A high-frequency electromagnetic stamping system for high-throughput stamping of microdimples
A high-throughput stamping process technology is proposed for high-speed manufacturing of regular, accurate microdimple structures in large quantity. Due to the alternating nature of AC power and magnetic effect of current, the designed electromagnet is capable of creating sine vibrations at 120 Hz....
Saved in:
Published in | Journal of materials processing technology Vol. 303; p. 117527 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.05.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0924-0136 1873-4774 |
DOI | 10.1016/j.jmatprotec.2022.117527 |
Cover
Loading…
Abstract | A high-throughput stamping process technology is proposed for high-speed manufacturing of regular, accurate microdimple structures in large quantity. Due to the alternating nature of AC power and magnetic effect of current, the designed electromagnet is capable of creating sine vibrations at 120 Hz. Acceleration increases instantaneously when a tungsten carbide stamping head is subject to the electromagnet’s sine vibrations, resulting in a jerk motion increasing kinetic energy of the stamping head. Desired shapes and depths are realized as the stamped material is subject to high-speed impact from the stamping head. To provide timely grinding with spherical and aspherical stamping heads, an on-process grinding mechanism is designed on the CNC high-frequency stamping system, where on-process calibration is not required for the stamping head and attached residues are removed instantly. It took only 3.4 s to finish an array of 400 highly regular aspherical microdimples with no burring around the dimples; in addition, the form of the arc length is 96% consistent with the design. The arc length of the stamping head overlaps nearly 99% the formed arc length. Metallographic testing shows that the proposed stamping jerking technique produces grain refinement and grain boundary indentation on the surface of stamped microdimples that prevents dislocation and expansion of micro-fractures. Moreover, compressive stress makes the lattice structure of stamped material more solid. The study proves that this high-frequency electromagnetic stamping technology combines high speed, density and consistency with an outstanding transcription-rate.
•Jerk motion is successfully employed in this high-frequency stamping process technology.•The designed E-I transformer core creates reciprocal motion of the stamping shaft at 120 Hz.•The on-process grinding design facilitates stamping head grinding and in-time removal of any residue.•The overlapping between the arc length of stamping head and the formed arc length is as high as 99%.•An array of 400 regular aspherical microdimples was created in just 3.4 s |
---|---|
AbstractList | A high-throughput stamping process technology is proposed for high-speed manufacturing of regular, accurate microdimple structures in large quantity. Due to the alternating nature of AC power and magnetic effect of current, the designed electromagnet is capable of creating sine vibrations at 120 Hz. Acceleration increases instantaneously when a tungsten carbide stamping head is subject to the electromagnet’s sine vibrations, resulting in a jerk motion increasing kinetic energy of the stamping head. Desired shapes and depths are realized as the stamped material is subject to high-speed impact from the stamping head. To provide timely grinding with spherical and aspherical stamping heads, an on-process grinding mechanism is designed on the CNC high-frequency stamping system, where on-process calibration is not required for the stamping head and attached residues are removed instantly. It took only 3.4 s to finish an array of 400 highly regular aspherical microdimples with no burring around the dimples; in addition, the form of the arc length is 96% consistent with the design. The arc length of the stamping head overlaps nearly 99% the formed arc length. Metallographic testing shows that the proposed stamping jerking technique produces grain refinement and grain boundary indentation on the surface of stamped microdimples that prevents dislocation and expansion of micro-fractures. Moreover, compressive stress makes the lattice structure of stamped material more solid. The study proves that this high-frequency electromagnetic stamping technology combines high speed, density and consistency with an outstanding transcription-rate.
•Jerk motion is successfully employed in this high-frequency stamping process technology.•The designed E-I transformer core creates reciprocal motion of the stamping shaft at 120 Hz.•The on-process grinding design facilitates stamping head grinding and in-time removal of any residue.•The overlapping between the arc length of stamping head and the formed arc length is as high as 99%.•An array of 400 regular aspherical microdimples was created in just 3.4 s A high-throughput stamping process technology is proposed for high-speed manufacturing of regular, accurate microdimple structures in large quantity. Due to the alternating nature of AC power and magnetic effect of current, the designed electromagnet is capable of creating sine vibrations at 120 Hz. Acceleration increases instantaneously when a tungsten carbide stamping head is subject to the electromagnet's sine vibrations, resulting in a jerk motion increasing kinetic energy of the stamping head. Desired shapes and depths are realized as the stamped material is subject to high-speed impact from the stamping head. To provide timely grinding with spherical and aspherical stamping heads, an on-process grinding mechanism is designed on the CNC high-frequency stamping system, where on-process calibration is not required for the stamping head and attached residues are removed instantly. It took only 3.4 s to finish an array of 400 highly regular aspherical microdimples with no burring around the dimples; in addition, the form of the arc length is 96% consistent with the design. The arc length of the stamping head overlaps nearly 99% the formed arc length. Metallographic testing shows that the proposed stamping jerking technique produces grain refinement and grain boundary indentation on the surface of stamped microdimples that prevents dislocation and expansion of micro-fractures. Moreover, compressive stress makes the lattice structure of stamped material more solid. The study proves that this high-frequency electromagnetic stamping technology combines high speed, density and consistency with an outstanding transcription-rate. |
ArticleNumber | 117527 |
Author | Chen, Shun-Tong Chiang, Chao-Jung Lin, Po-An |
Author_xml | – sequence: 1 givenname: Shun-Tong surname: Chen fullname: Chen, Shun-Tong email: chenst@ntnu.edu.tw – sequence: 2 givenname: Po-An surname: Lin fullname: Lin, Po-An – sequence: 3 givenname: Chao-Jung surname: Chiang fullname: Chiang, Chao-Jung |
BookMark | eNqNkE1LAzEQhoMo2Fb_w4LnrZl0d7O5CCp-QcGLHiWk2UmbpbtZk1TovzdlhYIXvWQu7_tM5pmS0971SEgGdA4Uqut23nYqDt5F1HNGGZsD8JLxEzKBmi_ygvPilEyoYEVOYVGdk2kILaXAaV1PyMdttrHrTW48fu6w1_sMt6ijd51a9xitzkJU3WD7dRb2IWKXGefHStx4t1tvhl08ZpzJOqu9a2w3bDFckDOjtgEvf-aMvD8-vN0_58vXp5f722WuGa9ienVZ0UogcmAA0BRcQK2wXNUApVC1YVCgqYzgolS44osKG4CagtEpKBYzcjVyk4d0RoiydTvfp5WSVYVgQoAoUupmTKUPhuDRSG2jitb10Su7lUDlQals5VGpPCiVo9IEqH8BBm875ff_qd6NVUwavix6GbRNvrGxPvmWjbN_Q74BWSybGg |
CitedBy_id | crossref_primary_10_1080_10426914_2023_2290236 crossref_primary_10_1080_10426914_2025_2469521 |
Cites_doi | 10.1016/B978-0-12-812138-2.00002-7 10.1016/S0141-6359(01)00114-3 10.1016/j.cirp.2009.03.004 10.1016/j.precisioneng.2021.02.009 10.1016/j.jmatprotec.2020.116716 10.1016/j.precisioneng.2010.09.006 10.1016/j.precisioneng.2014.09.002 10.1016/j.jmatprotec.2018.11.009 10.1016/j.rineng.2021.100211 10.1016/j.procir.2016.02.163 10.1016/j.surfcoat.2019.01.113 10.1016/j.jmatprotec.2016.03.025 10.1007/s40684-020-00300-9 10.1016/j.cirp.2020.04.046 10.1016/S1359-6454(98)00150-5 10.1016/j.precisioneng.2003.11.006 10.1038/s41598-019-50186-0 10.1007/s40684-015-0037-4 10.1016/j.precisioneng.2021.03.017 10.1007/s11249-018-0995-0 10.1016/j.pnsc.2016.08.003 10.1016/j.cirpj.2011.08.004 10.1016/j.diamond.2007.12.008 10.1016/j.jmatprotec.2017.12.021 10.1016/j.phpro.2013.03.145 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright Elsevier BV May 2022 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV May 2022 |
DBID | AAYXX CITATION 7SR 8BQ 8FD H8D JG9 L7M |
DOI | 10.1016/j.jmatprotec.2022.117527 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Aerospace Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Aerospace Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4774 |
ExternalDocumentID | 10_1016_j_jmatprotec_2022_117527 S0924013622000395 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SSM SST SSZ T5K WUQ XFK ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8BQ 8FD EFKBS H8D JG9 L7M |
ID | FETCH-LOGICAL-c276t-c2c56069ee712111d47918ae5b81159a8f214ef6f9795aeb736ed11801fc91893 |
IEDL.DBID | .~1 |
ISSN | 0924-0136 |
IngestDate | Fri Jul 25 03:22:29 EDT 2025 Tue Jul 01 03:59:15 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Fri Feb 23 02:39:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electromagnetic drive High-throughput stamping process Microdimple On-process grinding Jerk |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c276t-c2c56069ee712111d47918ae5b81159a8f214ef6f9795aeb736ed11801fc91893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2649299194 |
PQPubID | 2045449 |
ParticipantIDs | proquest_journals_2649299194 crossref_citationtrail_10_1016_j_jmatprotec_2022_117527 crossref_primary_10_1016_j_jmatprotec_2022_117527 elsevier_sciencedirect_doi_10_1016_j_jmatprotec_2022_117527 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of materials processing technology |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Chen, Tung, Jiang (bib2) 2018; 255 Lu, Wood, Gee, Wang, Pfleging (bib13) 2018; 66 Chen, Jhou (bib1) 2021; 8 Gallardo-Alvarado (bib6) 2016 Kim, S.H., 2017. Chapter 2 – Control of direct current motors. Electric Motor Control, DC, AC, and BLDC Motors 39–93. Huang, Xu, Li, Peng, Lai (bib8) 2020; 283 Han, Yang, Ding, Tan, Chen (bib7) 2016; 234 Zhang, Suzuki, Shamoto, Xu (bib28) 2021; 71 Zhu, Qu, Li, Zeng, Li, Qian (bib29) 2009; 58 Rubio-Roy, Bertran, Pascual, Polo, Andújar (bib19) 2008; 17 Ding, Xu, Liu, Shi, Yang, Hu (bib5) 2021; 9 Muhammad, Sahar, Han, Ko (bib15) 2015; 2 Wakuda, Yamauchi, Kanzaki (bib25) 2002; 26 Masumura, Hazzledinec, Pande (bib14) 1998; 46 Olsson, Bushlya, Zhou, Ståhl (bib17) 2016; 45 Jackson (bib9) 1999 Shen, Lv, Li, Huang, Yu, Wang, Li, Xu (bib23) 2019; 266 Petch (bib18) 1953; 174 Yan, Horikoshi, Kuriyagawa, Fukushima (bib26) 2012; 5 Sadeghi, Kharaziha, Salimijazi, Tabesh (bib20) 2019; 362 Sato, Shirase (bib22) 2021; 71 Norman, C.H., Edwin M.H., Mallmann A.J., 1980. Physics Principles & Applications, ISBN 0–07-026851–7, 704. Chen, Qu, Li, Guo (bib3) 2015; 39 Yoshioka, Kojima, Toyota (bib27) 2020; 69 Lee, Pathak, Jeong (bib12) 2019; 9 Joshi, Tripathi, Gyawali, Lee (bib10) 2016; 26 Saito, Masuda (bib21) 2004; 28 Suzuki, Yokoi, Shamoto (bib24) 2011; 35 Demir, Maressa, Previtali (bib4) 2013; 41 Petch (10.1016/j.jmatprotec.2022.117527_bib18) 1953; 174 Zhang (10.1016/j.jmatprotec.2022.117527_bib28) 2021; 71 Lu (10.1016/j.jmatprotec.2022.117527_bib13) 2018; 66 Wakuda (10.1016/j.jmatprotec.2022.117527_bib25) 2002; 26 Ding (10.1016/j.jmatprotec.2022.117527_bib5) 2021; 9 Olsson (10.1016/j.jmatprotec.2022.117527_bib17) 2016; 45 Sadeghi (10.1016/j.jmatprotec.2022.117527_bib20) 2019; 362 Chen (10.1016/j.jmatprotec.2022.117527_bib3) 2015; 39 Demir (10.1016/j.jmatprotec.2022.117527_bib4) 2013; 41 10.1016/j.jmatprotec.2022.117527_bib16 Sato (10.1016/j.jmatprotec.2022.117527_bib22) 2021; 71 Yoshioka (10.1016/j.jmatprotec.2022.117527_bib27) 2020; 69 Han (10.1016/j.jmatprotec.2022.117527_bib7) 2016; 234 Chen (10.1016/j.jmatprotec.2022.117527_bib2) 2018; 255 Saito (10.1016/j.jmatprotec.2022.117527_bib21) 2004; 28 Lee (10.1016/j.jmatprotec.2022.117527_bib12) 2019; 9 Chen (10.1016/j.jmatprotec.2022.117527_bib1) 2021; 8 Gallardo-Alvarado (10.1016/j.jmatprotec.2022.117527_bib6) 2016 Rubio-Roy (10.1016/j.jmatprotec.2022.117527_bib19) 2008; 17 10.1016/j.jmatprotec.2022.117527_bib11 Muhammad (10.1016/j.jmatprotec.2022.117527_bib15) 2015; 2 Suzuki (10.1016/j.jmatprotec.2022.117527_bib24) 2011; 35 Shen (10.1016/j.jmatprotec.2022.117527_bib23) 2019; 266 Huang (10.1016/j.jmatprotec.2022.117527_bib8) 2020; 283 Yan (10.1016/j.jmatprotec.2022.117527_bib26) 2012; 5 Jackson (10.1016/j.jmatprotec.2022.117527_bib9) 1999 Joshi (10.1016/j.jmatprotec.2022.117527_bib10) 2016; 26 Zhu (10.1016/j.jmatprotec.2022.117527_bib29) 2009; 58 Masumura (10.1016/j.jmatprotec.2022.117527_bib14) 1998; 46 |
References_xml | – volume: 8 start-page: 1163 year: 2021 end-page: 1180 ident: bib1 article-title: Dual-crankshaft out-of-phase balanced drive mechanism applied to high-frequency scraping of high-density microcavities patterns publication-title: Int. J. Precis. Eng. Manuf. -Green. Technol. – volume: 5 start-page: 41 year: 2012 end-page: 47 ident: bib26 article-title: Manufacturing structured surface by combining microindentation and ultraprecision cutting publication-title: CIRP J. Manuf. Sci. Technol. – volume: 255 start-page: 252 year: 2018 end-page: 262 ident: bib2 article-title: A novel surface microtexture array generation approach using a fast-tool-feeding mechanism with elliptical cam drive publication-title: J. Mater. Process. Technol. – volume: 58 start-page: 177 year: 2009 end-page: 180 ident: bib29 article-title: Electrochemical micromachining of microstructures of micro hole and dimple array publication-title: CIRP Ann. Manuf. Technol. – volume: 17 start-page: 1728 year: 2008 end-page: 1732 ident: bib19 article-title: Fluorinated DLC deposited by pulsed-DC plasmafor antisticking surface applications publication-title: Diam. Relat. Mater. – start-page: 133 year: 2016 end-page: 137 ident: bib6 article-title: Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory – reference: Norman, C.H., Edwin M.H., Mallmann A.J., 1980. Physics Principles & Applications, ISBN 0–07-026851–7, 704. – volume: 9 start-page: 13976 year: 2019 ident: bib12 article-title: Design and manufacture of 3D cell culture plate for mass production of cell-spheroids publication-title: Sci. Rep. – volume: 266 start-page: 329 year: 2019 end-page: 338 ident: bib23 article-title: Reciprocating electrolyte jet with prefabricated-mask machining micro-dimple arrays on cast iron cylinder liner publication-title: J. Mater. Process. Technol. – reference: Kim, S.H., 2017. Chapter 2 – Control of direct current motors. Electric Motor Control, DC, AC, and BLDC Motors 39–93. – volume: 66 start-page: 51 year: 2018 end-page: 64 ident: bib13 article-title: A novel surface texture shape for directional friction control publication-title: Tribol. Lett. – volume: 46 start-page: 4527 year: 1998 end-page: 4534 ident: bib14 article-title: Yield stress of fine grained materials publication-title: Acta Mater. – volume: 283 year: 2020 ident: bib8 article-title: An experimental study on a rapid micro imprinting process publication-title: J. Mater. Process. Technol. – volume: 9 year: 2021 ident: bib5 article-title: Geometric influence on friction and wear performance of cast iron with a micro-dimpled surface publication-title: Results Eng. – volume: 362 start-page: 282 year: 2019 end-page: 292 ident: bib20 article-title: Role of micro-dimple array geometry on the biological and tribological performance of Ti publication-title: Surf. Coat. Technol. – volume: 39 start-page: 204 year: 2015 end-page: 211 ident: bib3 article-title: Removal of islands from micro-dimple arrays prepared bythrough-mask electrochemical micromachining publication-title: Precis. Eng. – volume: 174 start-page: 25 year: 1953 end-page: 28 ident: bib18 article-title: The cleavage strength of polycrystals publication-title: J. Iron Steel Inst. – volume: 234 start-page: 158 year: 2016 end-page: 168 ident: bib7 article-title: Numerical and experimental investigations on mechanical trimmingprocess for hot stamped ultra-high strength parts publication-title: J. Mater. Process. Technol. – volume: 71 start-page: 47 year: 2021 end-page: 56 ident: bib22 article-title: Analytical time constant design for jerk-limited acceleration profiles to minimize residual vibration after positioning operation in NC machine tools publication-title: Precis. Eng. – volume: 28 start-page: 369 year: 2004 end-page: 377 ident: bib21 article-title: Modeling of blast process using indenting method publication-title: Precis. Eng. – volume: 69 start-page: 325 year: 2020 end-page: 328 ident: bib27 article-title: Micro patterning on curved surface with a fast tool servo system for micro milling process publication-title: CIRP Ann. Manuf. Technol. – volume: 26 start-page: 415 year: 2016 end-page: 421 ident: bib10 article-title: The effect of laser surface texturing on the tribological performanceof different Sialon ceramic phases publication-title: Prog. Nat. Sci. Mater. Int. – volume: 2 start-page: 307 year: 2015 end-page: 313 ident: bib15 article-title: Selection of optimum process parameters of biomachining for maximum metal removal rate publication-title: Int. J. Precis. Eng. Manuf. -Green. Technol. – volume: 35 start-page: 44 year: 2011 end-page: 50 ident: bib24 article-title: Micro/nano sculpturing of hardened steel by controlling vibrationamplitude in elliptical vibration cutting publication-title: Precis. Eng. – volume: 26 start-page: 193 year: 2002 end-page: 198 ident: bib25 article-title: Effect of workpiece properties on machinability in abrasivejet machining of ceramic materials publication-title: Precis. Eng. – volume: 45 start-page: 103 year: 2016 end-page: 106 ident: bib17 article-title: Effect of feed on sub-surface deformation and yield strength of oxygen-free pitch copper in machining publication-title: Procedia CIRP – start-page: 5 year: 1999 ident: bib9 article-title: Classical Electrodynamics – volume: 41 start-page: 752 year: 2013 end-page: 761 ident: bib4 article-title: Fibre laser texturing for surface functionalization publication-title: Phys. Procedia – volume: 71 start-page: 250 year: 2021 end-page: 262 ident: bib28 article-title: Dynamic contour error compensation in micro/nano machining of hardened steel by applying elliptical vibration sculpturing method publication-title: Precis. Eng. – volume: 174 start-page: 25 year: 1953 ident: 10.1016/j.jmatprotec.2022.117527_bib18 article-title: The cleavage strength of polycrystals publication-title: J. Iron Steel Inst. – ident: 10.1016/j.jmatprotec.2022.117527_bib11 doi: 10.1016/B978-0-12-812138-2.00002-7 – volume: 26 start-page: 193 year: 2002 ident: 10.1016/j.jmatprotec.2022.117527_bib25 article-title: Effect of workpiece properties on machinability in abrasivejet machining of ceramic materials publication-title: Precis. Eng. doi: 10.1016/S0141-6359(01)00114-3 – volume: 58 start-page: 177 year: 2009 ident: 10.1016/j.jmatprotec.2022.117527_bib29 article-title: Electrochemical micromachining of microstructures of micro hole and dimple array publication-title: CIRP Ann. Manuf. Technol. doi: 10.1016/j.cirp.2009.03.004 – volume: 71 start-page: 47 year: 2021 ident: 10.1016/j.jmatprotec.2022.117527_bib22 article-title: Analytical time constant design for jerk-limited acceleration profiles to minimize residual vibration after positioning operation in NC machine tools publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2021.02.009 – volume: 283 year: 2020 ident: 10.1016/j.jmatprotec.2022.117527_bib8 article-title: An experimental study on a rapid micro imprinting process publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2020.116716 – volume: 35 start-page: 44 year: 2011 ident: 10.1016/j.jmatprotec.2022.117527_bib24 article-title: Micro/nano sculpturing of hardened steel by controlling vibrationamplitude in elliptical vibration cutting publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2010.09.006 – volume: 39 start-page: 204 year: 2015 ident: 10.1016/j.jmatprotec.2022.117527_bib3 article-title: Removal of islands from micro-dimple arrays prepared bythrough-mask electrochemical micromachining publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2014.09.002 – start-page: 133 year: 2016 ident: 10.1016/j.jmatprotec.2022.117527_bib6 – volume: 266 start-page: 329 year: 2019 ident: 10.1016/j.jmatprotec.2022.117527_bib23 article-title: Reciprocating electrolyte jet with prefabricated-mask machining micro-dimple arrays on cast iron cylinder liner publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2018.11.009 – volume: 9 year: 2021 ident: 10.1016/j.jmatprotec.2022.117527_bib5 article-title: Geometric influence on friction and wear performance of cast iron with a micro-dimpled surface publication-title: Results Eng. doi: 10.1016/j.rineng.2021.100211 – volume: 45 start-page: 103 year: 2016 ident: 10.1016/j.jmatprotec.2022.117527_bib17 article-title: Effect of feed on sub-surface deformation and yield strength of oxygen-free pitch copper in machining publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.02.163 – volume: 362 start-page: 282 year: 2019 ident: 10.1016/j.jmatprotec.2022.117527_bib20 