Disconjugacy, transformations and quadratic functionals for symplectic dynamic systems on time scales

In this paper we study qualitative properties of the socalled symplectic dynamic system (S) z δ A =Stz on an arbitrary time scale T, providing a unified theory for discrete symplectic systems and differential linear Hamiltonian systems . We define dis-conjugacy (no focal points) for conjoined bases...

Full description

Saved in:
Bibliographic Details
Published inJournal of difference equations and applications Vol. 7; no. 2; pp. 265 - 295
Main Authors Dořlý, Ondřrej, Hilscher, Roman
Format Journal Article
LanguageEnglish
Published Gordon and Breach Science Publishers 01.01.2001
Subjects
Online AccessGet full text
ISSN1023-6198
1563-5120
DOI10.1080/10236190108808273

Cover

Loading…
Abstract In this paper we study qualitative properties of the socalled symplectic dynamic system (S) z δ A =Stz on an arbitrary time scale T, providing a unified theory for discrete symplectic systems and differential linear Hamiltonian systems . We define dis-conjugacy (no focal points) for conjoined bases of (S) and prove, under a certain minimal normality assumption, that disconjugacy of (S) on the interval under consideration is equival ent to the positivity of the associated quadratic functional. Such statement is commonly called Jacobi condition. We discuss also the solvability of the corresponding Riccati matrix equation and transformations. This work may be regarded as a generalization of the results recently obtained by the second author for linear Hamiltonian systems on time scales.
AbstractList In this paper we study qualitative properties of the socalled symplectic dynamic system (S) z δ A =Stz on an arbitrary time scale T, providing a unified theory for discrete symplectic systems and differential linear Hamiltonian systems . We define dis-conjugacy (no focal points) for conjoined bases of (S) and prove, under a certain minimal normality assumption, that disconjugacy of (S) on the interval under consideration is equival ent to the positivity of the associated quadratic functional. Such statement is commonly called Jacobi condition. We discuss also the solvability of the corresponding Riccati matrix equation and transformations. This work may be regarded as a generalization of the results recently obtained by the second author for linear Hamiltonian systems on time scales.
Author Hilscher, Roman
Dořlý, Ondřrej
Author_xml – sequence: 1
  givenname: Ondřrej
  surname: Dořlý
  fullname: Dořlý, Ondřrej
  organization: Mathematical Institute , Czech Academy of Sciences
– sequence: 2
  givenname: Roman
  surname: Hilscher
  fullname: Hilscher, Roman
  organization: Department of Mathematics Faculty of Science , Masaryk University Brno
BookMark eNqNkMtOwzAQRS1UJNrCB7DzBxDwI3EciQ0qFJAqsYF15PiBXCV2sV1B_h63sKJCsJq5M_fYmjsDE-edBuAco0uMOLrCiFCGG5QFR5zU9AhMccVoUWGCJrnP-yIb-AmYxbhGiOQ5mwJ9a6P0br19FXK8gCkIF40Pg0jWuwiFU_BtK1TIWkKzdXI3F32E2QTjOGx6LXcrNTox5BrHmPQQoXcw2UHDKEWv4yk4NhnSZ991Dl6Wd8-Lh2L1dP-4uFkVktQsFYaxTqEGc81FJ5saK1HxhlelkrQUHaFdSUpTZU07xSmRFRMG1bWsS8F0Ns0B_npXBh9j0KbdBDuIMLYYtbuc2oOcMlP_YKRN-_NzGLb_D2ndPrJ3H3rVJjH2PpgcpLTxkGrTR8rk9Z8k_f3jTzgGlaA
CitedBy_id crossref_primary_10_1007_s43037_025_00415_8
crossref_primary_10_1016_S0377_0427_01_00432_0
crossref_primary_10_1016_j_camwa_2006_12_011
crossref_primary_10_1016_j_laa_2003_06_013
crossref_primary_10_14232_ejqtde_2020_1_44
crossref_primary_10_1016_j_aml_2012_09_014
crossref_primary_10_1002_mana_202000427
crossref_primary_10_1186_1687_1847_2012_104
crossref_primary_10_1016_j_camwa_2010_08_033
crossref_primary_10_1016_j_amc_2013_12_135
crossref_primary_10_1007_s12591_010_0004_z
crossref_primary_10_1080_10236198_2014_997227
crossref_primary_10_1016_S0377_0427_01_00434_4
crossref_primary_10_1016_j_jde_2006_06_010
crossref_primary_10_1016_j_jmaa_2014_07_015
crossref_primary_10_1016_j_aml_2012_04_009
crossref_primary_10_1016_j_amc_2012_01_056
crossref_primary_10_1017_S144618110001364X
crossref_primary_10_1080_1023619021000000951
crossref_primary_10_1080_1026190290017360
crossref_primary_10_1016_j_laa_2014_11_029
crossref_primary_10_1016_j_jmaa_2018_09_020
crossref_primary_10_1155_2011_738520
crossref_primary_10_1016_j_amc_2012_08_026
crossref_primary_10_1016_j_jmaa_2007_07_077
crossref_primary_10_1016_j_jmaa_2016_06_057
crossref_primary_10_1080_10236100309487537
crossref_primary_10_1016_S0377_0427_01_00447_2
crossref_primary_10_1016_S0024_3795_02_00590_6
crossref_primary_10_1216_rmjm_1181069797
crossref_primary_10_1016_S0377_0427_01_00446_0
crossref_primary_10_1016_S0377_0427_01_00442_3
crossref_primary_10_1006_jmaa_2000_6992
Cites_doi 10.1006/jmaa.1996.0177
10.1007/BF03323153
10.1007/978-1-4757-2467-7
10.1016/S0362-546X(97)00675-5
10.1016/S0893-9659(98)00156-6
10.1006/jmaa.1995.1129
10.1016/S0096-3003(98)00004-6
10.4064/ap-50-3-223-234
10.1216/rmjm/1181071889
10.1090/S0002-9947-1979-0546906-8
10.1016/0022-247X(92)90347-G
10.1007/BFb0058618
10.1016/0022-247X(92)90212-V
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2001
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2001
DBID AAYXX
CITATION
DOI 10.1080/10236190108808273
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1563-5120
EndPage 295
ExternalDocumentID 10_1080_10236190108808273
8808273
GroupedDBID -~X
.7F
.QJ
0BK
0R~
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
QCRFL
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TOXWX
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
07G
1TA
29K
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ACGEE
ADYSH
AEUMN
AFRVT
AGCQS
AGLEN
AIYEW
AMPGV
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
D-I
DWIFK
IPNFZ
IVXBP
LJTGL
NUSFT
RIG
TAQ
TFMCV
UB9
UU8
V3K
V4Q
ID FETCH-LOGICAL-c276t-f66bd0918e8abc971da589854dc34ab23b424f554d3bd832c56af077c74a6edc3
ISSN 1023-6198
IngestDate Tue Jul 01 03:25:56 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Mon May 13 12:10:08 EDT 2019
Wed Dec 25 09:02:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c276t-f66bd0918e8abc971da589854dc34ab23b424f554d3bd832c56af077c74a6edc3
PageCount 31
ParticipantIDs crossref_primary_10_1080_10236190108808273
informaworld_taylorfrancis_310_1080_10236190108808273
crossref_citationtrail_10_1080_10236190108808273
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1/1/2001
2001-01-00
PublicationDateYYYYMMDD 2001-01-01
PublicationDate_xml – month: 01
  year: 2001
  text: 1/1/2001
  day: 01
PublicationDecade 2000
PublicationTitle Journal of difference equations and applications
PublicationYear 2001
Publisher Gordon and Breach Science Publishers
Publisher_xml – name: Gordon and Breach Science Publishers
References Ben-Israel A. (CIT0009) 1974
Bohner M. (CIT0015)
Hilscher R. (CIT0028)
Anderson D.R. (CIT0007) 1999; 8
CIT0010
Bohner M. (CIT0012) 1997; 12
Bohner M. (CIT0011) 1996; 2
Bohner M. (CIT0013) 1998; 1
Hilger S. (CIT0026) 1990; 18
Anderson D.R. (CIT0006) 1997; 7
Coppel W.A (CIT0018) 1971; 220
CIT0014
Hilscher R. (CIT0031) 1998
CIT0035
Kaymakcalan B. (CIT0033) 1996
CIT0017
Hilscher R. (CIT0027) 1999; 8
Došlý O. (CIT0019) 1990; 50
Erbe L. (CIT0023) 1993; 1
Hilscher R. (CIT0029)
Reid W.T. (CIT0036) 1971
CIT0021
Došlý O. (CIT0020) 1995; 31
Ahlbrandt C.D. (CIT0004) 1981; 81
Ahlbrandt C.D. (CIT0005) 1996
Kratz W. (CIT0034) 1995
Došlý O. (CIT0022) 1999; 8
Hilscher R. (CIT0030)
Aulbach B. (CIT0008) 1988
CIT0003
CIT0025
Hilscher R. (CIT0032)
Agarwal R.P. (CIT0001) 1999; 8
CIT0002
Bohner M. (CIT0016) 1999; 8
CIT0024
References_xml – ident: CIT0010
  doi: 10.1006/jmaa.1996.0177
– ident: CIT0030
  publication-title: Jnhomogeneous quadratic functionals on time scales
– volume-title: Dynamic Systems on Measure Chains
  year: 1996
  ident: CIT0033
– volume: 1
  start-page: 375
  year: 1998
  ident: CIT0013
  publication-title: Math. Inequal. Appl
– volume: 8
  start-page: 489
  year: 1999
  ident: CIT0027
  publication-title: Dynam. Systems Appl.
– volume-title: Proceedings of the Fourth International Conference on Difference Equationsand Applications
  year: 1998
  ident: CIT0031
– volume-title: A Unified Approach to Continuous and Discrete Dynamics
  year: 1988
  ident: CIT0008
– volume: 18
  start-page: 18
  year: 1990
  ident: CIT0026
  publication-title: Results Math.
  doi: 10.1007/BF03323153
– volume-title: Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations
  year: 1996
  ident: CIT0005
  doi: 10.1007/978-1-4757-2467-7
– volume: 7
  start-page: 39
  year: 1997
  ident: CIT0006
  publication-title: PanAmer. Math. J.
– ident: CIT0002
  doi: 10.1016/S0362-546X(97)00675-5
– ident: CIT0017
  doi: 10.1016/S0893-9659(98)00156-6
– volume: 2
  start-page: 147
  year: 1996
  ident: CIT0011
  publication-title: Dynam. Contin. Discrete Impuls. Systems
– ident: CIT0015
  publication-title: J. Differential Equation
– volume: 1
  start-page: 223
  year: 1993
  ident: CIT0023
  publication-title: Differ. Equ. Dynam. Syst
– ident: CIT0028
  publication-title: Rocky Mountain J. Math
– ident: CIT0021
  doi: 10.1006/jmaa.1995.1129
– volume-title: Generalized Inverses: Theory and Applications
  year: 1974
  ident: CIT0009
– ident: CIT0029
  publication-title: Math. Comput. Modelling
– volume-title: Ordinary Differential Equations
  year: 1971
  ident: CIT0036
– ident: CIT0003
  doi: 10.1016/S0096-3003(98)00004-6
– volume: 50
  start-page: 223
  year: 1990
  ident: CIT0019
  publication-title: Annal. Pol. Math.
  doi: 10.4064/ap-50-3-223-234
– ident: CIT0032
  publication-title: Positivity of quadratic functionals on time scales: necessity, Math. Nachr.
– ident: CIT0014
  doi: 10.1216/rmjm/1181071889
– volume: 8
  start-page: 401
  year: 1999
  ident: CIT0022
  publication-title: Dynam. Systems Appl
– volume: 8
  start-page: 345
  year: 1999
  ident: CIT0016
  publication-title: Dynam. Systems Appl
– ident: CIT0035
  doi: 10.1090/S0002-9947-1979-0546906-8
– volume: 81
  start-page: 234
  volume-title: Math, Anal. Appl
  year: 1981
  ident: CIT0004
– volume: 8
  start-page: 335
  year: 1999
  ident: CIT0007
  publication-title: Dynam. Systems Appl
– volume-title: Quadratic Functionals in Variational Analysis and Control Theory
  year: 1995
  ident: CIT0034
– ident: CIT0025
  doi: 10.1016/0022-247X(92)90347-G
– volume: 8
  start-page: 307
  year: 1999
  ident: CIT0001
  publication-title: A survey, Dynam. Systems Appl
– volume: 220
  volume-title: Disconjugacy
  year: 1971
  ident: CIT0018
  doi: 10.1007/BFb0058618
– ident: CIT0024
  doi: 10.1016/0022-247X(92)90212-V
– volume: 12
  start-page: 143
  year: 1997
  ident: CIT0012
  publication-title: Facta Univ. Ser. Math. Inform
– volume: 31
  start-page: 85
  year: 1995
  ident: CIT0020
  publication-title: Arch. Math.
SSID ssj0021206
Score 1.6947912
Snippet In this paper we study qualitative properties of the socalled symplectic dynamic system (S) z δ A =Stz on an arbitrary time scale T, providing a unified theory...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 265
SubjectTerms 1991 Mathematics Subject Classification: 34C10,39A 10,93C70
Disconjugacy
Focal point
Jacobi condition
Linear Hamiltonian system
Principal solution
Quadratic functional
Riccati equation
Symplectic system
Time scale
Title Disconjugacy, transformations and quadratic functionals for symplectic dynamic systems on time scales
URI https://www.tandfonline.com/doi/abs/10.1080/10236190108808273
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4HDxNgQ5Us-sMu6DDeJneS4rYOKA0hoExOXyl9Bm7p0axMJ-D_4f3mOndRrYIJdota1Y8vv1-efn5_fQ-iNYERQJeOAiygxx4w6EMA7goyPGGBEw46sdpD9yCZn8Ydzet7r_fK8lqpSHMiff7xXch-pQhnI1dyS_Q_Jti-FAvgM8oUnSBie_yTj8cUStrOX1Tcu67kqPRZqXGCMUfym4mpRh2U1S5i1_NUxGIbLHyYysLkjNVQ2L72L62xPEC6u9HAJEnROhl0C2-RWAc2gbyqvS_9QvCXK891juptlM3MyfzQ2o_1UKFu20JcrC_hs2cDo8_zKQbexSozWrBLvYefsvKmPFsYttFVVK29_T-sCcYA9rE1HfaCdJmZRAGyE-Ko68RAZ-mrX5ptwK3ho03Z2FgfrTWk6Y4YGgX4F_mMTqazF3Ha_PEAbIew-SB9tHE7GX7-0O3kYVn1trRl3c1yekred198iPLfC4XpE5vQx2nQCxIcWTluop4sn6JEXl3IbaR9Y-3gNVhjmG7ewwh6sMFTCK1hhByvsYIXnBTawwhZWO-js3cnp8SRw-TgCGSasDHLGhAJ-meqUC5klI8VpmqU0VjKKuQgjEYdxDvxURULBSiEp4zlJEpnEnGmo9BT1i3mhnyGcZlJRGdMsMinPc8lT-MooJ0IyojM9QKSZtKl0wepNzpTZdORi2nbmeYD22ibXNlLLXZWJL4lpWZvHcpvLplt9Wn4vB4je0ST6a1fP79nuBXq4-mO9RP1yUelXQIBL8drB8TeEra-u
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6I8PTAhUtImdpIRAVWB0qmVukV-BfFQCySVKL-ec5yilkKHSlkineM4PvsevnwfwKlgrqBK-g4XXmCOGbUj0O9wIl5lqCMaI7K8QLbFGh3_rku7RcItLcoqTQydWKCIfK82i9sko0clcRcGboAZS4ZLBE1Y4C3CEo1YYKgbPLf1E3BVazm3phHHECkKR6eafz1iwi5NoJaO2Zv6OsSjN7VlJi-VQSYq8usXiOP8Q9mAtcIVJZdWdzZhQfe2YHUMoHAb9PVTigHz8-CRy-E5yca8XNRWgt2S9wFXRoskMSbSZhZTgkIkHRrkYfMPFlGW955Y3OiU9HvEkNqTFDVEpzvQqd-0rxpOQczgyFrAMidhTCh0NEIdciGjoKo4DaOQ-kp6Phc1T_g1P0FHRXlC4ZYhKeOJGwQy8DnTKLQLpV6_p_eAhJFUVPo08gz3dSJ5iLeMcldI5upIl8EdTUssC9RyQ57xGlcLcNOpL1iGs58mbxayY5awOz7XcZbnSRJLajItHmefWRnojCbev13tz9nuBJYb7Ydm3Lxt3R_Aii2CM9chlLKPgT5CrygTx7nqfwPdGgFJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgSAgO7Iiy-sAJkZLNTnJElKosqjhQqbfIWxCL0kISifL1jOO0ain0gJRLpLGjxM-eGXvyHkKnnNqcSOFbjHuBPmZUFoe4w4qYQwEjCjKyskC2Q9td_7ZHelVtTlaVVeocOjFEEeVarSf3QCajirgLzTZAtSODGQIeLPAW0RJ0TDSoPbszzrcct5TW1OaQIUXh6FDzty6m3NIUaemEu2mtG03VrGQp1FUmr40i5w3x9YPD8d9vsoHWqkAUXxrkbKIFlW6h1Ql6wm2kms8ZpMsvxRMTw3OcT8S4gFUMT8XvBZMaQwJrB2n2FTMMRjgbat5h_QcWlkb1HhvW6Az3U6wl7XEG-FDZDuq2rh-v2lYly2AJN6C5lVDKJYQZoQoZF1HgSEbCKCS-FJ7PuOtx3_UTCFOkxyUsGIJQlthBIAKfUQVGu6iW9lO1h3AYCUkEjJynla8TwUK4pYTZXFBbRaqO7NGoxKLiLNfSGW-xU1GbznzBOjobNxkYwo55xvbkUMd5uUuSGEmTWfM4_8zriMxp4v35qP1_tjtByw_NVnx_07k7QCumAk5fh6iWfxTqCEKinB-XwP8GyNL_5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disconjugacy%2C+transformations+and+quadratic+functionals+for+symplectic+dynamic+systems+on+time+scales&rft.jtitle=Journal+of+difference+equations+and+applications&rft.au=Do%C5%99l%C3%BD%2C+Ond%C5%99rej&rft.au=Hilscher%2C+Roman&rft.date=2001-01-01&rft.pub=Gordon+and+Breach+Science+Publishers&rft.issn=1023-6198&rft.eissn=1563-5120&rft.volume=7&rft.issue=2&rft.spage=265&rft.epage=295&rft_id=info:doi/10.1080%2F10236190108808273&rft.externalDocID=8808273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1023-6198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1023-6198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1023-6198&client=summon