Mathematical modelling and computational reduction of molten glass fluid flow in a furnace melting basin
In this work, we present the modelling and numerical simulation of a molten glass fluid flow in a furnace melting basin. We first derive a model for a molten glass fluid flow and present numerical simulations based on the finite element method (FEM). We further discuss and validate the results obtai...
Saved in:
Published in | Computational & applied mathematics Vol. 43; no. 7 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2238-3603 0377-0427 1807-0302 |
DOI | 10.1007/s40314-024-02921-1 |
Cover
Loading…
Abstract | In this work, we present the modelling and numerical simulation of a molten glass fluid flow in a furnace melting basin. We first derive a model for a molten glass fluid flow and present numerical simulations based on the finite element method (FEM). We further discuss and validate the results obtained from the simulations by comparing them with experimental results. Finally, we also present a non-intrusive proper orthogonal decomposition (POD) based on artificial neural networks (ANN) to efficiently handle scenarios which require multiple simulations of the fluid flow upon changing parameters of relevant industrial interest. This approach lets us obtain solutions of a complex 3D model, with good accuracy with respect to the FEM solution, yet with negligible associated computational times. |
---|---|
AbstractList | In this work, we present the modelling and numerical simulation of a molten glass fluid flow in a furnace melting basin. We first derive a model for a molten glass fluid flow and present numerical simulations based on the finite element method (FEM). We further discuss and validate the results obtained from the simulations by comparing them with experimental results. Finally, we also present a non-intrusive proper orthogonal decomposition (POD) based on artificial neural networks (ANN) to efficiently handle scenarios which require multiple simulations of the fluid flow upon changing parameters of relevant industrial interest. This approach lets us obtain solutions of a complex 3D model, with good accuracy with respect to the FEM solution, yet with negligible associated computational times. |
ArticleNumber | 407 |
Author | Ballarin, Francesco Delgado Ávila, Enrique Mola, Andrea Rozza, Gianluigi |
Author_xml | – sequence: 1 givenname: Francesco surname: Ballarin fullname: Ballarin, Francesco organization: Department of Mathematics and Physics, Università Cattolica del Sacro Cuore – sequence: 2 givenname: Enrique orcidid: 0000-0001-7881-4045 surname: Delgado Ávila fullname: Delgado Ávila, Enrique email: edelgado1@us.es organization: Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla – sequence: 3 givenname: Andrea surname: Mola fullname: Mola, Andrea organization: MUSAM Lab, Scuola IMT Alti Studi Lucca – sequence: 4 givenname: Gianluigi surname: Rozza fullname: Rozza, Gianluigi organization: mathLab, Mathematics area, SISSA, International School for Advances Studies |
BackLink | https://hal.science/hal-04867034$$DView record in HAL |
BookMark | eNp9UMtOwzAQtFCRaAs_wMlXDoH1o0k4VhVQpCIucLZsZ92mcuwqTkD8PQlBHDnsQ7szI80syCzEgIRcM7hlAMVdkiCYzICPdc9Zxs7InJVQZCCAz8icc1FmIgdxQRYpHQFEwaSck8OL7g7Y6K622tMmVuh9HfZUh4ra2Jz6bnjFMPxarHo77jS6Aeg7DHTvdUrU-b6uhh4_aR2opq5vg7ZIG_TdqGV0qsMlOXfaJ7z6nUvy_vjwttlmu9en5816l1le5F0mQUpeVdagMRqwXEnUDh2sKmRgBTfSAEjOwAx-TS6RVcYhCETmRM61WJKbSfegvTq1daPbLxV1rbbrnRpvIMu8ACE_2IDlE9a2MaUW3R-BgRpzVVOuashV_eSqRpKYSGkAhz226hhHwz79x_oGBLJ-hw |