article-title: Role of micro-dimple array geometry on the biological and tribological performance of Ti6Al4V for biomedical applications publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.01.113 – volume: 234 start-page: 158 year: 2016 ident: 10.1016/j.jmatprotec.2022.117527_bib7 article-title: Numerical and experimental investigations on mechanical trimmingprocess for hot stamped ultra-high strength parts publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.03.025 – volume: 8 start-page: 1163 issue: 4 year: 2021 ident: 10.1016/j.jmatprotec.2022.117527_bib1 article-title: Dual-crankshaft out-of-phase balanced drive mechanism applied to high-frequency scraping of high-density microcavities patterns publication-title: Int. J. Precis. Eng. Manuf. -Green. Technol. doi: 10.1007/s40684-020-00300-9 – volume: 69 start-page: 325 year: 2020 ident: 10.1016/j.jmatprotec.2022.117527_bib27 article-title: Micro patterning on curved surface with a fast tool servo system for micro milling process publication-title: CIRP Ann. Manuf. Technol. doi: 10.1016/j.cirp.2020.04.046 – ident: 10.1016/j.jmatprotec.2022.117527_bib16 – volume: 46 start-page: 4527 issue: 13 year: 1998 ident: 10.1016/j.jmatprotec.2022.117527_bib14 article-title: Yield stress of fine grained materials publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00150-5 – volume: 28 start-page: 369 year: 2004 ident: 10.1016/j.jmatprotec.2022.117527_bib21 article-title: Modeling of blast process using indenting method publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2003.11.006 – volume: 9 start-page: 13976 year: 2019 ident: 10.1016/j.jmatprotec.2022.117527_bib12 article-title: Design and manufacture of 3D cell culture plate for mass production of cell-spheroids publication-title: Sci. Rep. doi: 10.1038/s41598-019-50186-0 – volume: 2 start-page: 307 issue: 4 year: 2015 ident: 10.1016/j.jmatprotec.2022.117527_bib15 article-title: Selection of optimum process parameters of biomachining for maximum metal removal rate publication-title: Int. J. Precis. Eng. Manuf. -Green. Technol. doi: 10.1007/s40684-015-0037-4 – volume: 71 start-page: 250 year: 2021 ident: 10.1016/j.jmatprotec.2022.117527_bib28 article-title: Dynamic contour error compensation in micro/nano machining of hardened steel by applying elliptical vibration sculpturing method publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2021.03.017 – volume: 66 start-page: 51 year: 2018 ident: 10.1016/j.jmatprotec.2022.117527_bib13 article-title: A novel surface texture shape for directional friction control publication-title: Tribol. Lett. doi: 10.1007/s11249-018-0995-0 – volume: 26 start-page: 415 year: 2016 ident: 10.1016/j.jmatprotec.2022.117527_bib10 article-title: The effect of laser surface texturing on the tribological performanceof different Sialon ceramic phases publication-title: Prog. Nat. Sci. Mater. Int. doi: 10.1016/j.pnsc.2016.08.003 – volume: 5 start-page: 41 year: 2012 ident: 10.1016/j.jmatprotec.2022.117527_bib26 article-title: Manufacturing structured surface by combining microindentation and ultraprecision cutting publication-title: CIRP J. Manuf. Sci. Technol. doi: 10.1016/j.cirpj.2011.08.004 – volume: 17 start-page: 1728 year: 2008 ident: 10.1016/j.jmatprotec.2022.117527_bib19 article-title: Fluorinated DLC deposited by pulsed-DC plasmafor antisticking surface applications publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2007.12.008 – volume: 255 start-page: 252 year: 2018 ident: 10.1016/j.jmatprotec.2022.117527_bib2 article-title: A novel surface microtexture array generation approach using a fast-tool-feeding mechanism with elliptical cam drive publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2017.12.021 – start-page: 5 year: 1999 ident: 10.1016/j.jmatprotec.2022.117527_bib9 – volume: 41 start-page: 752 year: 2013 ident: 10.1016/j.jmatprotec.2022.117527_bib4 article-title: Fibre laser texturing for surface functionalization publication-title: Phys. Procedia doi: 10.1016/j.phpro.2013.03.145 |
SSID | ssj0017088 |
Score | 2.38158 |
Snippet | A high-throughput stamping process technology is proposed for high-speed manufacturing of regular, accurate microdimple structures in large quantity. Due to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 117527 |
SubjectTerms | Acceleration Compressive properties Dimpling Electromagnetic drive Electromagnets Fractures Grain boundaries Grain refinement Grinding High speed High-throughput stamping process Indentation Jerk Kinetic energy Magnetic effects Microdimple On-process grinding Stamping Tungsten carbide |
Title | A high-frequency electromagnetic stamping system for high-throughput stamping of microdimples |
URI | https://dx.doi.org/10.1016/j.jmatprotec.2022.117527 https://www.proquest.com/docview/2649299194 |
Volume | 303 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpCQRlYQ_NwEltMVUVVQHSBSl2QlThn1Io-1KYDC78dX-y0gBgqsURKdBdFZ_v8WfnuO0KuJVAV0UC5IVOpS7MQXBZLz_XyNE9ymklVdol46se9AX0YRsMa6VS1MEirtLnf5PQyW9snLRvN1nw0aj17-uiAimNBUFaYYqE5qtfpOX3zuaZ5-IlX9p5EYxetLZvHcLzGGhUaPQR9UgwC_IMZYX-Zv7eoX8m63IG6B2TfQkenbb7ukNRgekT2vgkKHpPXtoP6w65aGIb0h2Pb3EzStymWKzoaDE6wRMoxEs6OxqzGxTbsma-Kjc1MORMk7OUj1BBenpBB9-6l03NtAwVXBklc6KvUgCbmAAkqufk5TbjPUogypoEgT5kKfAoqVjzhUQpZEsaQoyacr6Q25OEpqU9nUzgjjoxAsZgqYCFQKvWqz70Q0ij3IGMhgwZJqpgJadXFscnFu6hoZGOxibbAaAsT7Qbx155zo7Cxhc9tNSzix2wReiPYwrtZjaSwK3YpNDDUSJH7nJ7_6-UXZBfvDCeySerFYgWXGrcU2VU5Ma_ITvv-sdf_AsYC8KM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYAB8RTlmYE1ah5O4oipQlTh1YUisSArcc6oFQ0VDQP_Hl_s8BIDEksGxxdFZ_v8Wf7uO4ATiUxFLFBuyFXusiJEl8fSc70yL5OSFVI1VSJuhnF2xy7vo_sFOGtzYYhWaWO_ielNtLYtPevN3mw87t16-uhAimNB0GSYRouwROpUrANL_YurbPhxmZB4TflJ6u-SgSX0GJrXRANDI4mgD4tBQJeYEZWY-X2X-hGvm01osA5rFj06ffODG7CA1SasftEU3IKHvkMSxK56MSTpN8dWupnmjxVlLDoaD04pS8oxKs6Ohq3GxNbsmb3Wn32elTMlzl45Jhnh-TbcDc5HZ5lrayi4MkjiWj-lxjRxipiQmJtfsiT1eY5RwTUWTHOuAp-hilWapFGORRLGWJIsnK-k7piGO9CpnivcBUdGqHjMFPIQGZN64ZdeiHlUeljwkGMXktZnQlqBcapz8SRaJtlEfHpbkLeF8XYX_A_LmRHZ-IPNaTss4tuEEXov-IP1QTuSwi7audDYUIPF1E_Z3r8-fgzL2ejmWlxfDK_2YYXeGIrkAXTql1c81DCmLo7sNH0HAF3zVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-frequency+electromagnetic+stamping+system+for+high-throughput+stamping+of+microdimples&rft.jtitle=Journal+of+materials+processing+technology&rft.au=Chen%2C+Shun-Tong&rft.au=Lin%2C+Po-An&rft.au=Chiang%2C+Chao-Jung&rft.date=2022-05-01&rft.issn=0924-0136&rft.volume=303&rft.spage=117527&rft_id=info:doi/10.1016%2Fj.jmatprotec.2022.117527&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmatprotec_2022_117527 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-0136&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-0136&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-0136&client=summon |