Exploring conductivity in ex-situ doped Si thin films as thickness approaches 5 nm
Silicon (Si) has been scaled below 10 nm in multigate and silicon-on-insulator (SOI) device technologies, but clearly Si thickness cannot be reduced indefinitely, as we will run out of atoms eventually. As thickness approaches 5 nm, surfaces and interfaces will significantly impact the electrical be...
Saved in:
Published in | Journal of applied physics Vol. 125; no. 22 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
14.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silicon (Si) has been scaled below 10 nm in multigate and silicon-on-insulator (SOI) device technologies, but clearly Si thickness cannot be reduced indefinitely, as we will run out of atoms eventually. As thickness approaches 5 nm, surfaces and interfaces will significantly impact the electrical behavior of Si, and surface physics cannot be discounted. Below that, bulk material properties will be altered considerably in the few-monolayer limit. One of the most basic defining properties of a semiconductor is its conductivity. To improve conductivity, while inducing a channel by appropriate biasing, it is necessary to define an accurate impurity doping strategy to reduce parasitic resistance. In this paper, we investigated the changing electrical conductivity of SOI films as a function of the Si thickness, in the range of 3–66 nm. SOI films were ex situ doped using three different approaches: liquid/vapor phase monolayer doping of phosphorus using allyldiphenylphosphine, gas-phase doping of arsenic using arsine (AsH3), and room-temperature beam-line ion implantation of phosphorus. The circular transfer length method and micro-four-point probe measurements were used to determine the resistivity of the Si films, mitigating the contribution from contact resistance. The resistivity of the Si films was observed to increase with decreasing Si film thickness below 20 nm, with a dramatic increase observed for a Si thickness at 4.5 nm. This may drastically impact the number of parallel conduction paths (i.e., nanowires) required in gate-all-around devices. Density functional theory modeling indicates that the surface of the Si film with a thickness of 4.5 nm is energetically more favorable for the dopant atom compared to the core of the film. |
---|---|
AbstractList | Silicon (Si) has been scaled below 10 nm in multigate and silicon-on-insulator (SOI) device technologies, but clearly Si thickness cannot be reduced indefinitely, as we will run out of atoms eventually. As thickness approaches 5 nm, surfaces and interfaces will significantly impact the electrical behavior of Si, and surface physics cannot be discounted. Below that, bulk material properties will be altered considerably in the few-monolayer limit. One of the most basic defining properties of a semiconductor is its conductivity. To improve conductivity, while inducing a channel by appropriate biasing, it is necessary to define an accurate impurity doping strategy to reduce parasitic resistance. In this paper, we investigated the changing electrical conductivity of SOI films as a function of the Si thickness, in the range of 3–66 nm. SOI films were ex situ doped using three different approaches: liquid/vapor phase monolayer doping of phosphorus using allyldiphenylphosphine, gas-phase doping of arsenic using arsine (AsH3), and