Mechanically Strong Active‐Site‐Enriched Polymer Composite Solid Electrolytes toward Superior Room‐Temperature Performance in Lithium Batteries
Solid‐state electrolytes (SSEs) are promising for lithium batteries with higher safety, cycling stability, and energy density. Among the various SSEs, solid polymer electrolytes (SPEs) are a highly preferred choice due to their high thermal stability, thin design, and good formability. However, poly...
Saved in:
Published in | Advanced Physics Research Vol. 4; no. 5 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2751-1200 2751-1200 |
DOI | 10.1002/apxr.202400166 |
Cover
Loading…
Abstract | Solid‐state electrolytes (SSEs) are promising for lithium batteries with higher safety, cycling stability, and energy density. Among the various SSEs, solid polymer electrolytes (SPEs) are a highly preferred choice due to their high thermal stability, thin design, and good formability. However, polymer electrolytes have low ionic conductivity, for example, polyethylene oxide (PEO), one of the most dominant polyelectrolyte materials, has a low ionic conductivity at room temperature due to its high crystallinity. Theoretically, increasing the ionic active sites by decreasing its crystallinity is an effective strategy, but this may lead to its inability to form films or poor mechanical strength. In this work, the crystallinity of PEO is reduced by introducing succinonitrile (SN), and solution blow‐spun polyacrylonitrile (PAN) fiber film is employed as the skeleton of the SPE to provide good mechanical strength. PEO‐LiTFSI‐SN/PAN SPEs have a tensile strength of at least 4.5 MPa. To provide more Li+ active sites, PEO‐LiTFSI‐SN/MXene@PAN composite SPEs are fabricated by doping the PAN fibers with MXene rich in functional groups. The specific capacity of the LFP|PEO‐LiTFSI‐SN/MXene@PAN|Li button cell reaches 134.8 mAh g−1 in the first cycle, and the capacity retention rate of 100 cycles is 75.8% at 0.5 C at room temperature.
Blow‐spun MXene doped polyacrylonitrile (PAN) fiber films provide good mechanical strength and more Li+ active sites for low‐crystallinity solid polymer electrolytes, achieving a specific capacity of 134.8 mAh g−1 for the LFP. |
---|---|
AbstractList | Solid‐state electrolytes (SSEs) are promising for lithium batteries with higher safety, cycling stability, and energy density. Among the various SSEs, solid polymer electrolytes (SPEs) are a highly preferred choice due to their high thermal stability, thin design, and good formability. However, polymer electrolytes have low ionic conductivity, for example, polyethylene oxide (PEO), one of the most dominant polyelectrolyte materials, has a low ionic conductivity at room temperature due to its high crystallinity. Theoretically, increasing the ionic active sites by decreasing its crystallinity is an effective strategy, but this may lead to its inability to form films or poor mechanical strength. In this work, the crystallinity of PEO is reduced by introducing succinonitrile (SN), and solution blow‐spun polyacrylonitrile (PAN) fiber film is employed as the skeleton of the SPE to provide good mechanical strength. PEO‐LiTFSI‐SN/PAN SPEs have a tensile strength of at least 4.5 MPa. To provide more Li+ active sites, PEO‐LiTFSI‐SN/MXene@PAN composite SPEs are fabricated by doping the PAN fibers with MXene rich in functional groups. The specific capacity of the LFP|PEO‐LiTFSI‐SN/MXene@PAN|Li button cell reaches 134.8 mAh g−1 in the first cycle, and the capacity retention rate of 100 cycles is 75.8% at 0.5 C at room temperature.
Blow‐spun MXene doped polyacrylonitrile (PAN) fiber films provide good mechanical strength and more Li+ active sites for low‐crystallinity solid polymer electrolytes, achieving a specific capacity of 134.8 mAh g−1 for the LFP. Abstract Solid‐state electrolytes (SSEs) are promising for lithium batteries with higher safety, cycling stability, and energy density. Among the various SSEs, solid polymer electrolytes (SPEs) are a highly preferred choice due to their high thermal stability, thin design, and good formability. However, polymer electrolytes have low ionic conductivity, for example, polyethylene oxide (PEO), one of the most dominant polyelectrolyte materials, has a low ionic conductivity at room temperature due to its high crystallinity. Theoretically, increasing the ionic active sites by decreasing its crystallinity is an effective strategy, but this may lead to its inability to form films or poor mechanical strength. In this work, the crystallinity of PEO is reduced by introducing succinonitrile (SN), and solution blow‐spun polyacrylonitrile (PAN) fiber film is employed as the skeleton of the SPE to provide good mechanical strength. PEO‐LiTFSI‐SN/PAN SPEs have a tensile strength of at least 4.5 MPa. To provide more Li+ active sites, PEO‐LiTFSI‐SN/MXene@PAN composite SPEs are fabricated by doping the PAN fibers with MXene rich in functional groups. The specific capacity of the LFP|PEO‐LiTFSI‐SN/MXene@PAN|Li button cell reaches 134.8 mAh g−1 in the first cycle, and the capacity retention rate of 100 cycles is 75.8% at 0.5 C at room temperature. Solid‐state electrolytes (SSEs) are promising for lithium batteries with higher safety, cycling stability, and energy density. Among the various SSEs, solid polymer electrolytes (SPEs) are a highly preferred choice due to their high thermal stability, thin design, and good formability. However, polymer electrolytes have low ionic conductivity, for example, polyethylene oxide (PEO), one of the most dominant polyelectrolyte materials, has a low ionic conductivity at room temperature due to its high crystallinity. Theoretically, increasing the ionic active sites by decreasing its crystallinity is an effective strategy, but this may lead to its inability to form films or poor mechanical strength. In this work, the crystallinity of PEO is reduced by introducing succinonitrile (SN), and solution blow‐spun polyacrylonitrile (PAN) fiber film is employed as the skeleton of the SPE to provide good mechanical strength. PEO‐LiTFSI‐SN/PAN SPEs have a tensile strength of at least 4.5 MPa. To provide more Li + active sites, PEO‐LiTFSI‐SN/MXene@PAN composite SPEs are fabricated by doping the PAN fibers with MXene rich in functional groups. The specific capacity of the LFP|PEO‐LiTFSI‐SN/MXene@PAN|Li button cell reaches 134.8 mAh g −1 in the first cycle, and the capacity retention rate of 100 cycles is 75.8% at 0.5 C at room temperature. |
Author | Zhao, Jiayu Dong, Lijie Wang, Yongjing Qi, Jiaxiao Tang, Haixiong Hong, Yu Jiang, Ming Li, Qiong |
Author_xml | – sequence: 1 givenname: Jiaxiao surname: Qi fullname: Qi, Jiaxiao organization: Wuhan Textile University – sequence: 2 givenname: Yongjing surname: Wang fullname: Wang, Yongjing organization: Wuhan Textile University – sequence: 3 givenname: Haixiong surname: Tang fullname: Tang, Haixiong organization: Blu Science Advanced Material Co., Ltd – sequence: 4 givenname: Jiayu surname: Zhao fullname: Zhao, Jiayu organization: Wuhan Textile University – sequence: 5 givenname: Yu surname: Hong fullname: Hong, Yu organization: China Petroleum Engineering & Construction Co Ltd – sequence: 6 givenname: Qiong surname: Li fullname: Li, Qiong organization: Wuhan Textile University – sequence: 7 givenname: Ming orcidid: 0000-0003-0415-6021 surname: Jiang fullname: Jiang, Ming email: mjiang@wtu.edu.cn organization: Wuhan Textile University – sequence: 8 givenname: Lijie surname: Dong fullname: Dong, Lijie email: dong@whut.edu.cn organization: Wuhan University of Science and Technology |
BookMark | eNqFkb1u2zAURokiBZomWTPzBexeUiQljq7htgFc1Ig9ZCNo6ipmQIkGRTfR1kfo0hfMk0Sui6Bbpvt7zvJ9JGdd7JCQawZTBsA_2f1TmnLgAoAp9Y6c81KyCeMAZ__1H8hV3z_ACFSaFYKdkz_f0e1s550NYaDrnGJ3T2cu-5_4_Ov32udjWXTJux3WdBXD0GKi89juYz8e6ToGX9NFQDeiYcjY0xwfbarp-rDH5GOitzG2o2SD7biw-ZCQrjA1MbW2c0h9R5c-7_yhpZ9tziOD_SV539jQ49W_ekE2Xxab-bfJ8sfXm_lsOXG8VGqCqlbKbitQSmpZ8m2pRSMKp2RhwVai0UKJcUCoK1nJZusQtUPNXK25guKC3Jy0dbQPZp98a9NgovXm7yKme2NT9i6gcdo1DDRAg0JURWmtAsZLgU43kkk1uqYnl0ux7xM2rz4G5hiROUZkXiMaAXkCHn3A4Y1vM1vd3TJegCpeAPkEnEk |
Cites_doi | 10.1039/D4CP00735B 10.1021/acs.est.0c07030 10.1002/adfm.202000455 10.1002/eem2.12450 10.1002/smll.202103617 10.1186/s11671-020-03355-4 10.1002/cssc.201500284 10.1002/smll.202205315 10.1002/advs.202003675 10.1016/j.proeng.2017.03.211 10.1021/acsomega.2c01926 10.1002/adma.202105329 10.1002/anie.202107648 10.1002/adfm.201801511 10.1002/adma.201807789 10.1149/1.3428515 10.1016/j.jpowsour.2020.228708 10.1002/adma.202100353 10.1002/adma.202001259 10.1002/advs.202201718 10.1007/s40843-024-2857-8 10.1021/ma3008509 10.1002/adfm.202111613 10.1016/j.cclet.2021.03.032 10.1016/j.ensm.2020.07.018 10.1002/er.8708 10.1002/aenm.202103720 10.1002/aenm.202400740 10.1002/smll.202103679 10.1002/adfm.202007172 10.1016/j.ssi.2011.01.010 10.1002/cjoc.202200588 10.1016/j.pnsc.2008.07.014 10.1002/pi.4980070505 10.1016/S0010-8545(01)00416-7 10.1002/adfm.201806819 10.1002/aenm.202003836 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/apxr.202400166 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_c9cf10900fe44837aa601274ec9f5156 10_1002_apxr_202400166 APXR12306 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Key R&D Program of Hubei Province funderid: 2023BAB104 – fundername: National Natural Science Foundation of China funderid: 51503158 |
GroupedDBID | 0R~ 24P 88I ABJCF ABUWG ACCMX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P M~E PCBAR PDBOC PHGZM PHGZT PIMPY AAFWJ AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION ARCSS PQGLB PUEGO WIN |
ID | FETCH-LOGICAL-c2766-e6d66ab806659572b794f43c653a0a84f9464653e0d8585fbcee9ce91cd92603 |
IEDL.DBID | 24P |
ISSN | 2751-1200 |
IngestDate | Wed Aug 27 01:30:13 EDT 2025 Thu Jul 03 05:33:26 EDT 2025 Thu May 08 09:30:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2766-e6d66ab806659572b794f43c653a0a84f9464653e0d8585fbcee9ce91cd92603 |
ORCID | 0000-0003-0415-6021 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400166 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c9cf10900fe44837aa601274ec9f5156 crossref_primary_10_1002_apxr_202400166 wiley_primary_10_1002_apxr_202400166_APXR12306 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2025 2025-05-00 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2025 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 2021; 8 2023; 10 2018; 29 2018; 28 2010; 13 2019; 31 2023; 6 2022; 46 2020; 15 2020; 32 2024; 14 2015; 8 2023; 41 2021; 32 2021; 55 2021; 33 2021; 11 2020; 30 2021; 18 2022; 7 2021; 17 2020; 479 2022; 12 2002; 226 2017; 186 2024; 67 2022; 32 2009; 19 2021; 60 1975; 7 2024; 26 2012; 45 2022; 19 2011; 186 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 479 year: 2020 publication-title: J. Power Sources – volume: 19 start-page: 291 year: 2009 publication-title: Prog. Nat. Sci. – volume: 32 start-page: 425 year: 2020 publication-title: Energy Storage Mater. – volume: 186 start-page: 1 year: 2011 publication-title: Solid State Ionics – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 5189 year: 2021 publication-title: Environ. Sci. Technol. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 67 start-page: 1412 year: 2024 publication-title: Sci. China Mater. – volume: 41 start-page: 1119 year: 2023 publication-title: Chin. J. Chem. – volume: 8 start-page: 2154 year: 2015 publication-title: ChemSusChem – volume: 17 year: 2021 publication-title: Small – volume: 15 start-page: 122 year: 2020 publication-title: Nanoscale Res. Lett. – volume: 7 start-page: 319 year: 1975 publication-title: Br. Polym. J. – volume: 18 year: 2021 publication-title: Small – volume: 6 year: 2023 publication-title: Energy Environ. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 46 year: 2022 publication-title: Int. J. Energy Res. – volume: 13 start-page: A95 year: 2010 publication-title: Electrochem. Solid‐State Lett. – volume: 7 year: 2022 publication-title: ACS Omega – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 32 start-page: 2659 year: 2021 publication-title: Chin. Chem. Lett. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 14 year: 2024 publication-title: Adv. Energy Mater. – volume: 19 year: 2022 publication-title: Small – volume: 45 start-page: 6068 year: 2012 publication-title: Macromolecules – volume: 226 start-page: 137 year: 2002 publication-title: Coord. Chem. Rev. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 29 year: 2018 publication-title: Adv. Funct. Mater. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 186 start-page: 349 year: 2017 publication-title: Procedia Eng. – volume: 26 year: 2024 publication-title: Phys. Chem. Chem. Phys. – volume: 8 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_8_30_1 doi: 10.1039/D4CP00735B – ident: e_1_2_8_1_1 doi: 10.1021/acs.est.0c07030 – ident: e_1_2_8_21_1 doi: 10.1002/adfm.202000455 – ident: e_1_2_8_4_1 doi: 10.1002/eem2.12450 – ident: e_1_2_8_12_1 doi: 10.1002/smll.202103617 – ident: e_1_2_8_25_1 doi: 10.1186/s11671-020-03355-4 – ident: e_1_2_8_7_1 doi: 10.1002/cssc.201500284 – ident: e_1_2_8_6_1 doi: 10.1002/smll.202205315 – ident: e_1_2_8_13_1 doi: 10.1002/advs.202003675 – ident: e_1_2_8_9_1 doi: 10.1016/j.proeng.2017.03.211 – ident: e_1_2_8_23_1 doi: 10.1021/acsomega.2c01926 – ident: e_1_2_8_18_1 doi: 10.1002/adma.202105329 – ident: e_1_2_8_16_1 doi: 10.1002/anie.202107648 – ident: e_1_2_8_35_1 doi: 10.1002/adfm.201801511 – ident: e_1_2_8_36_1 doi: 10.1002/adma.201807789 – ident: e_1_2_8_37_1 doi: 10.1149/1.3428515 – ident: e_1_2_8_5_1 doi: 10.1016/j.jpowsour.2020.228708 – ident: e_1_2_8_17_1 doi: 10.1002/adma.202100353 – ident: e_1_2_8_22_1 doi: 10.1002/adma.202001259 – ident: e_1_2_8_19_1 doi: 10.1002/advs.202201718 – ident: e_1_2_8_31_1 doi: 10.1007/s40843-024-2857-8 – ident: e_1_2_8_29_1 doi: 10.1021/ma3008509 – ident: e_1_2_8_33_1 doi: 10.1002/adfm.202111613 – ident: e_1_2_8_15_1 doi: 10.1016/j.cclet.2021.03.032 – ident: e_1_2_8_8_1 doi: 10.1016/j.ensm.2020.07.018 – ident: e_1_2_8_2_1 doi: 10.1002/er.8708 – ident: e_1_2_8_14_1 doi: 10.1002/aenm.202103720 – ident: e_1_2_8_20_1 doi: 10.1002/aenm.202400740 – ident: e_1_2_8_10_1 doi: 10.1002/smll.202103679 – ident: e_1_2_8_27_1 doi: 10.1002/adfm.202007172 – ident: e_1_2_8_28_1 doi: 10.1016/j.ssi.2011.01.010 – ident: e_1_2_8_11_1 doi: 10.1002/cjoc.202200588 – ident: e_1_2_8_3_1 doi: 10.1016/j.pnsc.2008.07.014 – ident: e_1_2_8_26_1 doi: 10.1002/pi.4980070505 – ident: e_1_2_8_32_1 doi: 10.1016/S0010-8545(01)00416-7 – ident: e_1_2_8_34_1 doi: 10.1002/adfm.201806819 – ident: e_1_2_8_24_1 doi: 10.1002/aenm.202003836 |
SSID | ssj0002891341 |
Score | 2.3104024 |
Snippet | Solid‐state electrolytes (SSEs) are promising for lithium batteries with higher safety, cycling stability, and energy density. Among the various SSEs, solid... Abstract Solid‐state electrolytes (SSEs) are promising for lithium batteries with higher safety, cycling stability, and energy density. Among the various SSEs,... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
SubjectTerms | blow‐spun nanofiber film mechanical strength MXene polyethylene oxide solid polymer electrolytes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NSsNAEIAX6cmLKCrWP_YgeIpNsuk2e6zSUsRKaSr0FjbJRiNtUkIK9uYjePEFfRJndvvnqRdPgRAyYSabmcnMfkPIjfB1opFYvquU5SWcW9IXqeWLxG5JX4LTwopu_5n3XrzHcXO8NeoLe8IMHtgorhGLOMXmQTtVHtLPpeRYLfVULFLwxRq2DT5vK5l6N-UzJJWtKI2225CzD8R_Ysuko5GIGy-kYf1_g1PtXbqH5GAZFtK2eZwjsqfyY_LdV7gvF9U4WdAAf1q_0rb-QP18fgUQLMKhk5fYzZnQQTFZTFVJcYVjJ5aiQTHJEtoxg24mCwgqaaW7ZGkwR8BxUdIhxM1wk5GC6NnQlelgs5WAZjl9yqq3bD6lBsQJefUJGXU7o4eetRyjYMVuC3SvOFhARj4WWUSz5UawBFOPxbzJpC19LxUeR8qashMsEqYR-E0RK-HEiYBsh52SWl7k6oxQxn3GEWAmIYlzcPQk46nTYjGIER5jdXK70mo4M7CM0GCR3RD1H671Xyf3qPT1VQi51ifA9OHS9OEu09fJnTbZDllhezAeOphqnf-H1Auy7-IMYN30eElqVTlXVxCYVNG1fgd_ARTz4gA priority: 102 providerName: Directory of Open Access Journals |
Title | Mechanically Strong Active‐Site‐Enriched Polymer Composite Solid Electrolytes toward Superior Room‐Temperature Performance in Lithium Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400166 https://doaj.org/article/c9cf10900fe44837aa601274ec9f5156 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF60XryIouJv2YPgKTTZ3W6yxyotRayUtkJvYZNsaqEmJbZgL-IjePEFfRJnNm21J_GSQEg2MDuz-83OzDeEXKnAOhqJEzBjHJFI6ehApU6gEtfXgYZNCyO6nQfZfhR3w_rwVxV_yQ-xPnBDy7DrNRq4jl5qP6ShevqKfJ6YA-lJuU12sL4WNZ2J7vqUhWEUzravZH7dczzQiRVzo8tqm0Ns7EyWwH8TsNodp7VP9pZQkTbKuT0gWyY7JJ8dg7W6KNrJgvbxIHtEG3bR-nr_6AOAhFszKzDDM6HdfLJ4NgVFq8fsLEP7-WSc0GbZ_GayAKBJZzZzlvbnSHqcF7QHWBoGGRhA1CXjMu3-lBfQcUbvx7On8fyZluSc4GsfkUGrObhtO8vWCk7MfJgPI2FWdBRg4EXVfRaBWaaCx7LOtasDkSohkXnNuAkGDtMI9lIVG-XFiQIPiB-TSpZn5oRQLgMukdRMg2PnYTtKLlPP5zH8RgnOT8n1SqrhtCTQCEuqZBai_MO1_E_JDQp9_RYSX9sHeTEKl3YUxipOMZfUTY1AMnytJQbPhYlVCtAMBimV5o9_hY3usOeh-3X23w_OyS7DHsA26fGCVGbF3FwCMJlFVat7VevWw7Xz1vwGw5HhBA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58HPQiiopv9yB4Ck12N5vssUqlaivFVugtbJNNLbRJCS3Ymz_Bi3_QX-LMpg96Ek-BkOzC7M7ON4_9hpAbFVpHI3FCZowjEikdHarUCVXiBjrUYLQwo9t8kfU38dT1F9WEeBem5IdYBtxQM-x5jQqOAenKijVUjz-Q0BOLID0pN8m2kCzA7g1MtJZhFoZpONu_kgW-53iwKRbUjS6rrA-xZposg_86YrUm52Gf7M2xIq2Wi3tANkx2SL6bBi_romyHM9rGSHafVu2p9fP51QYECY9aVmCJZ0Jb-XA2MgVFtcfyLEPb-XCQ0FrZ_WY4A6RJJ7Z0lranyHqcF_QVwDQM0jEAqUvKZdpa3S-gg4w2BpP3wXRES3ZOcLaPSOeh1rmvO_PeCk7MAlgQI2FZdC_EzIvyA9YDvUwFj6XPtatDkSohkXrNuAlmDtMeGFMVG-XFiQIXiB-TrSzPzAmhXIZcIquZBs_Ow36UXKZewGOYRgnOT8ntQqrRuGTQiEquZBah_KOl_E_JHQp9-RUyX9sXedGP5ooUxSpOsZjUTY1ANnytJWbPhYlVCtgMBil3zR9zRdVW99VD_-vsvz9ck516p9mIGo8vz-dkl2FDYFsBeUG2JsXUXAJKmfSu7D78BVOo4ko |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-QLyIouLbHARPi7tJmt0cq7b4ZrEVelvS3UQL7W5ZWrA3f4IX_6C_xJlsrfYknhaW3QQmM5lvMpNvCDlRkQs0Mi9ixngik9LTkbJepDI_1JEGp4UZ3fsHefUkbjq1zq9b_BU_xOzADS3D7ddo4MPMnv2QhurhK_J5Yg1kIOUiWcaMH-o4E_HslIVhFs61r2RhLfAC0Ilv5kafnc0PMeeZHIH_PGB1Hqe5TtamUJHWq7XdIAsm3yQf9wbv6qJo-xPawoPsZ1p3m9bn23sLACQ8GnmJFZ4ZjYv-ZGBKilaP1VmGtop-L6ONqvlNfwJAk45c5SxtjZH0uCjpI2BpGKRtAFFXjMs0_rleQHs5veuNXnrjAa3IOSHW3iLtZqN9ceVNWyt4KQthPYyEVdHdCBMvqhayLpilFTyVNa59HQmrhETmNeNnmDi0XfClKjUqSDMFERDfJkt5kZsdQrmMuERSMw2BXYDtKLm0QchTmEYJznfJ6bdUk2FFoJFUVMksQfknM_nvknMU-uwrJL52L4ryOZnaUZKq1GItqW-NQDJ8rSUmz4VJlQVoBoNUSvPHXEk97jwGGH7t_feHY7ISXzaTu-uH232yyrAdsKt_PCBLo3JsDgGjjLpHTg2_AB1e4Xw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanically+Strong+Active%E2%80%90Site%E2%80%90Enriched+Polymer+Composite+Solid+Electrolytes+toward+Superior+Room%E2%80%90Temperature+Performance+in+Lithium+Batteries&rft.jtitle=Advanced+Physics+Research&rft.au=Qi%2C+Jiaxiao&rft.au=Wang%2C+Yongjing&rft.au=Tang%2C+Haixiong&rft.au=Zhao%2C+Jiayu&rft.date=2025-05-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=4&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202400166&rft.externalDBID=10.1002%252Fapxr.202400166&rft.externalDocID=APXR12306 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |