Disconjugacy, transformations and quadratic functionals for symplectic dynamic systems on time scales
In this paper we study qualitative properties of the socalled symplectic dynamic system (S) z δ A =Stz on an arbitrary time scale T, providing a unified theory for discrete symplectic systems and differential linear Hamiltonian systems . We define dis-conjugacy (no focal points) for conjoined bases...
Saved in:
Published in | Journal of difference equations and applications Vol. 7; no. 2; pp. 265 - 295 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Gordon and Breach Science Publishers
01.01.2001
|
Subjects | |
Online Access | Get full text |
ISSN | 1023-6198 1563-5120 |
DOI | 10.1080/10236190108808273 |
Cover
Loading…
Abstract | In this paper we study qualitative properties of the socalled symplectic dynamic system (S) z
δ
A =Stz on an arbitrary time scale
T, providing a unified theory for discrete symplectic systems
and differential linear Hamiltonian systems
. We define dis-conjugacy (no focal points) for conjoined bases of (S) and prove, under a certain minimal normality assumption, that disconjugacy of (S) on the interval under consideration is equival ent to the positivity of the associated quadratic functional. Such statement is commonly called Jacobi condition. We discuss also the solvability of the corresponding Riccati matrix equation and transformations. This work may be regarded as a generalization of the results recently obtained by the second author for linear Hamiltonian systems on time scales. |
---|---|
AbstractList | In this paper we study qualitative properties of the socalled symplectic dynamic system (S) z
δ
A =Stz on an arbitrary time scale
T, providing a unified theory for discrete symplectic systems
and differential linear Hamiltonian systems
. We define dis-conjugacy (no focal points) for conjoined bases of (S) and prove, under a certain minimal normality assumption, that disconjugacy of (S) on the interval under consideration is equival ent to the positivity of the associated quadratic functional. Such statement is commonly called Jacobi condition. We discuss also the solvability of the corresponding Riccati matrix equation and transformations. This work may be regarded as a generalization of the results recently obtained by the second author for linear Hamiltonian systems on time scales. |
Author | Hilscher, Roman Dořlý, Ondřrej |
Author_xml | – sequence: 1 givenname: Ondřrej surname: Dořlý fullname: Dořlý, Ondřrej organization: Mathematical Institute , Czech Academy of Sciences – sequence: 2 givenname: Roman surname: Hilscher fullname: Hilscher, Roman organization: Department of Mathematics Faculty of Science , Masaryk University Brno |
BookMark | eNqNkMtOwzAQRS1UJNrCB7DzBxDwI3EciQ0qFJAqsYF15PiBXCV2sV1B_h63sKJCsJq5M_fYmjsDE-edBuAco0uMOLrCiFCGG5QFR5zU9AhMccVoUWGCJrnP-yIb-AmYxbhGiOQ5mwJ9a6P0br19FXK8gCkIF40Pg0jWuwiFU_BtK1TIWkKzdXI3F32E2QTjOGx6LXcrNTox5BrHmPQQoXcw2UHDKEWv4yk4NhnSZ991Dl6Wd8-Lh2L1dP-4uFkVktQsFYaxTqEGc81FJ5saK1HxhlelkrQUHaFdSUpTZU07xSmRFRMG1bWsS8F0Ns0B_npXBh9j0KbdBDuIMLYYtbuc2oOcMlP_YKRN-_NzGLb_D2ndPrJ3H3rVJjH2PpgcpLTxkGrTR8rk9Z8k_f3jTzgGlaA |
CitedBy_id | crossref_primary_10_1007_s43037_025_00415_8 crossref_primary_10_1016_S0377_0427_01_00432_0 crossref_primary_10_1016_j_camwa_2006_12_011 crossref_primary_10_1016_j_laa_2003_06_013 crossref_primary_10_14232_ejqtde_2020_1_44 crossref_primary_10_1016_j_aml_2012_09_014 crossref_primary_10_1002_mana_202000427 crossref_primary_10_1186_1687_1847_2012_104 crossref_primary_10_1016_j_camwa_2010_08_033 crossref_primary_10_1016_j_amc_2013_12_135 crossref_primary_10_1007_s12591_010_0004_z crossref_primary_10_1080_10236198_2014_997227 crossref_primary_10_1016_S0377_0427_01_00434_4 crossref_primary_10_1016_j_jde_2006_06_010 crossref_primary_10_1016_j_jmaa_2014_07_015 crossref_primary_10_1016_j_aml_2012_04_009 crossref_primary_10_1016_j_amc_2012_01_056 crossref_primary_10_1017_S144618110001364X crossref_primary_10_1080_1023619021000000951 crossref_primary_10_1080_1026190290017360 crossref_primary_10_1016_j_laa_2014_11_029 crossref_primary_10_1016_j_jmaa_2018_09_020 crossref_primary_10_1155_2011_738520 crossref_primary_10_1016_j_amc_2012_08_026 crossref_primary_10_1016_j_jmaa_2007_07_077 crossref_primary_10_1016_j_jmaa_2016_06_057 crossref_primary_10_1080_10236100309487537 crossref_primary_10_1016_S0377_0427_01_00447_2 crossref_primary_10_1016_S0024_3795_02_00590_6 crossref_primary_10_1216_rmjm_1181069797 crossref_primary_10_1016_S0377_0427_01_00446_0 crossref_primary_10_1016_S0377_0427_01_00442_3 crossref_primary_10_1006_jmaa_2000_6992 |
Cites_doi | 10.1006/jmaa.1996.0177 10.1007/BF03323153 10.1007/978-1-4757-2467-7 10.1016/S0362-546X(97)00675-5 10.1016/S0893-9659(98)00156-6 10.1006/jmaa.1995.1129 10.1016/S0096-3003(98)00004-6 10.4064/ap-50-3-223-234 10.1216/rmjm/1181071889 10.1090/S0002-9947-1979-0546906-8 10.1016/0022-247X(92)90347-G 10.1007/BFb0058618 10.1016/0022-247X(92)90212-V |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2001 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2001 |
DBID | AAYXX CITATION |
DOI | 10.1080/10236190108808273 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1563-5120 |
EndPage | 295 |
ExternalDocumentID | 10_1080_10236190108808273 8808273 |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACAGQ ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AGROQ AHDZW AHMOU AIJEM AJWEG AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMEWO AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CRFIH CS3 DGEBU DKSSO DMQIW DU5 EBS EJD E~A E~B GTTXZ H13 HZ~ H~P J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ QCRFL RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TOXWX TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ 07G 1TA 29K AAGDL AAHIA AAIKQ AAKBW AAYXX ACGEE ADYSH AEUMN AFRVT AGCQS AGLEN AIYEW AMPGV AMVHM AMXXU BCCOT BPLKW C06 CITATION D-I DWIFK IPNFZ IVXBP LJTGL NUSFT RIG TAQ TFMCV UB9 UU8 V3K V4Q |
ID | FETCH-LOGICAL-c276t-f66bd0918e8abc971da589854dc34ab23b424f554d3bd832c56af077c74a6edc3 |
ISSN | 1023-6198 |
IngestDate | Tue Jul 01 03:25:56 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Mon May 13 12:10:08 EDT 2019 Wed Dec 25 09:02:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c276t-f66bd0918e8abc971da589854dc34ab23b424f554d3bd832c56af077c74a6edc3 |
PageCount | 31 |
ParticipantIDs | crossref_primary_10_1080_10236190108808273 informaworld_taylorfrancis_310_1080_10236190108808273 crossref_citationtrail_10_1080_10236190108808273 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1/1/2001 2001-01-00 |
PublicationDateYYYYMMDD | 2001-01-01 |
PublicationDate_xml | – month: 01 year: 2001 text: 1/1/2001 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Journal of difference equations and applications |
PublicationYear | 2001 |
Publisher | Gordon and Breach Science Publishers |
Publisher_xml | – name: Gordon and Breach Science Publishers |
References | Ben-Israel A. (CIT0009) 1974 Bohner M. (CIT0015) Hilscher R. (CIT0028) Anderson D.R. (CIT0007) 1999; 8 CIT0010 Bohner M. (CIT0012) 1997; 12 Bohner M. (CIT0011) 1996; 2 Bohner M. (CIT0013) 1998; 1 Hilger S. (CIT0026) 1990; 18 Anderson D.R. (CIT0006) 1997; 7 Coppel W.A (CIT0018) 1971; 220 CIT0014 Hilscher R. (CIT0031) 1998 CIT0035 Kaymakcalan B. (CIT0033) 1996 CIT0017 Hilscher R. (CIT0027) 1999; 8 Došlý O. (CIT0019) 1990; 50 Erbe L. (CIT0023) 1993; 1 Hilscher R. (CIT0029) Reid W.T. (CIT0036) 1971 CIT0021 Došlý O. (CIT0020) 1995; 31 Ahlbrandt C.D. (CIT0004) 1981; 81 Ahlbrandt C.D. (CIT0005) 1996 Kratz W. (CIT0034) 1995 Došlý O. (CIT0022) 1999; 8 Hilscher R. (CIT0030) Aulbach B. (CIT0008) 1988 CIT0003 CIT0025 Hilscher R. (CIT0032) Agarwal R.P. (CIT0001) 1999; 8 CIT0002 Bohner M. (CIT0016) 1999; 8 CIT0024 |
References_xml | – ident: CIT0010 doi: 10.1006/jmaa.1996.0177 – ident: CIT0030 publication-title: Jnhomogeneous quadratic functionals on time scales – volume-title: Dynamic Systems on Measure Chains year: 1996 ident: CIT0033 – volume: 1 start-page: 375 year: 1998 ident: CIT0013 publication-title: Math. Inequal. Appl – volume: 8 start-page: 489 year: 1999 ident: CIT0027 publication-title: Dynam. Systems Appl. – volume-title: Proceedings of the Fourth International Conference on Difference Equationsand Applications year: 1998 ident: CIT0031 – volume-title: A Unified Approach to Continuous and Discrete Dynamics year: 1988 ident: CIT0008 – volume: 18 start-page: 18 year: 1990 ident: CIT0026 publication-title: Results Math. doi: 10.1007/BF03323153 – volume-title: Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations year: 1996 ident: CIT0005 doi: 10.1007/978-1-4757-2467-7 – volume: 7 start-page: 39 year: 1997 ident: CIT0006 publication-title: PanAmer. Math. J. – ident: CIT0002 doi: 10.1016/S0362-546X(97)00675-5 – ident: CIT0017 doi: 10.1016/S0893-9659(98)00156-6 – volume: 2 start-page: 147 year: 1996 ident: CIT0011 publication-title: Dynam. Contin. Discrete Impuls. Systems – ident: CIT0015 publication-title: J. Differential Equation – volume: 1 start-page: 223 year: 1993 ident: CIT0023 publication-title: Differ. Equ. Dynam. Syst – ident: CIT0028 publication-title: Rocky Mountain J. Math – ident: CIT0021 doi: 10.1006/jmaa.1995.1129 – volume-title: Generalized Inverses: Theory and Applications year: 1974 ident: CIT0009 – ident: CIT0029 publication-title: Math. Comput. Modelling – volume-title: Ordinary Differential Equations year: 1971 ident: CIT0036 – ident: CIT0003 doi: 10.1016/S0096-3003(98)00004-6 – volume: 50 start-page: 223 year: 1990 ident: CIT0019 publication-title: Annal. Pol. Math. doi: 10.4064/ap-50-3-223-234 – ident: CIT0032 publication-title: Positivity of quadratic functionals on time scales: necessity, Math. Nachr. – ident: CIT0014 doi: 10.1216/rmjm/1181071889 – volume: 8 start-page: 401 year: 1999 ident: CIT0022 publication-title: Dynam. Systems Appl – volume: 8 start-page: 345 year: 1999 ident: CIT0016 publication-title: Dynam. Systems Appl – ident: CIT0035 doi: 10.1090/S0002-9947-1979-0546906-8 – volume: 81 start-page: 234 volume-title: Math, Anal. Appl year: 1981 ident: CIT0004 – volume: 8 start-page: 335 year: 1999 ident: CIT0007 publication-title: Dynam. Systems Appl – volume-title: Quadratic Functionals in Variational Analysis and Control Theory year: 1995 ident: CIT0034 – ident: CIT0025 doi: 10.1016/0022-247X(92)90347-G – volume: 8 start-page: 307 year: 1999 ident: CIT0001 publication-title: A survey, Dynam. Systems Appl – volume: 220 volume-title: Disconjugacy year: 1971 ident: CIT0018 doi: 10.1007/BFb0058618 – ident: CIT0024 doi: 10.1016/0022-247X(92)90212-V – volume: 12 start-page: 143 year: 1997 ident: CIT0012 publication-title: Facta Univ. Ser. Math. Inform – volume: 31 start-page: 85 year: 1995 ident: CIT0020 publication-title: Arch. Math. |
SSID | ssj0021206 |
Score | 1.6947912 |
Snippet | In this paper we study qualitative properties of the socalled symplectic dynamic system (S) z
δ
A =Stz on an arbitrary time scale
T, providing a unified theory... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 265 |
SubjectTerms | 1991 Mathematics Subject Classification: 34C10,39A 10,93C70 Disconjugacy Focal point Jacobi condition Linear Hamiltonian system Principal solution Quadratic functional Riccati equation Symplectic system Time scale |
Title | Disconjugacy, transformations and quadratic functionals for symplectic dynamic systems on time scales |
URI | https://www.tandfonline.com/doi/abs/10.1080/10236190108808273 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4HDxNgQ5Us-sMu6DDeJneS4rYOKA0hoExOXyl9Bm7p0axMJ-D_4f3mOndRrYIJdota1Y8vv1-efn5_fQ-iNYERQJeOAiygxx4w6EMA7goyPGGBEw46sdpD9yCZn8Ydzet7r_fK8lqpSHMiff7xXch-pQhnI1dyS_Q_Jti-FAvgM8oUnSBie_yTj8cUStrOX1Tcu67kqPRZqXGCMUfym4mpRh2U1S5i1_NUxGIbLHyYysLkjNVQ2L72L62xPEC6u9HAJEnROhl0C2-RWAc2gbyqvS_9QvCXK891juptlM3MyfzQ2o_1UKFu20JcrC_hs2cDo8_zKQbexSozWrBLvYefsvKmPFsYttFVVK29_T-sCcYA9rE1HfaCdJmZRAGyE-Ko68RAZ-mrX5ptwK3ho03Z2FgfrTWk6Y4YGgX4F_mMTqazF3Ha_PEAbIew-SB9tHE7GX7-0O3kYVn1trRl3c1yekred198iPLfC4XpE5vQx2nQCxIcWTluop4sn6JEXl3IbaR9Y-3gNVhjmG7ewwh6sMFTCK1hhByvsYIXnBTawwhZWO-js3cnp8SRw-TgCGSasDHLGhAJ-meqUC5klI8VpmqU0VjKKuQgjEYdxDvxURULBSiEp4zlJEpnEnGmo9BT1i3mhnyGcZlJRGdMsMinPc8lT-MooJ0IyojM9QKSZtKl0wepNzpTZdORi2nbmeYD22ibXNlLLXZWJL4lpWZvHcpvLplt9Wn4vB4je0ST6a1fP79nuBXq4-mO9RP1yUelXQIBL8drB8TeEra-u |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6I8PTAhUtImdpIRAVWB0qmVukV-BfFQCySVKL-ec5yilkKHSlkineM4PvsevnwfwKlgrqBK-g4XXmCOGbUj0O9wIl5lqCMaI7K8QLbFGh3_rku7RcItLcoqTQydWKCIfK82i9sko0clcRcGboAZS4ZLBE1Y4C3CEo1YYKgbPLf1E3BVazm3phHHECkKR6eafz1iwi5NoJaO2Zv6OsSjN7VlJi-VQSYq8usXiOP8Q9mAtcIVJZdWdzZhQfe2YHUMoHAb9PVTigHz8-CRy-E5yca8XNRWgt2S9wFXRoskMSbSZhZTgkIkHRrkYfMPFlGW955Y3OiU9HvEkNqTFDVEpzvQqd-0rxpOQczgyFrAMidhTCh0NEIdciGjoKo4DaOQ-kp6Phc1T_g1P0FHRXlC4ZYhKeOJGwQy8DnTKLQLpV6_p_eAhJFUVPo08gz3dSJ5iLeMcldI5upIl8EdTUssC9RyQ57xGlcLcNOpL1iGs58mbxayY5awOz7XcZbnSRJLajItHmefWRnojCbev13tz9nuBJYb7Ydm3Lxt3R_Aii2CM9chlLKPgT5CrygTx7nqfwPdGgFJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgSAgO7Iiy-sAJkZLNTnJElKosqjhQqbfIWxCL0kISifL1jOO0ain0gJRLpLGjxM-eGXvyHkKnnNqcSOFbjHuBPmZUFoe4w4qYQwEjCjKyskC2Q9td_7ZHelVtTlaVVeocOjFEEeVarSf3QCajirgLzTZAtSODGQIeLPAW0RJ0TDSoPbszzrcct5TW1OaQIUXh6FDzty6m3NIUaemEu2mtG03VrGQp1FUmr40i5w3x9YPD8d9vsoHWqkAUXxrkbKIFlW6h1Ql6wm2kms8ZpMsvxRMTw3OcT8S4gFUMT8XvBZMaQwJrB2n2FTMMRjgbat5h_QcWlkb1HhvW6Az3U6wl7XEG-FDZDuq2rh-v2lYly2AJN6C5lVDKJYQZoQoZF1HgSEbCKCS-FJ7PuOtx3_UTCFOkxyUsGIJQlthBIAKfUQVGu6iW9lO1h3AYCUkEjJynla8TwUK4pYTZXFBbRaqO7NGoxKLiLNfSGW-xU1GbznzBOjobNxkYwo55xvbkUMd5uUuSGEmTWfM4_8zriMxp4v35qP1_tjtByw_NVnx_07k7QCumAk5fh6iWfxTqCEKinB-XwP8GyNL_5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disconjugacy%2C+transformations+and+quadratic+functionals+for+symplectic+dynamic+systems+on+time+scales&rft.jtitle=Journal+of+difference+equations+and+applications&rft.au=Do%C5%99l%C3%BD%2C+Ond%C5%99rej&rft.au=Hilscher%2C+Roman&rft.date=2001-01-01&rft.pub=Gordon+and+Breach+Science+Publishers&rft.issn=1023-6198&rft.eissn=1563-5120&rft.volume=7&rft.issue=2&rft.spage=265&rft.epage=295&rft_id=info:doi/10.1080%2F10236190108808273&rft.externalDocID=8808273 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1023-6198&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1023-6198&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1023-6198&client=summon |