Cites_doi | 10.1080/01457638508939639 10.1007/978-88-470-5522-3 10.1051/m2an/2014013 10.1016/j.camwa.2020.05.013 10.1137/090766498 10.1016/j.ijheatmasstransfer.2009.01.004 10.1016/j.jcp.2021.110666 10.1016/0022-3093(94)90549-5 10.1016/j.compfluid.2023.105813 10.1016/j.crma.2004.08.006 10.1111/j.2041-1294.2010.00018.x 10.1137/20m1341866 10.1109/tia.1973.349916 10.1016/j.applthermaleng.2007.05.011 10.1039/9781847551160 10.1007/bf02576171 10.1007/s10915-023-02142-4 10.1016/j.jcp.2018.02.037 10.1016/j.compfluid.2024.106307 10.1007/978-3-540-78841-6_5 10.1016/0022-3093(86)90454-0 10.1115/imece2018-86112 10.1137/S0036142900382612 10.1137/17m1118233 10.2514/6.2002-2879 10.1007/978-3-030-48721-8_10 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1007/s40314-024-02921-1 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1807-0302 |
ExternalDocumentID | oai_HAL_hal_04867034v1 10_1007_s40314_024_02921_1 |
GrantInformation_xml | – fundername: H2020 Marie Skłodowska-Curie Actions grantid: 872442 funderid: http://dx.doi.org/10.13039/100010665 – fundername: Universitá Cattolica del Sacro Cuore grantid: Reduced order modelling for numerical simulation of partial differential equations funderid: http://dx.doi.org/10.13039/501100005743 – fundername: Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni grantid: E53C22001930001 funderid: http://dx.doi.org/10.13039/100012740 |
GroupedDBID | -EM .4S .DC 06D 0R~ 203 29F 2WC 30V 4.4 406 5GY 69Q 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXHO ABXPI ACAOD ACCUX ACDTI ACGFO ACGFS ACHSB ACIPV ACIWK ACKNC ACMLO ACOKC ACPIV ACREN ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEGXH AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH APOWU ARCSS ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN BAPOH BGNMA C1A CS3 CSCUP DNIVK DPUIP DU5 E3Z EBLON EBS EDO EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV KQ8 KWQ LLZTM M4Y M~E NPVJJ NQJWS NU0 O9- O93 O9G O9J OK1 P2P PT4 RLLFE RNS ROL RSC RSV SCD SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TR2 TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 XSB Z7R Z83 ZMTXR AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION OVT --K --M -~X .~1 1B1 1RT 1XC 1~. 1~5 457 4G. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABAOU ABMAC ACDAQ ACRLP ADEZE AEBSH AEIPS AEKER AFJKZ AFTJW AGCQF AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AKRWK AMRAJ ANKPU APXCP ARUGR AXJTR BKOJK BLXMC BNPGV EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L OAUVE OZT P-8 P-9 PC. Q38 RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSW T5K TN5 UPT XPP YQT ZMT ~02 ~G- |
ID | FETCH-LOGICAL-c276t-40442ddcbebba0e854eafef05de10c32b4b004210b314b64e1dbfe03ee1f362a3 |
IEDL.DBID | AGYKE |
ISSN | 2238-3603 0377-0427 |
IngestDate | Fri May 09 12:14:52 EDT 2025 Tue Jul 01 00:46:10 EDT 2025 Fri Feb 21 02:42:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Finite element method Molten glass flow Proper orthogonal decomposition Artificial neural networks |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c276t-40442ddcbebba0e854eafef05de10c32b4b004210b314b64e1dbfe03ee1f362a3 |
ORCID | 0000-0001-7881-4045 |
ParticipantIDs | hal_primary_oai_HAL_hal_04867034v1 crossref_primary_10_1007_s40314_024_02921_1 springer_journals_10_1007_s40314_024_02921_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Computational & applied mathematics |
PublicationTitleAbbrev | Comp. Appl. Math |
PublicationYear | 2024 |
Publisher | Springer International Publishing Elsevier |
Publisher_xml | – name: Springer International Publishing – name: Elsevier |
References | Quarteroni (CR24) 2014 Manzoni (CR18) 2014; 48 Choudhary, Venuturumilli, Hyre (CR10) 2010; 1 Tonicello, Lario, Rozza, Mengaldo (CR28) 2024; 278 Pilon, Zhao, Viskanta (CR21) 2006; 75 Curran (CR11) 1973; 9 Barrault, Maday, Nguyen, Patera (CR4) 2004; 339 Chaturantabut, Sorensen (CR7) 2010; 32 CR17 CR16 Pichi, Ballarin, Rozza, Hesthaven (CR20) 2023; 254 CR14 Choudhary (CR9) 1985; 6 Shelby (CR27) 2007 Quarteroni, Manzoni, Rozza (CR25) 2011; 1 Ballarin, Chacón Rebollo, Delgado Ávila, Gómez Mármol, Rozza (CR3) 2020; 80 Hesthaven, Ubbiali (CR13) 2018; 363 Abbassi, Khoshmanesh (CR1) 2008; 28 CR6 Ivagnes, Demo, Rozza (CR15) 2023 CR5 Chen, Wang, Hesthaven, Zhang (CR8) 2021; 446 Giessler, Thess (CR12) 2009; 52 Quarteroni, Manzoni, Negri (CR26) 2015 Viskanta (CR29) 1994; 177 Pinnau, Schilders, Vorst, Rommes (CR23) 2008 Xiqi, Viskanta (CR30) 1986; 80 Novo, Rubino (CR19) 2021; 59 Pilon, Zhao, Viskanta (CR22) 2006; 75 Arnold, Brezzi, Fortin (CR2) 1984; 21 2921_CR6 2921_CR5 MK Choudhary (2921_CR10) 2010; 1 N Tonicello (2921_CR28) 2024; 278 S Chaturantabut (2921_CR7) 2010; 32 DN Arnold (2921_CR2) 1984; 21 R Viskanta (2921_CR29) 1994; 177 M Barrault (2921_CR4) 2004; 339 F Ballarin (2921_CR3) 2020; 80 L Pilon (2921_CR22) 2006; 75 A Manzoni (2921_CR18) 2014; 48 W Chen (2921_CR8) 2021; 446 L Pilon (2921_CR21) 2006; 75 A Abbassi (2921_CR1) 2008; 28 2921_CR14 F Pichi (2921_CR20) 2023; 254 2921_CR16 A Quarteroni (2921_CR24) 2014 2921_CR17 R Pinnau (2921_CR23) 2008 RL Curran (2921_CR11) 1973; 9 A Ivagnes (2921_CR15) 2023 A Quarteroni (2921_CR26) 2015 A Quarteroni (2921_CR25) 2011; 1 JE Shelby (2921_CR27) 2007 C Giessler (2921_CR12) 2009; 52 J Novo (2921_CR19) 2021; 59 W Xiqi (2921_CR30) 1986; 80 M Choudhary (2921_CR9) 1985; 6 JS Hesthaven (2921_CR13) 2018; 363 |
References_xml | – volume: 6 start-page: 55 issue: 4 year: 1985 end-page: 65 ident: CR9 article-title: Three-dimensional mathematical model for flow and heat transfer in electric glass furnaces publication-title: Heat Transfer Eng doi: 10.1080/01457638508939639 – year: 2014 ident: CR24 publication-title: Numerical models for differential problems doi: 10.1007/978-88-470-5522-3 – volume: 48 start-page: 1199 year: 2014 end-page: 1226 ident: CR18 article-title: An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier–Stokes flows publication-title: ESAIM Math Model Numer Anal doi: 10.1051/m2an/2014013 – ident: CR14 – ident: CR16 – volume: 80 start-page: 973 issue: 5 year: 2020 end-page: 989 ident: CR3 article-title: Certified reduced basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height publication-title: Comput Math Appl doi: 10.1016/j.camwa.2020.05.013 – volume: 32 start-page: 2737 issue: 5 year: 2010 end-page: 2764 ident: CR7 article-title: Nonlinear model reduction via discrete empirical interpolation publication-title: SIAM J Sci Comput doi: 10.1137/090766498 – volume: 52 start-page: 3373 issue: 13–14 year: 2009 end-page: 3389 ident: CR12 article-title: Numerical simulation of electromagnetically controlled thermal convection of glass melt in a crucible publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2009.01.004 – volume: 446 start-page: 110666 year: 2021 ident: CR8 article-title: Physics-informed machine learning for reduced-order modeling of nonlinear problems publication-title: J Comput Phys doi: 10.1016/j.jcp.2021.110666 – volume: 177 start-page: 347 year: 1994 end-page: 362 ident: CR29 article-title: Review of three-dimensional mathematical modeling of glass melting publication-title: J Non-Cryst Solids doi: 10.1016/0022-3093(94)90549-5 – volume: 254 year: 2023 ident: CR20 article-title: An artificial neural network approach to bifurcating phenomena in computational fluid dynamics publication-title: Comput Fluids doi: 10.1016/j.compfluid.2023.105813 – ident: CR6 – volume: 339 start-page: 667 issue: 9 year: 2004 end-page: 672 ident: CR4 article-title: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations publication-title: CR Math doi: 10.1016/j.crma.2004.08.006 – year: 2015 ident: CR26 publication-title: Reduced basis methods for partial differential equations: an introduction – volume: 1 start-page: 188 issue: 2 year: 2010 end-page: 214 ident: CR10 article-title: Mathematical modeling of flow and heat transfer phenomena in glass melting, delivery, and forming processes publication-title: Int J Appl Glass Sci doi: 10.1111/j.2041-1294.2010.00018.x – volume: 59 start-page: 334 issue: 1 year: 2021 end-page: 369 ident: CR19 article-title: Error analysis of proper orthogonal decomposition stabilized methods for incompressible flows publication-title: SIAM J Numer Anal doi: 10.1137/20m1341866 – volume: 9 start-page: 348 issue: 3 year: 1973 end-page: 357 ident: CR11 article-title: Mathematical model of an electric glass furnace: effects of glass color and resistivity publication-title: IEEE Trans Ind Appl IA doi: 10.1109/tia.1973.349916 – volume: 75 start-page: 115 issue: 3 year: 2006 end-page: 124 ident: CR21 article-title: Three-dimensional flow and thermal structures in glass melting furnaces part I. Effects of the heat flux distribution publication-title: Glass Sci Technol – volume: 28 start-page: 450 issue: 5–6 year: 2008 end-page: 459 ident: CR1 article-title: Numerical simulation and experimental analysis of an industrial glass melting furnace publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2007.05.011 – volume: 1 start-page: 1 issue: 3 year: 2011 end-page: 49 ident: CR25 article-title: Certified reduced basis approximation for parametrized partial differential equations and applications publication-title: J Math Ind – year: 2007 ident: CR27 article-title: Introduction to glass science and technology publication-title: R Soc Chem doi: 10.1039/9781847551160 – ident: CR17 – volume: 21 start-page: 337 issue: 4 year: 1984 end-page: 344 ident: CR2 article-title: A stable finite element for the Stokes equations publication-title: Calcolo doi: 10.1007/bf02576171 – year: 2023 ident: CR15 article-title: Towards a machine learning pipeline in reduced order modelling for inverse problems: neural networks for boundary parametrization, dimensionality reduction and solution manifold approximation publication-title: J Sci Comput doi: 10.1007/s10915-023-02142-4 – volume: 363 start-page: 55 year: 2018 end-page: 78 ident: CR13 article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks publication-title: J Comput Phys doi: 10.1016/j.jcp.2018.02.037 – volume: 75 start-page: 55 issue: 2 year: 2006 end-page: 68 ident: CR22 article-title: Three-dimensional flow and thermal structures in glass melting furnaces part. II. Effects of the heat flux distribution publication-title: Glass Sci Technol – ident: CR5 – volume: 278 start-page: 106307 year: 2024 ident: CR28 article-title: Non-intrusive reduced order models for the accurate prediction of bifurcating phenomena in compressible fluid dynamics publication-title: Comput Fluids doi: 10.1016/j.compfluid.2024.106307 – start-page: 95 year: 2008 end-page: 109 ident: CR23 article-title: Model reduction via proper orthogonal decomposition publication-title: Mathematics in industry doi: 10.1007/978-3-540-78841-6_5 – volume: 80 start-page: 613 issue: 1–3 year: 1986 end-page: 622 ident: CR30 article-title: Modeling of heat transfer in the melting of a glass batch publication-title: J Non-Cryst Solids doi: 10.1016/0022-3093(86)90454-0 – volume: 278 start-page: 106307 year: 2024 ident: 2921_CR28 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2024.106307 – volume: 75 start-page: 115 issue: 3 year: 2006 ident: 2921_CR21 publication-title: Glass Sci Technol – volume: 446 start-page: 110666 year: 2021 ident: 2921_CR8 publication-title: J Comput Phys doi: 10.1016/j.jcp.2021.110666 – volume-title: Reduced basis methods for partial differential equations: an introduction year: 2015 ident: 2921_CR26 – year: 2007 ident: 2921_CR27 publication-title: R Soc Chem doi: 10.1039/9781847551160 – volume: 9 start-page: 348 issue: 3 year: 1973 ident: 2921_CR11 publication-title: IEEE Trans Ind Appl IA doi: 10.1109/tia.1973.349916 – ident: 2921_CR17 doi: 10.1115/imece2018-86112 – volume: 28 start-page: 450 issue: 5–6 year: 2008 ident: 2921_CR1 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2007.05.011 – volume: 52 start-page: 3373 issue: 13–14 year: 2009 ident: 2921_CR12 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2009.01.004 – volume: 254 year: 2023 ident: 2921_CR20 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2023.105813 – volume: 1 start-page: 188 issue: 2 year: 2010 ident: 2921_CR10 publication-title: Int J Appl Glass Sci doi: 10.1111/j.2041-1294.2010.00018.x – volume: 1 start-page: 1 issue: 3 year: 2011 ident: 2921_CR25 publication-title: J Math Ind – year: 2023 ident: 2921_CR15 publication-title: J Sci Comput doi: 10.1007/s10915-023-02142-4 – volume: 48 start-page: 1199 year: 2014 ident: 2921_CR18 publication-title: ESAIM Math Model Numer Anal doi: 10.1051/m2an/2014013 – start-page: 95 volume-title: Mathematics in industry year: 2008 ident: 2921_CR23 doi: 10.1007/978-3-540-78841-6_5 – volume: 32 start-page: 2737 issue: 5 year: 2010 ident: 2921_CR7 publication-title: SIAM J Sci Comput doi: 10.1137/090766498 – volume: 177 start-page: 347 year: 1994 ident: 2921_CR29 publication-title: J Non-Cryst Solids doi: 10.1016/0022-3093(94)90549-5 – ident: 2921_CR16 doi: 10.1137/S0036142900382612 – volume: 6 start-page: 55 issue: 4 year: 1985 ident: 2921_CR9 publication-title: Heat Transfer Eng doi: 10.1080/01457638508939639 – volume: 59 start-page: 334 issue: 1 year: 2021 ident: 2921_CR19 publication-title: SIAM J Numer Anal doi: 10.1137/20m1341866 – ident: 2921_CR5 doi: 10.1137/17m1118233 – volume-title: Numerical models for differential problems year: 2014 ident: 2921_CR24 doi: 10.1007/978-88-470-5522-3 – ident: 2921_CR6 doi: 10.2514/6.2002-2879 – volume: 21 start-page: 337 issue: 4 year: 1984 ident: 2921_CR2 publication-title: Calcolo doi: 10.1007/bf02576171 – volume: 80 start-page: 973 issue: 5 year: 2020 ident: 2921_CR3 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2020.05.013 – volume: 75 start-page: 55 issue: 2 year: 2006 ident: 2921_CR22 publication-title: Glass Sci Technol – volume: 363 start-page: 55 year: 2018 ident: 2921_CR13 publication-title: J Comput Phys doi: 10.1016/j.jcp.2018.02.037 – volume: 339 start-page: 667 issue: 9 year: 2004 ident: 2921_CR4 publication-title: CR Math doi: 10.1016/j.crma.2004.08.006 – ident: 2921_CR14 doi: 10.1007/978-3-030-48721-8_10 – volume: 80 start-page: 613 issue: 1–3 year: 1986 ident: 2921_CR30 publication-title: J Non-Cryst Solids doi: 10.1016/0022-3093(86)90454-0 |
SSID | ssj0037144 ssj0006914 |
Score | 2.4216537 |
Snippet | In this work, we present the modelling and numerical simulation of a molten glass fluid flow in a furnace melting basin. We first derive a model for a molten... |
SourceID | hal crossref springer |
SourceType | Open Access Repository Index Database Publisher |
SubjectTerms | Applications of Mathematics Computational Mathematics and Numerical Analysis Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics |
Title | Mathematical modelling and computational reduction of molten glass fluid flow in a furnace melting basin |
URI | https://link.springer.com/article/10.1007/s40314-024-02921-1 https://hal.science/hal-04867034 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3qwPvFNEG8aSXaz2_ZYxVp8IWJBT0uSndBi3YptFfz1TtJsRRHBwz6ZDUkmmZnszHwh5IBr1YBEpCxXCpiERsLqYHPGDVilBedaO4_u9U3a7siLh-QhJIUNy2j30iXpJfU02U06pHWGOgWPRiQYrnnm0P7gUYXMNc8fL89KCexA6Jw3GTVfncUpj0OyzO-lfFNIs10XDvnDJ-pVTatKOmUlJxEmT8fjkT42Hz_wG__biiWyGGxP2pwMlmUyA8UKqQY7lIZZPlwhC9dTLNfhKul-PeHHfuccl8JOVZFT4_eECP8T6auDgXX3dGCRsI_mOPXWObX9cS_H8-Cd9gqqqHU1MUCfoe_Crinq0l6xRjqts_vTNgv7MzAT1dIRLj2ljPLcaNBacagnEpQFy5McBDdxpKWXCYJrbLJOJYhcW-AxgLCoN1W8TirFoIANQmMV4zpRCaXRIIpqDaV43RoFJjURoB7fJIclk7KXCQxHNgVc9l2aYZdmvkszsUn2kY9TQoeg3W5eZe6dRxjksXxDoqOSQ1mYt8M_ytz6H_k2mY8ck33Y3w6pjF7HsIvmy0jv4Wg9vbu6ddfWycnNXhi9n-lj6nA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED5t5YHxMAYbomMbFuINjOzESdvHCgEdtDxRCZ4i2zmLipIi2oK0X7-z6xQNTUg8JEqii2X7bN-d7-4zwL4wuoOZzHmpNXKFnYy30ZVcWHTaSCGM8R7dwWXeG6rz6-w6JoVN62j32iUZVuplspvySOucZApdnURysnlWFNngqgEr3bObi5N6BfYgdN6bTJKvzdNcpDFZ5v-l_COQPt76cMhXPtEgak7XYVhXchFhcnc0n5kj--cVfuN7W_EFPkfdk3UXg2UDPmC1CetRD2Vxlk83YW2wxHKdfoXblzf6OZyc41PYma5KZsOZEHE_kT16GFj_zCaOCMekjrOgnTM3no9Kuk-e2ahimjlfE4vsHsc-7JqRLB1V32B4enJ13OPxfAZuk1Y-I9NTqaQsrUFjtMB2plA7dCIrUQqbJkaFNUEKQ002uUJZGociRZSO5KZOt6BRTSrcBpbqlOxELbUhhShpdbQWbWc12twmSHK8CQc1k4qHBQxHsQRcDl1aUJcWoUsL2YQ94uOS0CNo97r9wn8LCIMiVU9EdFhzqIjzdvpGmd_fR74Lq72rQb_o_7682IFPiWd4CAH8AY3Z4xx_kiozM7_iyP0LYzPqTg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5BK03wwNhgomwDC-1teLMTJ2sfK1gp6zbtYZPGU-QfZ7WipNOagsRfz9lNyjYhJMRDoiS6WLbPznfO3X0G2BNG9zCTOXdaI1fYy3gXvePCotdGCmFM8OienefDK3VynV3fyeKP0e6NS3KZ0xBYmsrq8Mb5w1Ximwqs65zwhY5eIjmtf9oqkLO3oN3_9GV03HyNAyFd8CwTCnZ5mou0Tpz5cyn3wOnxOIRGPvCPRtgZrINuKryMNvl6sKjMgf35gMvxf1r0HJ7VNinrLwfRBjzCchPWa_uU1bN_vglPz1Ycr_MXMP59Ry_HHXVCajvTpWM27hVR_2dkt4EeNlyzmSfBKVWLRaud-eli4ug8-8EmJdPMh5pYZN9wGsKxGWHspHwJV4Pjyw9DXu_bwG1ylFe0JFUqcc4aNEYL7GYKtUcvModS2DQxKn4rpDDUZJMrlM54FCmi9ISnOt2CVjkr8RWwVKe0ftRSGzKUkqOe1qLrrUab2wQJ3zuw3yisuFnScxQrIubYpQV1aRG7tJAdeEc6XQkGZu1h_7QIzyLzoEjVdxJ632irqOfz_C9lvv438bewdvFxUJx-Ph9tw5Mk6DtGBu5Aq7pd4C5ZOJV5Uw_iX5Dw8zI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+modelling+and+computational+reduction+of+molten+glass+fluid+flow+in+a+furnace+melting+basin&rft.jtitle=Computational+%26+applied+mathematics&rft.au=Ballarin%2C+Francesco&rft.au=Delgado+%C3%81vila%2C+Enrique&rft.au=Mola%2C+Andrea&rft.au=Rozza%2C+Gianluigi&rft.date=2024-10-01&rft.pub=Springer+International+Publishing&rft.issn=2238-3603&rft.eissn=1807-0302&rft.volume=43&rft.issue=7&rft_id=info:doi/10.1007%2Fs40314-024-02921-1&rft.externalDocID=10_1007_s40314_024_02921_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-3603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-3603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-3603&client=summon |