room-temperature beam-line ion implantation of phosphorus. The circular transfer length method and micro-four-point probe measurements were used to determine the resistivity of the Si films, mitigating the contribution from contact resistance. The resistivity of the Si films was observed to increase with decreasing Si film thickness below 20 nm, with a dramatic increase observed for a Si thickness at 4.5 nm. This may drastically impact the number of parallel conduction paths (i.e., nanowires) required in gate-all-around devices. Density functional theory modeling indicates that the surface of the Si film with a thickness of 4.5 nm is energetically more favorable for the dopant atom compared to the core of the film. |
Author | White, Mary Thomas, Kevin Lin, Rong Connolly, James Gity, Farzan Eaton, Luke Long, Brenda Kennedy, Noel MacHale, John Mirabelli, Gioele Petersen, Dirch Hjorth Hatem, Chris Meaney, Fintan Pelucchi, Emanuele Petkov, Nikolay Ansari, Lida Duffy, Ray |
Author_xml | – sequence: 1 givenname: John surname: MacHale fullname: MacHale, John organization: Tyndall National Institute, University College Cork – sequence: 2 givenname: Fintan surname: Meaney fullname: Meaney, Fintan organization: Tyndall National Institute, University College Cork – sequence: 3 givenname: Noel surname: Kennedy fullname: Kennedy, Noel organization: School of Chemistry, University College Cork – sequence: 4 givenname: Luke surname: Eaton fullname: Eaton, Luke organization: School of Chemistry, University College Cork – sequence: 5 givenname: Gioele surname: Mirabelli fullname: Mirabelli, Gioele organization: Tyndall National Institute, University College Cork – sequence: 6 givenname: Mary surname: White fullname: White, Mary organization: Tyndall National Institute, University College Cork – sequence: 7 givenname: Kevin surname: Thomas fullname: Thomas, Kevin organization: Tyndall National Institute, University College Cork – sequence: 8 givenname: Emanuele surname: Pelucchi fullname: Pelucchi, Emanuele organization: Tyndall National Institute, University College Cork – sequence: 9 givenname: Dirch Hjorth surname: Petersen fullname: Petersen, Dirch Hjorth organization: Department of Physics, Technical University of Denmark – sequence: 10 givenname: Rong surname: Lin fullname: Lin, Rong organization: CAPRES—A KLA Company, Scion-DTU – sequence: 11 givenname: Nikolay surname: Petkov fullname: Petkov, Nikolay organization: Cork Institute of Technology – sequence: 12 givenname: James surname: Connolly fullname: Connolly, James organization: Applied Materials – sequence: 13 givenname: Chris surname: Hatem fullname: Hatem, Chris organization: Applied Materials – sequence: 14 givenname: Farzan surname: Gity fullname: Gity, Farzan organization: Tyndall National Institute, University College Cork – sequence: 15 givenname: Lida surname: Ansari fullname: Ansari, Lida organization: Tyndall National Institute, University College Cork – sequence: 16 givenname: Brenda surname: Long fullname: Long, Brenda organization: 7 Applied Materials, Gloucester, Massachusetts 01930, USA – sequence: 17 givenname: Ray surname: Duffy fullname: Duffy, Ray organization: Tyndall National Institute, University College Cork |
BookMark | eNqdkM1KxDAUhYOM4Piz8A0KrhSq9zamaZYyjD8w4MJxXdI00WgnqUk76M6tr-mT2GFGBHHl6nIu3zkHzi4ZOe80IYcIpwg5PcNTBqKgwLfIGKEQKWcMRmQMkGFaCC52yG6MTwCIBRVjMp--to0P1j0kyru6V51d2u4tsS7Rr2m0XZ_UvtV1cmeT7nH4GtssYiLjSqlnp-Mg2jZ4qR51TNjn-4db7JNtI5uoDzZ3j9xfTueT63R2e3UzuZilKuOcp7LmeVVDjlTRSiAVqsqYqXJEiUwZAUVV8IyLc5NLyAFoBoahZprl55XRGd0jR-vcof-l17Ern3wf3FBZZhkVAnPkdKDO1pQKPsagTalsJzvrXRekbUqEcjVdieVmusFx_MvRBruQ4e1P9mTNxu_U_8FLH37Asq0N_QLZSYvn |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1134_S1063782621090116 crossref_primary_10_2139_ssrn_3925507 crossref_primary_10_1016_j_physe_2022_115522 crossref_primary_10_1088_1402_4896_abde0c crossref_primary_10_1021_acsami_0c22360 crossref_primary_10_1016_j_physleta_2022_127933 crossref_primary_10_1088_2631_8695_abb18c crossref_primary_10_1016_j_apsusc_2019_145147 crossref_primary_10_1063_5_0035693 crossref_primary_10_1063_5_0151592 crossref_primary_10_1134_S1063739722020068 |
Cites_doi | 10.1109/TNANO.2013.2279424 10.1109/TED.2014.2354254 10.3762/bjnano.9.199 10.1016/j.sse.2015.08.018 10.1109/SISPAD.2003.1233625 10.1088/1361-6439/aac58e 10.1063/1.4807578 10.1063/1.5034213 10.1063/1.5019470 10.1103/PhysRevB.23.5048 10.1142/9789814307055_0001 10.1016/j.sse.2003.12.020 10.1088/0022-3735/2/2/312 10.1103/PhysRevB.75.045301 10.1063/1.4932172 10.1038/nnano.2008.400 10.1109/LED.2012.2184520 10.1021/nl072997a 10.1039/c3cp50429h 10.1109/EDL.1982.25502 10.1103/PhysRevB.69.195113 10.1103/PhysRevLett.96.166805 10.1088/1361-648X/aadbed 10.1063/1.3125050 10.1109/T-ED.1983.21282 10.1103/PhysRevLett.102.226401 |
ContentType | Journal Article |
Copyright | Author(s) 2019 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2019 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.5098307 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_1_5098307 jap |
GrantInformation_xml | – fundername: SFI/HEA Centre for High End Computing – fundername: European Regional Development Fund funderid: http://dx.doi.org/10.13039/501100008530 – fundername: Horizon 2020 Framework Programme grantid: grant agreement no. 654384 funderid: http://dx.doi.org/10.13039/100010661 – fundername: Enterprise Ireland grantid: IP-2017-0605 funderid: http://dx.doi.org/10.13039/501100001588 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c2777-ad76bd0613c3b9139cb25fb611a15cf908b872794f6a0600320f51e5e564bfe23 |
ISSN | 0021-8979 |
IngestDate | Sun Jun 29 15:28:29 EDT 2025 Tue Jul 01 02:01:10 EDT 2025 Thu Apr 24 23:02:49 EDT 2025 Fri Jun 21 00:15:38 EDT 2024 Sun Jul 14 10:05:08 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | 0021-8979/2019/125(22)/225709/9/$30.00 Published under license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2777-ad76bd0613c3b9139cb25fb611a15cf908b872794f6a0600320f51e5e564bfe23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9284-2832 0000-0002-6362-3489 0000-0001-7682-0601 0000-0003-4196-663X 0000-0003-3128-1426 0000-0001-7060-4836 0000-0003-1956-4781 |
OpenAccessLink | https://aip.scitation.org/doi/pdf/10.1063/1.5098307 |
PQID | 2239916173 |
PQPubID | 2050677 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2239916173 crossref_primary_10_1063_1_5098307 crossref_citationtrail_10_1063_1_5098307 scitation_primary_10_1063_1_5098307 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190614 2019-06-14 |
PublicationDateYYYYMMDD | 2019-06-14 |
PublicationDate_xml | – month: 06 year: 2019 text: 20190614 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of applied physics |
PublicationYear | 2019 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Sharma, Ansari, Feldman, Iakovidis, Greer, Fagas (c26) 2013 Chan, Tiago, Kaxiras, Chelikowsky (c11) 2008 Colinge (c6) 2004 Greer, Blom, Ansari (c31) 2018 Duffy, Ricchio, Murphy, Maxwell, Murphy, Piaszenski, Petkov, Hydes, O'Connell, Lyons, Kennedy, Sheehan, Schmidt, Crupi, Holmes, Hurley, Connolly, Hatem, Long (c16) 2018 Granzner, Polyakov, Schippel, Schwierz (c29) 2014 Lim, Fossum (c7) 1983 Diarra, Niquet, Delerue, Allan (c9) 2007 Kalhauge, Henrichsen, Wang, Hansen, Petersen (c20) 2018 Perdew, Zunger (c24) 1981 Liu, Ye (c3) 2012 Duffy, Thomas, Galluccio, Mirabelli, Sultan, Kennedy, Petkov, Maxwell, Hydes, O'Connell, Lyons, Sheehan, Schmidt, Holmes, Hurley, Pelucchi, Connolly, Hatem, Long (c17) 2018 Kennedy, Duffy, Eaton, O'Connell, Monaghan, Garvey, Connolly, Hatem, Holmes, Long (c15) 2018 Tran, Blaha (c30) 2009 Sun, Liang, Liu, Wang, Xu (c1) 2015 Djara, Czornomaz, Deshpande, Daix, Uccelli, Caimi, Sousa, Fompeyrine (c2) 2016 Bjork, Schmid, Knoch, Riel, Riess (c10) 2009 Fernández-Serra, Adessi, Blase (c12) 2006 Ozaki, Kino (c25) 2004 Ansari, Feldman, Fagas, Lacambra, Haverty, Kuhn, Shankar, Greer (c27) 2013 Thorsteinsson, Wang, Petersen, Hansen, Kjær, Lin, Kim, Nielsen, Hansen (c22) 2009 Rymaszewski (c21) 1969 Lin, Li, Feng, Zhang (c13) 2013 Reeves, Harrison (c19) 1982 (2023070322565484100_c12) 2006; 96 (2023070322565484100_c26) 2013; 113 (2023070322565484100_c25) 2004; 69 (2023070322565484100_c11) 2008; 8 (2023070322565484100_c1) 2015; 107 (2023070322565484100_c3) 2012; 33 (2023070322565484100_c16) 2018; 123 (2023070322565484100_c19) 1982; 3 (2023070322565484100_c4) 2007 (2023070322565484100_c30) 2009; 102 (2023070322565484100_c13) 2013; 15 (2023070322565484100_c22) 2009; 80 2023070322565484100_c8 (2023070322565484100_c17) 2018; 124 (2023070322565484100_c2) 2016; 115 (2023070322565484100_c18) 2004 (2023070322565484100_c14) 2012 (2023070322565484100_c7) 1983; 30 2023070322565484100_c28 2023070322565484100_c23 (2023070322565484100_c20) 2018; 28 2023070322565484100_c5 (2023070322565484100_c27) 2013; 12 (2023070322565484100_c21) 1969; 2 (2023070322565484100_c24) 1981; 23 (2023070322565484100_c31) 2018; 30 (2023070322565484100_c9) 2007; 75 (2023070322565484100_c29) 2014; 61 (2023070322565484100_c15) 2018; 9 (2023070322565484100_c10) 2009; 4 (2023070322565484100_c6) 2004; 48 |
References_xml | – start-page: 897 year: 2004 ident: c6 publication-title: Solid State Electron. – start-page: 103 year: 2009 ident: c10 publication-title: Nat. Nanotechnol. – start-page: 546 year: 2012 ident: c3 publication-title: IEEE Electron Device Lett. – start-page: 1075 year: 2013 ident: c27 publication-title: IEEE Trans. Nanotechnol. – start-page: 195113 year: 2004 ident: c25 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. – start-page: 3601 year: 2014 ident: c29 publication-title: IEEE Trans. Electron Devices – start-page: 226401 year: 2009 ident: c30 publication-title: Phys. Rev. Lett. – start-page: 103 year: 2016 ident: c2 publication-title: Solid State Electron. – start-page: 5048 year: 1981 ident: c24 publication-title: Phys. Rev. B – start-page: 414003 year: 2018 ident: c31 publication-title: J. Phys. Condens. Matter – start-page: 2106 year: 2018 ident: c15 publication-title: Beilstein J. Nanotechnol. – start-page: 111 year: 1982 ident: c19 publication-title: IEEE Electron Device Lett. – start-page: 596 year: 2008 ident: c11 publication-title: Nano Lett. – start-page: 6063 year: 2013 ident: c13 publication-title: Phys. Chem. Chem. Phys. – start-page: 203708 year: 2013 ident: c26 publication-title: J. Appl. Phys. – start-page: 095010 year: 2018 ident: c20 publication-title: J. Micromech. Microeng. – start-page: 045301 year: 2007 ident: c9 publication-title: Phys. Rev. B – start-page: 132105 year: 2015 ident: c1 publication-title: Appl. Phys. Lett. – start-page: 125701 year: 2018 ident: c16 publication-title: J. Appl. Phys. – start-page: 1244 year: 1983 ident: c7 publication-title: IEEE Trans. Electron Devices – start-page: 045703 year: 2018 ident: c17 publication-title: J. Appl. Phys. – start-page: 053902 year: 2009 ident: c22 publication-title: Rev. Sci. Instrum. – start-page: 170 year: 1969 ident: c21 publication-title: J. Phys. E – start-page: 166805 year: 2006 ident: c12 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 1075 issue: 6 year: 2013 ident: 2023070322565484100_c27 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2013.2279424 – volume: 61 start-page: 3601 issue: 11 year: 2014 ident: 2023070322565484100_c29 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2014.2354254 – volume: 9 start-page: 2106 year: 2018 ident: 2023070322565484100_c15 publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.9.199 – volume: 115 start-page: 103 year: 2016 ident: 2023070322565484100_c2 publication-title: Solid State Electron. doi: 10.1016/j.sse.2015.08.018 – ident: 2023070322565484100_c28 doi: 10.1109/SISPAD.2003.1233625 – volume: 28 start-page: 095010 issue: 9 year: 2018 ident: 2023070322565484100_c20 publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aac58e – volume: 113 start-page: 203708 issue: 20 year: 2013 ident: 2023070322565484100_c26 publication-title: J. Appl. Phys. doi: 10.1063/1.4807578 – ident: 2023070322565484100_c8 – volume: 124 start-page: 045703 issue: 4 year: 2018 ident: 2023070322565484100_c17 publication-title: J. Appl. Phys. doi: 10.1063/1.5034213 – volume: 123 start-page: 125701 issue: 12 year: 2018 ident: 2023070322565484100_c16 publication-title: J. Appl. Phys. doi: 10.1063/1.5019470 – volume: 23 start-page: 5048 issue: 10 year: 1981 ident: 2023070322565484100_c24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.23.5048 – start-page: 1 volume-title: Industrial Accelerators and Their Applications year: 2012 ident: 2023070322565484100_c14 doi: 10.1142/9789814307055_0001 – start-page: 110 year: 2007 ident: 2023070322565484100_c4 – volume: 48 start-page: 897 issue: 6 year: 2004 ident: 2023070322565484100_c6 publication-title: Solid State Electron. doi: 10.1016/j.sse.2003.12.020 – volume: 2 start-page: 170 issue: 2 year: 1969 ident: 2023070322565484100_c21 publication-title: J. Phys. E doi: 10.1088/0022-3735/2/2/312 – volume: 75 start-page: 045301 issue: 4 year: 2007 ident: 2023070322565484100_c9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.045301 – volume: 107 start-page: 132105 issue: 13 year: 2015 ident: 2023070322565484100_c1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4932172 – volume: 4 start-page: 103 issue: 2 year: 2009 ident: 2023070322565484100_c10 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.400 – volume: 33 start-page: 546 issue: 4 year: 2012 ident: 2023070322565484100_c3 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2012.2184520 – start-page: 247 year: 2004 ident: 2023070322565484100_c18 – volume: 8 start-page: 596 issue: 2 year: 2008 ident: 2023070322565484100_c11 publication-title: Nano Lett. doi: 10.1021/nl072997a – volume: 15 start-page: 6063 issue: 16 year: 2013 ident: 2023070322565484100_c13 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp50429h – volume: 3 start-page: 111 issue: 5 year: 1982 ident: 2023070322565484100_c19 publication-title: IEEE Electron Device Lett. doi: 10.1109/EDL.1982.25502 – volume: 69 start-page: 195113 issue: 19 year: 2004 ident: 2023070322565484100_c25 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.69.195113 – volume: 96 start-page: 166805 issue: 16 year: 2006 ident: 2023070322565484100_c12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.166805 – ident: 2023070322565484100_c23 – ident: 2023070322565484100_c5 – volume: 30 start-page: 414003 issue: 41 year: 2018 ident: 2023070322565484100_c31 publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/aadbed – volume: 80 start-page: 053902 issue: 5 year: 2009 ident: 2023070322565484100_c22 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3125050 – volume: 30 start-page: 1244 issue: 10 year: 1983 ident: 2023070322565484100_c7 publication-title: IEEE Trans. Electron Devices doi: 10.1109/T-ED.1983.21282 – volume: 102 start-page: 226401 issue: 22 year: 2009 ident: 2023070322565484100_c30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.226401 |
SSID | ssj0011839 |
Score | 2.3598588 |
Snippet | Silicon (Si) has been scaled below 10 nm in multigate and silicon-on-insulator (SOI) device technologies, but clearly Si thickness cannot be reduced... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Arsenic Contact resistance Density functional theory Doping Electric contacts Electrical resistivity Film thickness Ion implantation Material properties Monolayers Nanowires Parasitics (electronics) Phosphorus Silicon films Thin films Vapor phases |
Title | Exploring conductivity in ex-situ doped Si thin films as thickness approaches 5 nm |
URI | http://dx.doi.org/10.1063/1.5098307 https://www.proquest.com/docview/2239916173 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJwQ8IBggCgNZwAPS5C5fdp3HCTZVaEVI66S9hdixpWhrWq0pmvbEK3-TX8J17TgZK2jwEkWu81HfY_vYOfdehN6FKtFRnDJS8CIhSR5SwmGWJpGJPqcFhznPODhPPrPxSfLplJ72el87qqVVLYbyaqNfyf9YFcrArsZL9h8s628KBXAO9oUjWBiOt7JxK6CDVa0J3GozQZgoIJdkWdar3WK-MIyyBH4Jpbo8ny1NZhkjcj9bD3JNTHG13KVO-MDTavYHzpo7zmr3Qzwdn-Ry7HTJXWnvROVOS3ZYVnULw-7gPlde4nGQOyn_0epMdXcjjAMUI9YL1HsHhISnNkHMUNlBNeApGVEbYNaPutbf2cHL-ibfGM6BP5mdhSGwGh7b7LjXQ2b_NpV5geH60zqLszBzl95BWxEsJKI-2tr_ODk69l-aDEO0MiD73k30KRbv-ede5yztQuQesBQrmOhwkukj9NAZBu9bZDxGPVVtowedEJPb6O4Xa6onaOrRgrtowWWFHVrwGi34uMQGLXiNFpwvsUcLbtGC6c_vP6rZU3RyeDD9MCYupwaR8P9HJC9GTBSGxMlYmJCwUkRUCxaG0E2lTgMuOFDaNNEsD4AMx1GgaaiooiwRWkXxM9Sv5pV6jjClMjWRxAKZcvhNi5QzKeJIBkqKEc0H6H3TalnTTibvyXl2wzoD9MZXXdgoK5sq7TRNn7lOuMwi45tt1ujxAL315vjbTTbU-ja_aGtki0K_uM37vET32x6wg_r1xUq9AoZai9cOZL8AYVyONw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+conductivity+in+ex-situ+doped+Si+thin+films+as+thickness+approaches+5%E2%80%89nm&rft.jtitle=Journal+of+applied+physics&rft.au=MacHale%2C+John&rft.au=Meaney%2C+Fintan&rft.au=Kennedy%2C+Noel&rft.au=Eaton%2C+Luke&rft.date=2019-06-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=125&rft.issue=22&rft_id=info:doi/10.1063%2F1.5098307&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_5098307 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |