Mechanically Strong Active‐Site‐Enriched Polymer Composite Solid Electrolytes toward Superior Room‐Temperature Performance in Lithium Batteries

Solid‐state electrolytes (SSEs) are promising for lithium batteries with higher safety, cycling stability, and energy density. Among the various SSEs, solid polymer electrolytes (SPEs) are a highly preferred choice due to their high thermal stability, thin design, and good formability. However, poly...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Physics Research Vol. 4; no. 5
Main Authors Qi, Jiaxiao, Wang, Yongjing, Tang, Haixiong, Zhao, Jiayu, Hong, Yu, Li, Qiong, Jiang, Ming, Dong, Lijie
Format Journal Article
LanguageEnglish
Published Wiley-VCH 01.05.2025
Subjects
Online AccessGet full text
ISSN2751-1200
2751-1200
DOI10.1002/apxr.202400166

Cover

Loading…
Abstract Solid‐state electrolytes (SSEs) are promising for lithium batteries with higher safety, cycling stability, and energy density. Among the various SSEs, solid polymer electrolytes (SPEs) are a highly preferred choice due to their high thermal stability, thin design, and good formability. However, polymer electrolytes have low ionic conductivity, for example, polyethylene oxide (PEO), one of the most dominant polyelectrolyte materials, has a low ionic conductivity at room temperature due to its high crystallinity. Theoretically, increasing the ionic active sites by decreasing its crystallinity is an effective strategy, but this may lead to its inability to form films or poor mechanical strength. In this work, the crystallinity of PEO is reduced by introducing succinonitrile (SN), and solution blow‐spun polyacrylonitrile (PAN) fiber film is employed as the skeleton of the SPE to provide good mechanical strength. PEO‐LiTFSI‐SN/PAN SPEs have a tensile strength of at least 4.5 MPa. To provide more Li+ active sites, PEO‐LiTFSI‐SN/MXene@PAN composite SPEs are fabricated by doping the PAN fibers with MXene rich in functional groups. The specific capacity of the LFP|PEO‐LiTFSI‐SN/MXene@PAN|Li button cell reaches 134.8 mAh g−1 in the first cycle, and the capacity retention rate of 100 cycles is 75.8% at 0.5 C at room temperature. Blow‐spun MXene doped polyacrylonitrile (PAN) fiber films provide good mechanical strength and more Li+ active sites for low‐crystallinity solid polymer electrolytes, achieving a specific capacity of 134.8 mAh g−1 for the LFP.
AbstractList Solid‐state electrolytes (SSEs) are promising for lithium batteries with higher safety, cycling stability, and energy density. Among the various SSEs, solid polymer electrolytes (SPEs) are a highly preferred choice due to their high thermal stability, thin design, and good formability. However, polymer electrolytes have low ionic conductivity, for example, polyethylene oxide (PEO), one of the most dominant polyelectrolyte materials, has a low ionic conductivity at room temperature due to its high crystallinity. Theoretically, increasing the ionic active sites by decreasing its crystallinity is an effective strategy, but this may lead to its inability to form films or poor mechanical strength. In this work, the crystallinity of PEO is reduced by introducing succinonitrile (SN), and solution blow‐spun polyacrylonitrile (PAN) fiber film is employed as the skeleton of the SPE to provide good mechanical strength. PEO‐LiTFSI‐SN/PAN SPEs have a tensile strength of at least 4.5 MPa. To provide more Li+ active sites, PEO‐LiTFSI‐SN/MXene@PAN composite SPEs are fabricated by doping the PAN fibers with MXene rich in functional groups. The specific capacity of the LFP|PEO‐LiTFSI‐SN/MXene@PAN|Li button cell reaches 134.8 mAh g−1 in the first cycle, and the capacity retention rate of 100 cycles is 75.8% at 0.5 C at room temperature. Blow‐spun MXene doped polyacrylonitrile (PAN) fiber films provide good mechanical strength and more Li+ active sites for low‐crystallinity solid polymer electrolytes, achieving a specific capacity of 134.8 mAh g−1 for the LFP.
Abstract Solid‐state electrolytes (SSEs) are promising for lithium batteries with higher safety, cycling stability, and energy density. Among the various SSEs, solid polymer electrolytes (SPEs) are a highly preferred choice due to their high thermal stability, thin design, and good formability. However, polymer electrolytes have low ionic conductivity, for example, polyethylene oxide (PEO), one of the most dominant polyelectrolyte materials, has a low ionic conductivity at room temperature due to its high crystallinity. Theoretically, increasing the ionic active sites by decreasing its crystallinity is an effective strategy, but this may lead to its inability to form films or poor mechanical strength. In this work, the crystallinity of PEO is reduced by introducing succinonitrile (SN), and solution blow‐spun polyacrylonitrile (PAN) fiber film is employed as the skeleton of the SPE to provide good mechanical strength. PEO‐LiTFSI‐SN/PAN SPEs have a tensile strength of at least 4.5 MPa. To provide more Li+ active sites, PEO‐LiTFSI‐SN/MXene@PAN composite SPEs are fabricated by doping the PAN fibers with MXene rich in functional groups. The specific capacity of the LFP|PEO‐LiTFSI‐SN/MXene@PAN|Li button cell reaches 134.8 mAh g−1 in the first cycle, and the capacity retention rate of 100 cycles is 75.8% at 0.5 C at room temperature.
Solid‐state electrolytes (SSEs) are promising for lithium batteries with higher safety, cycling stability, and energy density. Among the various SSEs, solid polymer electrolytes (SPEs) are a highly preferred choice due to their high thermal stability, thin design, and good formability. However, polymer electrolytes have low ionic conductivity, for example, polyethylene oxide (PEO), one of the most dominant polyelectrolyte materials, has a low ionic conductivity at room temperature due to its high crystallinity. Theoretically, increasing the ionic active sites by decreasing its crystallinity is an effective strategy, but this may lead to its inability to form films or poor mechanical strength. In this work, the crystallinity of PEO is reduced by introducing succinonitrile (SN), and solution blow‐spun polyacrylonitrile (PAN) fiber film is employed as the skeleton of the SPE to provide good mechanical strength. PEO‐LiTFSI‐SN/PAN SPEs have a tensile strength of at least 4.5 MPa. To provide more Li + active sites, PEO‐LiTFSI‐SN/MXene@PAN composite SPEs are fabricated by doping the PAN fibers with MXene rich in functional groups. The specific capacity of the LFP|PEO‐LiTFSI‐SN/MXene@PAN|Li button cell reaches 134.8 mAh g −1 in the first cycle, and the capacity retention rate of 100 cycles is 75.8% at 0.5 C at room temperature.
Author Zhao, Jiayu
Dong, Lijie
Wang, Yongjing
Qi, Jiaxiao
Tang, Haixiong
Hong, Yu
Jiang, Ming
Li, Qiong
Author_xml – sequence: 1
  givenname: Jiaxiao
  surname: Qi
  fullname: Qi, Jiaxiao
  organization: Wuhan Textile University
– sequence: 2
  givenname: Yongjing
  surname: Wang
  fullname: Wang, Yongjing
  organization: Wuhan Textile University
– sequence: 3
  givenname: Haixiong
  surname: Tang
  fullname: Tang, Haixiong
  organization: Blu Science Advanced Material Co., Ltd
– sequence: 4
  givenname: Jiayu
  surname: Zhao
  fullname: Zhao, Jiayu
  organization: Wuhan Textile University
– sequence: 5
  givenname: Yu
  surname: Hong
  fullname: Hong, Yu
  organization: China Petroleum Engineering & Construction Co Ltd
– sequence: 6
  givenname: Qiong
  surname: Li
  fullname: Li, Qiong
  organization: Wuhan Textile University
– sequence: 7
  givenname: Ming
  orcidid: 0000-0003-0415-6021
  surname: Jiang
  fullname: Jiang, Ming
  email: mjiang@wtu.edu.cn
  organization: Wuhan Textile University
– sequence: 8
  givenname: Lijie
  surname: Dong
  fullname: Dong, Lijie
  email: dong@whut.edu.cn
  organization: Wuhan University of Science and Technology
BookMark eNqFkb1u2zAURokiBZomWTPzBexeUiQljq7htgFc1Ig9ZCNo6ipmQIkGRTfR1kfo0hfMk0Sui6Bbpvt7zvJ9JGdd7JCQawZTBsA_2f1TmnLgAoAp9Y6c81KyCeMAZ__1H8hV3z_ACFSaFYKdkz_f0e1s550NYaDrnGJ3T2cu-5_4_Ov32udjWXTJux3WdBXD0GKi89juYz8e6ToGX9NFQDeiYcjY0xwfbarp-rDH5GOitzG2o2SD7biw-ZCQrjA1MbW2c0h9R5c-7_yhpZ9tziOD_SV539jQ49W_ekE2Xxab-bfJ8sfXm_lsOXG8VGqCqlbKbitQSmpZ8m2pRSMKp2RhwVai0UKJcUCoK1nJZusQtUPNXK25guKC3Jy0dbQPZp98a9NgovXm7yKme2NT9i6gcdo1DDRAg0JURWmtAsZLgU43kkk1uqYnl0ux7xM2rz4G5hiROUZkXiMaAXkCHn3A4Y1vM1vd3TJegCpeAPkEnEk
Cites_doi 10.1039/D4CP00735B
10.1021/acs.est.0c07030
10.1002/adfm.202000455
10.1002/eem2.12450
10.1002/smll.202103617
10.1186/s11671-020-03355-4
10.1002/cssc.201500284
10.1002/smll.202205315
10.1002/advs.202003675
10.1016/j.proeng.2017.03.211
10.1021/acsomega.2c01926
10.1002/adma.202105329
10.1002/anie.202107648
10.1002/adfm.201801511
10.1002/adma.201807789
10.1149/1.3428515
10.1016/j.jpowsour.2020.228708
10.1002/adma.202100353
10.1002/adma.202001259
10.1002/advs.202201718
10.1007/s40843-024-2857-8
10.1021/ma3008509
10.1002/adfm.202111613
10.1016/j.cclet.2021.03.032
10.1016/j.ensm.2020.07.018
10.1002/er.8708
10.1002/aenm.202103720
10.1002/aenm.202400740
10.1002/smll.202103679
10.1002/adfm.202007172
10.1016/j.ssi.2011.01.010
10.1002/cjoc.202200588
10.1016/j.pnsc.2008.07.014
10.1002/pi.4980070505
10.1016/S0010-8545(01)00416-7
10.1002/adfm.201806819
10.1002/aenm.202003836
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
Copyright_xml – notice: 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/apxr.202400166
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2751-1200
EndPage n/a
ExternalDocumentID oai_doaj_org_article_c9cf10900fe44837aa601274ec9f5156
10_1002_apxr_202400166
APXR12306
Genre researchArticle
GrantInformation_xml – fundername: Key R&D Program of Hubei Province
  funderid: 2023BAB104
– fundername: National Natural Science Foundation of China
  funderid: 51503158
GroupedDBID 0R~
24P
88I
ABJCF
ABUWG
ACCMX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
KB.
M2P
M~E
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
AAFWJ
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
ARCSS
PQGLB
PUEGO
WIN
ID FETCH-LOGICAL-c2766-e6d66ab806659572b794f43c653a0a84f9464653e0d8585fbcee9ce91cd92603
IEDL.DBID 24P
ISSN 2751-1200
IngestDate Wed Aug 27 01:30:13 EDT 2025
Thu Jul 03 05:33:26 EDT 2025
Thu May 08 09:30:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2766-e6d66ab806659572b794f43c653a0a84f9464653e0d8585fbcee9ce91cd92603
ORCID 0000-0003-0415-6021
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400166
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_c9cf10900fe44837aa601274ec9f5156
crossref_primary_10_1002_apxr_202400166
wiley_primary_10_1002_apxr_202400166_APXR12306
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Advanced Physics Research
PublicationYear 2025
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 2021; 8
2023; 10
2018; 29
2018; 28
2010; 13
2019; 31
2023; 6
2022; 46
2020; 15
2020; 32
2024; 14
2015; 8
2023; 41
2021; 32
2021; 55
2021; 33
2021; 11
2020; 30
2021; 18
2022; 7
2021; 17
2020; 479
2022; 12
2002; 226
2017; 186
2024; 67
2022; 32
2009; 19
2021; 60
1975; 7
2024; 26
2012; 45
2022; 19
2011; 186
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 479
  year: 2020
  publication-title: J. Power Sources
– volume: 19
  start-page: 291
  year: 2009
  publication-title: Prog. Nat. Sci.
– volume: 32
  start-page: 425
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 186
  start-page: 1
  year: 2011
  publication-title: Solid State Ionics
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 5189
  year: 2021
  publication-title: Environ. Sci. Technol.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 67
  start-page: 1412
  year: 2024
  publication-title: Sci. China Mater.
– volume: 41
  start-page: 1119
  year: 2023
  publication-title: Chin. J. Chem.
– volume: 8
  start-page: 2154
  year: 2015
  publication-title: ChemSusChem
– volume: 17
  year: 2021
  publication-title: Small
– volume: 15
  start-page: 122
  year: 2020
  publication-title: Nanoscale Res. Lett.
– volume: 7
  start-page: 319
  year: 1975
  publication-title: Br. Polym. J.
– volume: 18
  year: 2021
  publication-title: Small
– volume: 6
  year: 2023
  publication-title: Energy Environ. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 46
  year: 2022
  publication-title: Int. J. Energy Res.
– volume: 13
  start-page: A95
  year: 2010
  publication-title: Electrochem. Solid‐State Lett.
– volume: 7
  year: 2022
  publication-title: ACS Omega
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 32
  start-page: 2659
  year: 2021
  publication-title: Chin. Chem. Lett.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 14
  year: 2024
  publication-title: Adv. Energy Mater.
– volume: 19
  year: 2022
  publication-title: Small
– volume: 45
  start-page: 6068
  year: 2012
  publication-title: Macromolecules
– volume: 226
  start-page: 137
  year: 2002
  publication-title: Coord. Chem. Rev.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 186
  start-page: 349
  year: 2017
  publication-title: Procedia Eng.
– volume: 26
  year: 2024
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_8_30_1
  doi: 10.1039/D4CP00735B
– ident: e_1_2_8_1_1
  doi: 10.1021/acs.est.0c07030
– ident: e_1_2_8_21_1
  doi: 10.1002/adfm.202000455
– ident: e_1_2_8_4_1
  doi: 10.1002/eem2.12450
– ident: e_1_2_8_12_1
  doi: 10.1002/smll.202103617
– ident: e_1_2_8_25_1
  doi: 10.1186/s11671-020-03355-4
– ident: e_1_2_8_7_1
  doi: 10.1002/cssc.201500284
– ident: e_1_2_8_6_1
  doi: 10.1002/smll.202205315
– ident: e_1_2_8_13_1
  doi: 10.1002/advs.202003675
– ident: e_1_2_8_9_1
  doi: 10.1016/j.proeng.2017.03.211
– ident: e_1_2_8_23_1
  doi: 10.1021/acsomega.2c01926
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.202105329
– ident: e_1_2_8_16_1
  doi: 10.1002/anie.202107648
– ident: e_1_2_8_35_1
  doi: 10.1002/adfm.201801511
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.201807789
– ident: e_1_2_8_37_1
  doi: 10.1149/1.3428515
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jpowsour.2020.228708
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.202100353
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.202001259
– ident: e_1_2_8_19_1
  doi: 10.1002/advs.202201718
– ident: e_1_2_8_31_1
  doi: 10.1007/s40843-024-2857-8
– ident: e_1_2_8_29_1
  doi: 10.1021/ma3008509
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.202111613
– ident: e_1_2_8_15_1
  doi: 10.1016/j.cclet.2021.03.032
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ensm.2020.07.018
– ident: e_1_2_8_2_1
  doi: 10.1002/er.8708
– ident: e_1_2_8_14_1
  doi: 10.1002/aenm.202103720
– ident: e_1_2_8_20_1
  doi: 10.1002/aenm.202400740
– ident: e_1_2_8_10_1
  doi: 10.1002/smll.202103679
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.202007172
– ident: e_1_2_8_28_1
  doi: 10.1016/j.ssi.2011.01.010
– ident: e_1_2_8_11_1
  doi: 10.1002/cjoc.202200588
– ident: e_1_2_8_3_1
  doi: 10.1016/j.pnsc.2008.07.014
– ident: e_1_2_8_26_1
  doi: 10.1002/pi.4980070505
– ident: e_1_2_8_32_1
  doi: 10.1016/S0010-8545(01)00416-7
– ident: e_1_2_8_34_1
  doi: 10.1002/adfm.201806819
– ident: e_1_2_8_24_1
  doi: 10.1002/aenm.202003836
SSID ssj0002891341
Score 2.3104024
Snippet Solid‐state electrolytes (SSEs) are promising for lithium batteries with higher safety, cycling stability, and energy density. Among the various SSEs, solid...
Abstract Solid‐state electrolytes (SSEs) are promising for lithium batteries with higher safety, cycling stability, and energy density. Among the various SSEs,...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms blow‐spun nanofiber film
mechanical strength
MXene
polyethylene oxide
solid polymer electrolytes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NSsNAEIAX6cmLKCrWP_YgeIpNsuk2e6zSUsRKaSr0FjbJRiNtUkIK9uYjePEFfRJndvvnqRdPgRAyYSabmcnMfkPIjfB1opFYvquU5SWcW9IXqeWLxG5JX4LTwopu_5n3XrzHcXO8NeoLe8IMHtgorhGLOMXmQTtVHtLPpeRYLfVULFLwxRq2DT5vK5l6N-UzJJWtKI2225CzD8R_Ysuko5GIGy-kYf1_g1PtXbqH5GAZFtK2eZwjsqfyY_LdV7gvF9U4WdAAf1q_0rb-QP18fgUQLMKhk5fYzZnQQTFZTFVJcYVjJ5aiQTHJEtoxg24mCwgqaaW7ZGkwR8BxUdIhxM1wk5GC6NnQlelgs5WAZjl9yqq3bD6lBsQJefUJGXU7o4eetRyjYMVuC3SvOFhARj4WWUSz5UawBFOPxbzJpC19LxUeR8qashMsEqYR-E0RK-HEiYBsh52SWl7k6oxQxn3GEWAmIYlzcPQk46nTYjGIER5jdXK70mo4M7CM0GCR3RD1H671Xyf3qPT1VQi51ifA9OHS9OEu09fJnTbZDllhezAeOphqnf-H1Auy7-IMYN30eElqVTlXVxCYVNG1fgd_ARTz4gA
  priority: 102
  providerName: Directory of Open Access Journals
Title Mechanically Strong Active‐Site‐Enriched Polymer Composite Solid Electrolytes toward Superior Room‐Temperature Performance in Lithium Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400166
https://doaj.org/article/c9cf10900fe44837aa601274ec9f5156
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF60XryIouJv2YPgKTTZ3W6yxyotRayUtkJvYZNsaqEmJbZgL-IjePEFfRJnNm21J_GSQEg2MDuz-83OzDeEXKnAOhqJEzBjHJFI6ehApU6gEtfXgYZNCyO6nQfZfhR3w_rwVxV_yQ-xPnBDy7DrNRq4jl5qP6ShevqKfJ6YA-lJuU12sL4WNZ2J7vqUhWEUzravZH7dczzQiRVzo8tqm0Ns7EyWwH8TsNodp7VP9pZQkTbKuT0gWyY7JJ8dg7W6KNrJgvbxIHtEG3bR-nr_6AOAhFszKzDDM6HdfLJ4NgVFq8fsLEP7-WSc0GbZ_GayAKBJZzZzlvbnSHqcF7QHWBoGGRhA1CXjMu3-lBfQcUbvx7On8fyZluSc4GsfkUGrObhtO8vWCk7MfJgPI2FWdBRg4EXVfRaBWaaCx7LOtasDkSohkXnNuAkGDtMI9lIVG-XFiQIPiB-TSpZn5oRQLgMukdRMg2PnYTtKLlPP5zH8RgnOT8n1SqrhtCTQCEuqZBai_MO1_E_JDQp9_RYSX9sHeTEKl3YUxipOMZfUTY1AMnytJQbPhYlVCtAMBimV5o9_hY3usOeh-3X23w_OyS7DHsA26fGCVGbF3FwCMJlFVat7VevWw7Xz1vwGw5HhBA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58HPQiiopv9yB4Ck12N5vssUqlaivFVugtbJNNLbRJCS3Ymz_Bi3_QX-LMpg96Ek-BkOzC7M7ON4_9hpAbFVpHI3FCZowjEikdHarUCVXiBjrUYLQwo9t8kfU38dT1F9WEeBem5IdYBtxQM-x5jQqOAenKijVUjz-Q0BOLID0pN8m2kCzA7g1MtJZhFoZpONu_kgW-53iwKRbUjS6rrA-xZposg_86YrUm52Gf7M2xIq2Wi3tANkx2SL6bBi_romyHM9rGSHafVu2p9fP51QYECY9aVmCJZ0Jb-XA2MgVFtcfyLEPb-XCQ0FrZ_WY4A6RJJ7Z0lranyHqcF_QVwDQM0jEAqUvKZdpa3S-gg4w2BpP3wXRES3ZOcLaPSOeh1rmvO_PeCk7MAlgQI2FZdC_EzIvyA9YDvUwFj6XPtatDkSohkXrNuAlmDtMeGFMVG-XFiQIXiB-TrSzPzAmhXIZcIquZBs_Ow36UXKZewGOYRgnOT8ntQqrRuGTQiEquZBah_KOl_E_JHQp9-RUyX9sXedGP5ooUxSpOsZjUTY1ANnytJWbPhYlVCtgMBil3zR9zRdVW99VD_-vsvz9ck516p9mIGo8vz-dkl2FDYFsBeUG2JsXUXAJKmfSu7D78BVOo4ko
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-QLyIouLbHARPi7tJmt0cq7b4ZrEVelvS3UQL7W5ZWrA3f4IX_6C_xJlsrfYknhaW3QQmM5lvMpNvCDlRkQs0Mi9ixngik9LTkbJepDI_1JEGp4UZ3fsHefUkbjq1zq9b_BU_xOzADS3D7ddo4MPMnv2QhurhK_J5Yg1kIOUiWcaMH-o4E_HslIVhFs61r2RhLfAC0Ilv5kafnc0PMeeZHIH_PGB1Hqe5TtamUJHWq7XdIAsm3yQf9wbv6qJo-xPawoPsZ1p3m9bn23sLACQ8GnmJFZ4ZjYv-ZGBKilaP1VmGtop-L6ONqvlNfwJAk45c5SxtjZH0uCjpI2BpGKRtAFFXjMs0_rleQHs5veuNXnrjAa3IOSHW3iLtZqN9ceVNWyt4KQthPYyEVdHdCBMvqhayLpilFTyVNa59HQmrhETmNeNnmDi0XfClKjUqSDMFERDfJkt5kZsdQrmMuERSMw2BXYDtKLm0QchTmEYJznfJ6bdUk2FFoJFUVMksQfknM_nvknMU-uwrJL52L4ryOZnaUZKq1GItqW-NQDJ8rSUmz4VJlQVoBoNUSvPHXEk97jwGGH7t_feHY7ISXzaTu-uH232yyrAdsKt_PCBLo3JsDgGjjLpHTg2_AB1e4Xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanically+Strong+Active%E2%80%90Site%E2%80%90Enriched+Polymer+Composite+Solid+Electrolytes+toward+Superior+Room%E2%80%90Temperature+Performance+in+Lithium+Batteries&rft.jtitle=Advanced+Physics+Research&rft.au=Qi%2C+Jiaxiao&rft.au=Wang%2C+Yongjing&rft.au=Tang%2C+Haixiong&rft.au=Zhao%2C+Jiayu&rft.date=2025-05-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=4&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202400166&rft.externalDBID=10.1002%252Fapxr.202400166&rft.externalDocID=APXR12306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon