Exploring conductivity in ex-situ doped Si thin films as thickness approaches 5 nm

Silicon (Si) has been scaled below 10 nm in multigate and silicon-on-insulator (SOI) device technologies, but clearly Si thickness cannot be reduced indefinitely, as we will run out of atoms eventually. As thickness approaches 5 nm, surfaces and interfaces will significantly impact the electrical be...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 125; no. 22
Main Authors MacHale, John, Meaney, Fintan, Kennedy, Noel, Eaton, Luke, Mirabelli, Gioele, White, Mary, Thomas, Kevin, Pelucchi, Emanuele, Petersen, Dirch Hjorth, Lin, Rong, Petkov, Nikolay, Connolly, James, Hatem, Chris, Gity, Farzan, Ansari, Lida, Long, Brenda, Duffy, Ray
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 14.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silicon (Si) has been scaled below 10 nm in multigate and silicon-on-insulator (SOI) device technologies, but clearly Si thickness cannot be reduced indefinitely, as we will run out of atoms eventually. As thickness approaches 5 nm, surfaces and interfaces will significantly impact the electrical behavior of Si, and surface physics cannot be discounted. Below that, bulk material properties will be altered considerably in the few-monolayer limit. One of the most basic defining properties of a semiconductor is its conductivity. To improve conductivity, while inducing a channel by appropriate biasing, it is necessary to define an accurate impurity doping strategy to reduce parasitic resistance. In this paper, we investigated the changing electrical conductivity of SOI films as a function of the Si thickness, in the range of 3–66 nm. SOI films were ex situ doped using three different approaches: liquid/vapor phase monolayer doping of phosphorus using allyldiphenylphosphine, gas-phase doping of arsenic using arsine (AsH3), and room-temperature beam-line ion implantation of phosphorus. The circular transfer length method and micro-four-point probe measurements were used to determine the resistivity of the Si films, mitigating the contribution from contact resistance. The resistivity of the Si films was observed to increase with decreasing Si film thickness below 20 nm, with a dramatic increase observed for a Si thickness at 4.5 nm. This may drastically impact the number of parallel conduction paths (i.e., nanowires) required in gate-all-around devices. Density functional theory modeling indicates that the surface of the Si film with a thickness of 4.5 nm is energetically more favorable for the dopant atom compared to the core of the film.
AbstractList Silicon (Si) has been scaled below 10 nm in multigate and silicon-on-insulator (SOI) device technologies, but clearly Si thickness cannot be reduced indefinitely, as we will run out of atoms eventually. As thickness approaches 5 nm, surfaces and interfaces will significantly impact the electrical behavior of Si, and surface physics cannot be discounted. Below that, bulk material properties will be altered considerably in the few-monolayer limit. One of the most basic defining properties of a semiconductor is its conductivity. To improve conductivity, while inducing a channel by appropriate biasing, it is necessary to define an accurate impurity doping strategy to reduce parasitic resistance. In this paper, we investigated the changing electrical conductivity of SOI films as a function of the Si thickness, in the range of 3–66 nm. SOI films were ex situ doped using three different approaches: liquid/vapor phase monolayer doping of phosphorus using allyldiphenylphosphine, gas-phase doping of arsenic using arsine (AsH3), and room-temperature beam-line ion implantation of phosphorus. The circular transfer length method and micro-four-point probe measurements were used to determine the resistivity of the Si films, mitigating the contribution from contact resistance. The resistivity of the Si films was observed to increase with decreasing Si film thickness below 20 nm, with a dramatic increase observed for a Si thickness at 4.5 nm. This may drastically impact the number of parallel conduction paths (i.e., nanowires) required in gate-all-around devices. Density functional theory modeling indicates that the surface of the Si film with a thickness of 4.5 nm is energetically more favorable for the dopant atom compared to the core of the film.
Author White, Mary
Thomas, Kevin
Lin, Rong
Connolly, James
Gity, Farzan
Eaton, Luke
Long, Brenda
Kennedy, Noel
MacHale, John
Mirabelli, Gioele
Petersen, Dirch Hjorth
Hatem, Chris
Meaney, Fintan
Pelucchi, Emanuele
Petkov, Nikolay
Ansari, Lida
Duffy, Ray
Author_xml – sequence: 1
  givenname: John
  surname: MacHale
  fullname: MacHale, John
  organization: Tyndall National Institute, University College Cork
– sequence: 2
  givenname: Fintan
  surname: Meaney
  fullname: Meaney, Fintan
  organization: Tyndall National Institute, University College Cork
– sequence: 3
  givenname: Noel
  surname: Kennedy
  fullname: Kennedy, Noel
  organization: School of Chemistry, University College Cork
– sequence: 4
  givenname: Luke
  surname: Eaton
  fullname: Eaton, Luke
  organization: School of Chemistry, University College Cork
– sequence: 5
  givenname: Gioele
  surname: Mirabelli
  fullname: Mirabelli, Gioele
  organization: Tyndall National Institute, University College Cork
– sequence: 6
  givenname: Mary
  surname: White
  fullname: White, Mary
  organization: Tyndall National Institute, University College Cork
– sequence: 7
  givenname: Kevin
  surname: Thomas
  fullname: Thomas, Kevin
  organization: Tyndall National Institute, University College Cork
– sequence: 8
  givenname: Emanuele
  surname: Pelucchi
  fullname: Pelucchi, Emanuele
  organization: Tyndall National Institute, University College Cork
– sequence: 9
  givenname: Dirch Hjorth
  surname: Petersen
  fullname: Petersen, Dirch Hjorth
  organization: Department of Physics, Technical University of Denmark
– sequence: 10
  givenname: Rong
  surname: Lin
  fullname: Lin, Rong
  organization: CAPRES—A KLA Company, Scion-DTU
– sequence: 11
  givenname: Nikolay
  surname: Petkov
  fullname: Petkov, Nikolay
  organization: Cork Institute of Technology
– sequence: 12
  givenname: James
  surname: Connolly
  fullname: Connolly, James
  organization: Applied Materials
– sequence: 13
  givenname: Chris
  surname: Hatem
  fullname: Hatem, Chris
  organization: Applied Materials
– sequence: 14
  givenname: Farzan
  surname: Gity
  fullname: Gity, Farzan
  organization: Tyndall National Institute, University College Cork
– sequence: 15
  givenname: Lida
  surname: Ansari
  fullname: Ansari, Lida
  organization: Tyndall National Institute, University College Cork
– sequence: 16
  givenname: Brenda
  surname: Long
  fullname: Long, Brenda
  organization: 7 Applied Materials, Gloucester, Massachusetts 01930, USA
– sequence: 17
  givenname: Ray
  surname: Duffy
  fullname: Duffy, Ray
  organization: Tyndall National Institute, University College Cork
BookMark eNqdkM1KxDAUhYOM4Piz8A0KrhSq9zamaZYyjD8w4MJxXdI00WgnqUk76M6tr-mT2GFGBHHl6nIu3zkHzi4ZOe80IYcIpwg5PcNTBqKgwLfIGKEQKWcMRmQMkGFaCC52yG6MTwCIBRVjMp--to0P1j0kyru6V51d2u4tsS7Rr2m0XZ_UvtV1cmeT7nH4GtssYiLjSqlnp-Mg2jZ4qR51TNjn-4db7JNtI5uoDzZ3j9xfTueT63R2e3UzuZilKuOcp7LmeVVDjlTRSiAVqsqYqXJEiUwZAUVV8IyLc5NLyAFoBoahZprl55XRGd0jR-vcof-l17Ern3wf3FBZZhkVAnPkdKDO1pQKPsagTalsJzvrXRekbUqEcjVdieVmusFx_MvRBruQ4e1P9mTNxu_U_8FLH37Asq0N_QLZSYvn
CODEN JAPIAU
CitedBy_id crossref_primary_10_1134_S1063782621090116
crossref_primary_10_2139_ssrn_3925507
crossref_primary_10_1016_j_physe_2022_115522
crossref_primary_10_1088_1402_4896_abde0c
crossref_primary_10_1021_acsami_0c22360
crossref_primary_10_1016_j_physleta_2022_127933
crossref_primary_10_1088_2631_8695_abb18c
crossref_primary_10_1016_j_apsusc_2019_145147
crossref_primary_10_1063_5_0035693
crossref_primary_10_1063_5_0151592
crossref_primary_10_1134_S1063739722020068
Cites_doi 10.1109/TNANO.2013.2279424
10.1109/TED.2014.2354254
10.3762/bjnano.9.199
10.1016/j.sse.2015.08.018
10.1109/SISPAD.2003.1233625
10.1088/1361-6439/aac58e
10.1063/1.4807578
10.1063/1.5034213
10.1063/1.5019470
10.1103/PhysRevB.23.5048
10.1142/9789814307055_0001
10.1016/j.sse.2003.12.020
10.1088/0022-3735/2/2/312
10.1103/PhysRevB.75.045301
10.1063/1.4932172
10.1038/nnano.2008.400
10.1109/LED.2012.2184520
10.1021/nl072997a
10.1039/c3cp50429h
10.1109/EDL.1982.25502
10.1103/PhysRevB.69.195113
10.1103/PhysRevLett.96.166805
10.1088/1361-648X/aadbed
10.1063/1.3125050
10.1109/T-ED.1983.21282
10.1103/PhysRevLett.102.226401
ContentType Journal Article
Copyright Author(s)
2019 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2019 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.5098307
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_1_5098307
jap
GrantInformation_xml – fundername: SFI/HEA Centre for High End Computing
– fundername: European Regional Development Fund
  funderid: http://dx.doi.org/10.13039/501100008530
– fundername: Horizon 2020 Framework Programme
  grantid: grant agreement no. 654384
  funderid: http://dx.doi.org/10.13039/100010661
– fundername: Enterprise Ireland
  grantid: IP-2017-0605
  funderid: http://dx.doi.org/10.13039/501100001588
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c2777-ad76bd0613c3b9139cb25fb611a15cf908b872794f6a0600320f51e5e564bfe23
ISSN 0021-8979
IngestDate Sun Jun 29 15:28:29 EDT 2025
Tue Jul 01 02:01:10 EDT 2025
Thu Apr 24 23:02:49 EDT 2025
Fri Jun 21 00:15:38 EDT 2024
Sun Jul 14 10:05:08 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License 0021-8979/2019/125(22)/225709/9/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2777-ad76bd0613c3b9139cb25fb611a15cf908b872794f6a0600320f51e5e564bfe23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9284-2832
0000-0002-6362-3489
0000-0001-7682-0601
0000-0003-4196-663X
0000-0003-3128-1426
0000-0001-7060-4836
0000-0003-1956-4781
OpenAccessLink https://aip.scitation.org/doi/pdf/10.1063/1.5098307
PQID 2239916173
PQPubID 2050677
PageCount 9
ParticipantIDs proquest_journals_2239916173
crossref_primary_10_1063_1_5098307
crossref_citationtrail_10_1063_1_5098307
scitation_primary_10_1063_1_5098307
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190614
2019-06-14
PublicationDateYYYYMMDD 2019-06-14
PublicationDate_xml – month: 06
  year: 2019
  text: 20190614
  day: 14
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2019
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Sharma, Ansari, Feldman, Iakovidis, Greer, Fagas (c26) 2013
Chan, Tiago, Kaxiras, Chelikowsky (c11) 2008
Colinge (c6) 2004
Greer, Blom, Ansari (c31) 2018
Duffy, Ricchio, Murphy, Maxwell, Murphy, Piaszenski, Petkov, Hydes, O'Connell, Lyons, Kennedy, Sheehan, Schmidt, Crupi, Holmes, Hurley, Connolly, Hatem, Long (c16) 2018
Granzner, Polyakov, Schippel, Schwierz (c29) 2014
Lim, Fossum (c7) 1983
Diarra, Niquet, Delerue, Allan (c9) 2007
Kalhauge, Henrichsen, Wang, Hansen, Petersen (c20) 2018
Perdew, Zunger (c24) 1981
Liu, Ye (c3) 2012
Duffy, Thomas, Galluccio, Mirabelli, Sultan, Kennedy, Petkov, Maxwell, Hydes, O'Connell, Lyons, Sheehan, Schmidt, Holmes, Hurley, Pelucchi, Connolly, Hatem, Long (c17) 2018
Kennedy, Duffy, Eaton, O'Connell, Monaghan, Garvey, Connolly, Hatem, Holmes, Long (c15) 2018
Tran, Blaha (c30) 2009
Sun, Liang, Liu, Wang, Xu (c1) 2015
Djara, Czornomaz, Deshpande, Daix, Uccelli, Caimi, Sousa, Fompeyrine (c2) 2016
Bjork, Schmid, Knoch, Riel, Riess (c10) 2009
Fernández-Serra, Adessi, Blase (c12) 2006
Ozaki, Kino (c25) 2004
Ansari, Feldman, Fagas, Lacambra, Haverty, Kuhn, Shankar, Greer (c27) 2013
Thorsteinsson, Wang, Petersen, Hansen, Kjær, Lin, Kim, Nielsen, Hansen (c22) 2009
Rymaszewski (c21) 1969
Lin, Li, Feng, Zhang (c13) 2013
Reeves, Harrison (c19) 1982
(2023070322565484100_c12) 2006; 96
(2023070322565484100_c26) 2013; 113
(2023070322565484100_c25) 2004; 69
(2023070322565484100_c11) 2008; 8
(2023070322565484100_c1) 2015; 107
(2023070322565484100_c3) 2012; 33
(2023070322565484100_c16) 2018; 123
(2023070322565484100_c19) 1982; 3
(2023070322565484100_c4) 2007
(2023070322565484100_c30) 2009; 102
(2023070322565484100_c13) 2013; 15
(2023070322565484100_c22) 2009; 80
2023070322565484100_c8
(2023070322565484100_c17) 2018; 124
(2023070322565484100_c2) 2016; 115
(2023070322565484100_c18) 2004
(2023070322565484100_c14) 2012
(2023070322565484100_c7) 1983; 30
2023070322565484100_c28
2023070322565484100_c23
(2023070322565484100_c20) 2018; 28
2023070322565484100_c5
(2023070322565484100_c27) 2013; 12
(2023070322565484100_c21) 1969; 2
(2023070322565484100_c24) 1981; 23
(2023070322565484100_c31) 2018; 30
(2023070322565484100_c9) 2007; 75
(2023070322565484100_c29) 2014; 61
(2023070322565484100_c15) 2018; 9
(2023070322565484100_c10) 2009; 4
(2023070322565484100_c6) 2004; 48
References_xml – start-page: 897
  year: 2004
  ident: c6
  publication-title: Solid State Electron.
– start-page: 103
  year: 2009
  ident: c10
  publication-title: Nat. Nanotechnol.
– start-page: 546
  year: 2012
  ident: c3
  publication-title: IEEE Electron Device Lett.
– start-page: 1075
  year: 2013
  ident: c27
  publication-title: IEEE Trans. Nanotechnol.
– start-page: 195113
  year: 2004
  ident: c25
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
– start-page: 3601
  year: 2014
  ident: c29
  publication-title: IEEE Trans. Electron Devices
– start-page: 226401
  year: 2009
  ident: c30
  publication-title: Phys. Rev. Lett.
– start-page: 103
  year: 2016
  ident: c2
  publication-title: Solid State Electron.
– start-page: 5048
  year: 1981
  ident: c24
  publication-title: Phys. Rev. B
– start-page: 414003
  year: 2018
  ident: c31
  publication-title: J. Phys. Condens. Matter
– start-page: 2106
  year: 2018
  ident: c15
  publication-title: Beilstein J. Nanotechnol.
– start-page: 111
  year: 1982
  ident: c19
  publication-title: IEEE Electron Device Lett.
– start-page: 596
  year: 2008
  ident: c11
  publication-title: Nano Lett.
– start-page: 6063
  year: 2013
  ident: c13
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 203708
  year: 2013
  ident: c26
  publication-title: J. Appl. Phys.
– start-page: 095010
  year: 2018
  ident: c20
  publication-title: J. Micromech. Microeng.
– start-page: 045301
  year: 2007
  ident: c9
  publication-title: Phys. Rev. B
– start-page: 132105
  year: 2015
  ident: c1
  publication-title: Appl. Phys. Lett.
– start-page: 125701
  year: 2018
  ident: c16
  publication-title: J. Appl. Phys.
– start-page: 1244
  year: 1983
  ident: c7
  publication-title: IEEE Trans. Electron Devices
– start-page: 045703
  year: 2018
  ident: c17
  publication-title: J. Appl. Phys.
– start-page: 053902
  year: 2009
  ident: c22
  publication-title: Rev. Sci. Instrum.
– start-page: 170
  year: 1969
  ident: c21
  publication-title: J. Phys. E
– start-page: 166805
  year: 2006
  ident: c12
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 1075
  issue: 6
  year: 2013
  ident: 2023070322565484100_c27
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2013.2279424
– volume: 61
  start-page: 3601
  issue: 11
  year: 2014
  ident: 2023070322565484100_c29
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2014.2354254
– volume: 9
  start-page: 2106
  year: 2018
  ident: 2023070322565484100_c15
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.9.199
– volume: 115
  start-page: 103
  year: 2016
  ident: 2023070322565484100_c2
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2015.08.018
– ident: 2023070322565484100_c28
  doi: 10.1109/SISPAD.2003.1233625
– volume: 28
  start-page: 095010
  issue: 9
  year: 2018
  ident: 2023070322565484100_c20
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aac58e
– volume: 113
  start-page: 203708
  issue: 20
  year: 2013
  ident: 2023070322565484100_c26
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4807578
– ident: 2023070322565484100_c8
– volume: 124
  start-page: 045703
  issue: 4
  year: 2018
  ident: 2023070322565484100_c17
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5034213
– volume: 123
  start-page: 125701
  issue: 12
  year: 2018
  ident: 2023070322565484100_c16
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5019470
– volume: 23
  start-page: 5048
  issue: 10
  year: 1981
  ident: 2023070322565484100_c24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.23.5048
– start-page: 1
  volume-title: Industrial Accelerators and Their Applications
  year: 2012
  ident: 2023070322565484100_c14
  doi: 10.1142/9789814307055_0001
– start-page: 110
  year: 2007
  ident: 2023070322565484100_c4
– volume: 48
  start-page: 897
  issue: 6
  year: 2004
  ident: 2023070322565484100_c6
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2003.12.020
– volume: 2
  start-page: 170
  issue: 2
  year: 1969
  ident: 2023070322565484100_c21
  publication-title: J. Phys. E
  doi: 10.1088/0022-3735/2/2/312
– volume: 75
  start-page: 045301
  issue: 4
  year: 2007
  ident: 2023070322565484100_c9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.045301
– volume: 107
  start-page: 132105
  issue: 13
  year: 2015
  ident: 2023070322565484100_c1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4932172
– volume: 4
  start-page: 103
  issue: 2
  year: 2009
  ident: 2023070322565484100_c10
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.400
– volume: 33
  start-page: 546
  issue: 4
  year: 2012
  ident: 2023070322565484100_c3
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2012.2184520
– start-page: 247
  year: 2004
  ident: 2023070322565484100_c18
– volume: 8
  start-page: 596
  issue: 2
  year: 2008
  ident: 2023070322565484100_c11
  publication-title: Nano Lett.
  doi: 10.1021/nl072997a
– volume: 15
  start-page: 6063
  issue: 16
  year: 2013
  ident: 2023070322565484100_c13
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp50429h
– volume: 3
  start-page: 111
  issue: 5
  year: 1982
  ident: 2023070322565484100_c19
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/EDL.1982.25502
– volume: 69
  start-page: 195113
  issue: 19
  year: 2004
  ident: 2023070322565484100_c25
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.69.195113
– volume: 96
  start-page: 166805
  issue: 16
  year: 2006
  ident: 2023070322565484100_c12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.166805
– ident: 2023070322565484100_c23
– ident: 2023070322565484100_c5
– volume: 30
  start-page: 414003
  issue: 41
  year: 2018
  ident: 2023070322565484100_c31
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/aadbed
– volume: 80
  start-page: 053902
  issue: 5
  year: 2009
  ident: 2023070322565484100_c22
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3125050
– volume: 30
  start-page: 1244
  issue: 10
  year: 1983
  ident: 2023070322565484100_c7
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/T-ED.1983.21282
– volume: 102
  start-page: 226401
  issue: 22
  year: 2009
  ident: 2023070322565484100_c30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.226401
SSID ssj0011839
Score 2.3598588
Snippet Silicon (Si) has been scaled below 10 nm in multigate and silicon-on-insulator (SOI) device technologies, but clearly Si thickness cannot be reduced...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Arsenic
Contact resistance
Density functional theory
Doping
Electric contacts
Electrical resistivity
Film thickness
Ion implantation
Material properties
Monolayers
Nanowires
Parasitics (electronics)
Phosphorus
Silicon films
Thin films
Vapor phases
Title Exploring conductivity in ex-situ doped Si thin films as thickness approaches 5 nm
URI http://dx.doi.org/10.1063/1.5098307
https://www.proquest.com/docview/2239916173
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJwQ8IBggCgNZwAPS5C5fdp3HCTZVaEVI66S9hdixpWhrWq0pmvbEK3-TX8J17TgZK2jwEkWu81HfY_vYOfdehN6FKtFRnDJS8CIhSR5SwmGWJpGJPqcFhznPODhPPrPxSfLplJ72el87qqVVLYbyaqNfyf9YFcrArsZL9h8s628KBXAO9oUjWBiOt7JxK6CDVa0J3GozQZgoIJdkWdar3WK-MIyyBH4Jpbo8ny1NZhkjcj9bD3JNTHG13KVO-MDTavYHzpo7zmr3Qzwdn-Ry7HTJXWnvROVOS3ZYVnULw-7gPlde4nGQOyn_0epMdXcjjAMUI9YL1HsHhISnNkHMUNlBNeApGVEbYNaPutbf2cHL-ibfGM6BP5mdhSGwGh7b7LjXQ2b_NpV5geH60zqLszBzl95BWxEsJKI-2tr_ODk69l-aDEO0MiD73k30KRbv-ede5yztQuQesBQrmOhwkukj9NAZBu9bZDxGPVVtowedEJPb6O4Xa6onaOrRgrtowWWFHVrwGi34uMQGLXiNFpwvsUcLbtGC6c_vP6rZU3RyeDD9MCYupwaR8P9HJC9GTBSGxMlYmJCwUkRUCxaG0E2lTgMuOFDaNNEsD4AMx1GgaaiooiwRWkXxM9Sv5pV6jjClMjWRxAKZcvhNi5QzKeJIBkqKEc0H6H3TalnTTibvyXl2wzoD9MZXXdgoK5sq7TRNn7lOuMwi45tt1ujxAL315vjbTTbU-ja_aGtki0K_uM37vET32x6wg_r1xUq9AoZai9cOZL8AYVyONw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+conductivity+in+ex-situ+doped+Si+thin+films+as+thickness+approaches+5%E2%80%89nm&rft.jtitle=Journal+of+applied+physics&rft.au=MacHale%2C+John&rft.au=Meaney%2C+Fintan&rft.au=Kennedy%2C+Noel&rft.au=Eaton%2C+Luke&rft.date=2019-06-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=125&rft.issue=22&rft_id=info:doi/10.1063%2F1.5098307&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_5098307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon