion analysis using physiological signals (DEAP), and finer-grained affective computing EEG dataset (FACED), to evaluate our proposed method. The results demonstrate that the PCMDA effectively utilizes the unique EEG features and frequency band information of each subject, leading to improved generalization across different subjects in comparison to other methods.
AbstractList Considerable interindividual variability exists in electroencephalogram (EEG) signals, resulting in challenges for subject-independent emotion recognition tasks. Current research in cross-subject EEG emotion recognition has been insufficient in uncovering the shared neural underpinnings of affective processing in the human brain. To address this issue, we propose the parallel contrastive multisource domain adaptation (PCMDA) model, inspired by the neural representation mechanism in the ventral visual cortex. Our model employs a neuron-perception-inspired contrastive learning architecture for EEG-based emotion recognition in subject-independent scenarios. A two-stage alignment methodology is employed for the purpose of aligning numerous source domains with the target domain. This approach integrates a parallel contrastive loss (PCL) which simulates the self-supervised learning mechanism inherent in the neural representation of the human brain. Furthermore, a self-attention mechanism is integrated to extract emotion weights for each frequency band. Extensive experiments were conducted on three publicly available EEG emotion datasets, SJTU emotion EEG dataset (SEED), database for emotion analysis using physiological signals (DEAP), and finer-grained affective computing EEG dataset (FACED), to evaluate our proposed method. The results demonstrate that the PCMDA effectively utilizes the unique EEG features and frequency band information of each subject, leading to improved generalization across different subjects in comparison to other methods.
Considerable interindividual variability exists in electroencephalogram (EEG) signals, resulting in challenges for subject-independent emotion recognition tasks. Current research in cross-subject EEG emotion recognition has been insufficient in uncovering the shared neural underpinnings of affective processing in the human brain. To address this issue, we propose the parallel contrastive multisource domain adaptation (PCMDA) model, inspired by the neural representation mechanism in the ventral visual cortex. Our model employs a neuron-perception-inspired contrastive learning architecture for EEG-based emotion recognition in subject-independent scenarios. A two-stage alignment methodology is employed for the purpose of aligning numerous source domains with the target domain. This approach integrates a parallel contrastive loss (PCL) which simulates the self-supervised learning mechanism inherent in the neural representation of the human brain. Furthermore, a self-attention mechanism is integrated to extract emotion weights for each frequency band. Extensive experiments were conducted on three publicly available EEG emotion datasets, SJTU emotion EEG dataset (SEED), database for emotion analysis using physiological signals (DEAP), and finer-grained affective computing EEG dataset (FACED), to evaluate our proposed method. The results demonstrate that the PCMDA effectively utilizes the unique EEG features and frequency band information of each subject, leading to improved generalization across different subjects in comparison to other methods.Considerable interindividual variability exists in electroencephalogram (EEG) signals, resulting in challenges for subject-independent emotion recognition tasks. Current research in cross-subject EEG emotion recognition has been insufficient in uncovering the shared neural underpinnings of affective processing in the human brain. To address this issue, we propose the parallel contrastive multisource domain adaptation (PCMDA) model, inspired by the neural representation mechanism in the ventral visual cortex. Our model employs a neuron-perception-inspired contrastive learning architecture for EEG-based emotion recognition in subject-independent scenarios. A two-stage alignment methodology is employed for the purpose of aligning numerous source domains with the target domain. This approach integrates a parallel contrastive loss (PCL) which simulates the self-supervised learning mechanism inherent in the neural representation of the human brain. Furthermore, a self-attention mechanism is integrated to extract emotion weights for each frequency band. Extensive experiments were conducted on three publicly available EEG emotion datasets, SJTU emotion EEG dataset (SEED), database for emotion analysis using physiological signals (DEAP), and finer-grained affective computing EEG dataset (FACED), to evaluate our proposed method. The results demonstrate that the PCMDA effectively utilizes the unique EEG features and frequency band information of each subject, leading to improved generalization across different subjects in comparison to other methods.
Author Wang, Zhe
Xu, Jiazhen
Xie, Li
Li, Dongdong
Huang, Shengyao
Author_xml – sequence: 1
  givenname: Dongdong
  orcidid: 0000-0002-1880-8054
  surname: Li
  fullname: Li, Dongdong
  email: ldd@ecust.edu.cn
  organization: Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China
– sequence: 2
  givenname: Shengyao
  surname: Huang
  fullname: Huang, Shengyao
  email: y30231017@mail.ecust.edu.cn
  organization: Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China
– sequence: 3
  givenname: Li
  orcidid: 0009-0005-0005-5153
  surname: Xie
  fullname: Xie, Li
  email: y80200051@mail.ecust.edu.cn
  organization: Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China
– sequence: 4
  givenname: Zhe
  orcidid: 0000-0002-3759-2041
  surname: Wang
  fullname: Wang, Zhe
  email: wangzhe@ecust.edu.cn
  organization: Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China
– sequence: 5
  givenname: Jiazhen
  surname: Xu
  fullname: Xu, Jiazhen
  email: 18253199502@163.com
  organization: Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40085465$$D View this record in MEDLINE/PubMed
BookMark eNpNkF1LwzAUhoNM3Jz7AyLSS28289E0zaWMOQdjDt3Qu5K2JzPSpjXpBP-93YfDc5OX8LznwHOJOraygNA1wSNCsLxfLRbz1xHFlI8YDyMaszPUoySiQ8riuHPK4r2LBt5_4nYizKNQXqBuiHHclngPrRewdZUNluAyqBvTxpn1tXGQB5PJNJiU1f7zBbJqY80-v5nmI1gqp4oCimBc2cYp35hvCOagnDV2c4XOtSo8DI5vH60fJ6vx03D-PJ2NH-bDjArRDDnJsJZapIzpnDPMctBxKLHUmVYpyTWRGRaCk1RyGmkWC6XTGPKQK5xi4KyP7g57a1d9bcE3SWl8BkWhLFRbnzAiRBhjwlmL3h7RbVpCntTOlMr9JH8qWoAegMxV3jvQJ4TgZKc82StPdsqTo_K2dHMoGQD4V5A0ku3VX7LXfM4
CODEN ITNNAL
Cites_doi 10.1109/TIM.2024.3398103
10.1007/BF00422717
10.1109/CVPR42600.2020.00975
10.1038/s41597-023-02650-w
10.1109/T-AFFC.2011.15
10.1016/j.inffus.2023.101847
10.1007/978-3-030-36708-4_3
10.1109/TCBB.2020.3018137
10.1109/TNNLS.2020.3044215
10.1109/TAMD.2015.2431497
10.1016/j.inffus.2023.102019
10.1109/TCDS.2018.2826840
10.1007/s40846-018-0425-7
10.1109/TAFFC.2020.2994159
10.1016/j.compbiomed.2021.105080
10.1109/TCDS.2020.2999337
10.3389/fnins.2021.778488
10.1109/TNNLS.2022.3145034
10.1109/TAFFC.2022.3164516
10.1137/1118101
10.1088/1741-2552/aace8c
10.3354/cr030079
10.1371/journal.pcbi.1011506
10.1016/j.physa.2022.127700
10.1016/B978-0-12-801851-4.00001-X
10.1109/TAFFC.2018.2885474
10.1016/j.measurement.2019.107003
10.1016/S1388-2457(00)00527-7
10.1007/978-3-319-49409-8_35
10.1109/ICASSP43922.2022.9746600
10.1109/TNSRE.2021.3111689
10.1109/TAFFC.2023.3288118
10.1162/jocn_a_00969
10.1016/j.patcog.2021.108430
10.5555/2946645.2946704
10.1177/10731911221134601
10.5555/3524938.3525087
10.1109/MCI.2015.2501545
10.1109/JSEN.2022.3144317
10.1016/j.tics.2016.08.003
10.1007/s10044-019-00860-w
10.1109/TETCI.2020.2997031
10.1109/SMC.2019.8914645
10.3390/brainsci11111392
10.1016/j.cortex.2017.01.009
10.1093/bioinformatics/btl242
10.3389/fpsyg.2017.01454
10.1109/TKDE.2021.3090866
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TNNLS.2025.3546283
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 14062
ExternalDocumentID 40085465
10_1109_TNNLS_2025_3546283
10926915
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of China
  grantid: 62276098; 62376095
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c277t-51c0f9f7b33fd5303def84909fcfab1df19c07751b9526f387afb8ed45a0b0e53
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 19:35:07 EDT 2025
Thu Aug 07 06:25:58 EDT 2025
Thu Aug 14 00:12:18 EDT 2025
Wed Aug 27 02:00:10 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c277t-51c0f9f7b33fd5303def84909fcfab1df19c07751b9526f387afb8ed45a0b0e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3759-2041
0000-0002-1880-8054
0009-0005-0005-5153
PMID 40085465
PQID 3177480153
PQPubID 23479
PageCount 14
ParticipantIDs pubmed_primary_40085465
ieee_primary_10926915
proquest_miscellaneous_3177480153
crossref_primary_10_1109_TNNLS_2025_3546283
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref51
ref50
van den Oord (ref18) 2018
Lawhern (ref54) 2018; 15
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
Choi (ref23); 36
Tzeng (ref40) 2014
Long (ref39)
ref24
ref26
ref25
ref20
ref22
ref28
ref27
Van der Maaten (ref43) 2008; 9
ref29
Bakhtiari (ref21); 34
References_xml – volume: 36
  start-page: 50408
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: A dual-stream neural network explains the functional segregation of dorsal and ventral visual pathways in human brains
– ident: ref52
  doi: 10.1109/TIM.2024.3398103
– ident: ref26
  doi: 10.1007/BF00422717
– ident: ref16
  doi: 10.1109/CVPR42600.2020.00975
– ident: ref25
  doi: 10.1038/s41597-023-02650-w
– ident: ref24
  doi: 10.1109/T-AFFC.2011.15
– ident: ref5
  doi: 10.1016/j.inffus.2023.101847
– ident: ref9
  doi: 10.1007/978-3-030-36708-4_3
– ident: ref38
  doi: 10.1109/TCBB.2020.3018137
– ident: ref14
  doi: 10.1109/TNNLS.2020.3044215
– ident: ref7
  doi: 10.1109/TAMD.2015.2431497
– ident: ref1
  doi: 10.1016/j.inffus.2023.102019
– ident: ref49
  doi: 10.1109/TCDS.2018.2826840
– start-page: 97
  volume-title: Proc. 32nd Int. Conf. Mach. Learn.
  ident: ref39
  article-title: Learning transferable features with deep adaptation networks
– ident: ref27
  doi: 10.1007/s40846-018-0425-7
– ident: ref13
  doi: 10.1109/TAFFC.2020.2994159
– volume: 34
  start-page: 25164
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref21
  article-title: The functional specialization of visual cortex emerges from training parallel pathways with self-supervised predictive learning
– ident: ref46
  doi: 10.1016/j.compbiomed.2021.105080
– ident: ref12
  doi: 10.1109/TCDS.2020.2999337
– ident: ref33
  doi: 10.3389/fnins.2021.778488
– ident: ref15
  doi: 10.1109/TNNLS.2022.3145034
– ident: ref20
  doi: 10.1109/TAFFC.2022.3164516
– ident: ref32
  doi: 10.1137/1118101
– volume: 15
  issue: 5
  year: 2018
  ident: ref54
  article-title: EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– ident: ref35
  doi: 10.3354/cr030079
– ident: ref22
  doi: 10.1371/journal.pcbi.1011506
– ident: ref51
  doi: 10.1016/j.physa.2022.127700
– ident: ref3
  doi: 10.1016/B978-0-12-801851-4.00001-X
– ident: ref11
  doi: 10.1109/TAFFC.2018.2885474
– ident: ref50
  doi: 10.1016/j.measurement.2019.107003
– ident: ref53
  doi: 10.1016/S1388-2457(00)00527-7
– ident: ref41
  doi: 10.1007/978-3-319-49409-8_35
– ident: ref48
  doi: 10.1109/ICASSP43922.2022.9746600
– ident: ref45
  doi: 10.1109/TNSRE.2021.3111689
– ident: ref19
  doi: 10.1109/TAFFC.2023.3288118
– ident: ref30
  doi: 10.1162/jocn_a_00969
– ident: ref42
  doi: 10.1016/j.patcog.2021.108430
– ident: ref10
  doi: 10.5555/2946645.2946704
– ident: ref6
  doi: 10.1177/10731911221134601
– ident: ref17
  doi: 10.5555/3524938.3525087
– year: 2014
  ident: ref40
  article-title: Deep domain confusion: Maximizing for domain invariance
  publication-title: arXiv:1412.3474
– year: 2018
  ident: ref18
  article-title: Representation learning with contrastive predictive coding
  publication-title: arXiv:1807.03748
– ident: ref8
  doi: 10.1109/MCI.2015.2501545
– ident: ref47
  doi: 10.1109/JSEN.2022.3144317
– ident: ref29
  doi: 10.1016/j.tics.2016.08.003
– ident: ref37
  doi: 10.1007/s10044-019-00860-w
– ident: ref36
  doi: 10.1109/TETCI.2020.2997031
– ident: ref4
  doi: 10.1109/SMC.2019.8914645
– volume: 9
  start-page: 2579
  issue: 86
  year: 2008
  ident: ref43
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref44
  doi: 10.3390/brainsci11111392
– ident: ref28
  doi: 10.1016/j.cortex.2017.01.009
– ident: ref34
  doi: 10.1093/bioinformatics/btl242
– ident: ref2
  doi: 10.3389/fpsyg.2017.01454
– ident: ref31
  doi: 10.1109/TKDE.2021.3090866
SSID ssj0000605649
Score 2.5005593
Snippet Considerable interindividual variability exists in electroencephalogram (EEG) signals, resulting in challenges for subject-independent emotion recognition...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 14049
SubjectTerms Adaptation models
Algorithms
Brain modeling
Contrastive learning
Databases, Factual
electroencephalogram (EEG)
Electroencephalography
Electroencephalography - methods
Emotion recognition
Emotions - physiology
Feature extraction
Humans
Machine Learning
multisource domain adaptation (DA)
Neural Networks, Computer
Neurons - physiology
Physiology
Streams
Visual perception
Visualization
Title Neuron Perception Inspired EEG Emotion Recognition With Parallel Contrastive Learning
URI https://ieeexplore.ieee.org/document/10926915
https://www.ncbi.nlm.nih.gov/pubmed/40085465
https://www.proquest.com/docview/3177480153
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwvlUaC8ZCQ2lJCXk3hEqKUgiCpoRbcojs-AQClq04Vfj89JqgqpEluG2El8du47-77vCLkMtVdTHGJLsiizAqnDHR55ygqZiGMFQnKB5OSnJByMg4cJm9RkdcOFAQCTfAY2XpqzfDnNF7hVplc490KOlPJNHblVZK3lhoqjgXlo4K7nhp7l-dGkIck4_HqUJI8vOhz0mO0z5GNiAZ0AAUeAfmXFJ5kiK-vxpvE7_TZJmjeu0k0-7UUp7Pznj5jjvz9ph2zXCJTeVFNml2xAsUfaTXUHWi_2fTI2uh0FHS5TX-h9gefyIGmvd0d7VQEg-tykIOnr14_ynQ6zGRZo-aKofDXL5vhDpbWO61uHjPu90e3AqoswWLkXRaXF3NxRXEXC95Vk2uFJUHHAHa5ylQlXKpfnKKPnCs68UPlxlCkRgwxY5ggHmH9AWsW0gCNCHV-4oHRLVwkdtgJ3M42-4pwxCLnuvUuuGjOk35XWRmpiFIenxn4p2i-t7dclHRzOlTurkeySi8Z0qV4qeP6RFTBdzFMNlSJUy2G67WFl02XrZiocr-n1hGzhw6vUv1PSKmcLONNwpBTnZhr-ArdB2eE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELUQDLBQvimfRmJDKXESJ_GIUKFAiRC0olsUx2dAoBS16cKvx-ckFUJCYssQW47Pzr2z770j5DQ0Xk0LiB3Fo8wJlAl3RORpJ-QyjjVIJSSSk--TsDcMbkd8VJPVLRcGAGzyGXTw0d7lq3E-w6Mys8OFFwqklC8Zx89ZRdeaH6m4BpqHFvB6LPQcz49GDU3GFeeDJOk_mYDQ4x2fIyMTS-gECDkC9Cw_vJIts_I34rSe56pFkmbMVcLJe2dWyk7-9UvO8d8ftUZWawxKL6pFs04WoNggraa-A623-yYZWuWOgj7Mk1_oTYE386Bot3tNu1UJIPrYJCGZ5-e38pU-ZBMs0fJBUftqkk3xl0prJdeXLTK86g4ue05dhsHJvSgqHc5yVwsdSd_XihuXp0DHgXCFznUmmdJM5Cikx6TgXqj9OMq0jEEFPHOlC9zfJovFuIBdQl1fMtCmJdPSBK4gWGbwV5xzDqEwvbfJWWOG9LNS20htlOKK1NovRfultf3aZAun88eb1Uy2yUljutRsFrwByQoYz6apAUsR6uVw03ansum8dbMU9v7o9Zgs9wb3_bR_k9ztkxUcSJUIeEAWy8kMDg04KeWRXZLfQNLdKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuron+Perception+Inspired+EEG+Emotion+Recognition+With+Parallel+Contrastive+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Dongdong&rft.au=Huang%2C+Shengyao&rft.au=Xie%2C+Li&rft.au=Wang%2C+Zhe&rft.date=2025-08-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2025.3546283&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon