Sloppiness Consistency in Biomechanical Models and Its Inspired Dual‐Space Model Optimization
Advanced medical solutions rely on dependable biomechanical modeling. An enduring challenge in the constitutive modeling of soft tissue is delicately balancing model complexity, goodness‐of‐fit, and parameter identifiability, all of which impact the reliability of material behavior predictions under...
Saved in:
Published in | Advanced Physics Research Vol. 4; no. 6 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2751-1200 2751-1200 |
DOI | 10.1002/apxr.202500002 |
Cover
Loading…
Abstract | Advanced medical solutions rely on dependable biomechanical modeling. An enduring challenge in the constitutive modeling of soft tissue is delicately balancing model complexity, goodness‐of‐fit, and parameter identifiability, all of which impact the reliability of material behavior predictions under mechanical loading. It is established that biomechanical constitutive models, whether physically motivated or neural network derived, are typically sloppy from the information theory perspective. By analyzing the sensitivity matrix associated with posterior distributions of the constitutive parameters, a consistent pattern revealing the regularity in parameter combinations across experimental protocols characterizing tissue mechanical behavior and prior beliefs with varying levels of informativeness is discovered. The discovered pattern inspires to construct a sloppiness‐based parameter hyperspace and proposes a model reduction program that performs model optimization by exploring four sub‐hyperspaces. The proposed program offers a guide for effectively simplifying models while tightly ensuring parameter identifiability and prediction accuracy. Clear improvements are showcased to the brain tissue constitutive models discovered by neural networks and a physically motivated constitutive model of the human patellar tendon.
This study addresses the challenge of balancing complexity, accuracy, and parameter identifiability in soft tissue constitutive modeling. By leveraging information geometry and sensitivity analysis, the sloppiness inherent in biomechanical models is revealed, and a model reduction framework is proposed. This approach optimizes parameter identifiability and prediction accuracy, demonstrated through improved brain tissue and patellar tendon models. |
---|---|
AbstractList | Abstract Advanced medical solutions rely on dependable biomechanical modeling. An enduring challenge in the constitutive modeling of soft tissue is delicately balancing model complexity, goodness‐of‐fit, and parameter identifiability, all of which impact the reliability of material behavior predictions under mechanical loading. It is established that biomechanical constitutive models, whether physically motivated or neural network derived, are typically sloppy from the information theory perspective. By analyzing the sensitivity matrix associated with posterior distributions of the constitutive parameters, a consistent pattern revealing the regularity in parameter combinations across experimental protocols characterizing tissue mechanical behavior and prior beliefs with varying levels of informativeness is discovered. The discovered pattern inspires to construct a sloppiness‐based parameter hyperspace and proposes a model reduction program that performs model optimization by exploring four sub‐hyperspaces. The proposed program offers a guide for effectively simplifying models while tightly ensuring parameter identifiability and prediction accuracy. Clear improvements are showcased to the brain tissue constitutive models discovered by neural networks and a physically motivated constitutive model of the human patellar tendon. Advanced medical solutions rely on dependable biomechanical modeling. An enduring challenge in the constitutive modeling of soft tissue is delicately balancing model complexity, goodness‐of‐fit, and parameter identifiability, all of which impact the reliability of material behavior predictions under mechanical loading. It is established that biomechanical constitutive models, whether physically motivated or neural network derived, are typically sloppy from the information theory perspective. By analyzing the sensitivity matrix associated with posterior distributions of the constitutive parameters, a consistent pattern revealing the regularity in parameter combinations across experimental protocols characterizing tissue mechanical behavior and prior beliefs with varying levels of informativeness is discovered. The discovered pattern inspires to construct a sloppiness‐based parameter hyperspace and proposes a model reduction program that performs model optimization by exploring four sub‐hyperspaces. The proposed program offers a guide for effectively simplifying models while tightly ensuring parameter identifiability and prediction accuracy. Clear improvements are showcased to the brain tissue constitutive models discovered by neural networks and a physically motivated constitutive model of the human patellar tendon. Advanced medical solutions rely on dependable biomechanical modeling. An enduring challenge in the constitutive modeling of soft tissue is delicately balancing model complexity, goodness‐of‐fit, and parameter identifiability, all of which impact the reliability of material behavior predictions under mechanical loading. It is established that biomechanical constitutive models, whether physically motivated or neural network derived, are typically sloppy from the information theory perspective. By analyzing the sensitivity matrix associated with posterior distributions of the constitutive parameters, a consistent pattern revealing the regularity in parameter combinations across experimental protocols characterizing tissue mechanical behavior and prior beliefs with varying levels of informativeness is discovered. The discovered pattern inspires to construct a sloppiness‐based parameter hyperspace and proposes a model reduction program that performs model optimization by exploring four sub‐hyperspaces. The proposed program offers a guide for effectively simplifying models while tightly ensuring parameter identifiability and prediction accuracy. Clear improvements are showcased to the brain tissue constitutive models discovered by neural networks and a physically motivated constitutive model of the human patellar tendon. This study addresses the challenge of balancing complexity, accuracy, and parameter identifiability in soft tissue constitutive modeling. By leveraging information geometry and sensitivity analysis, the sloppiness inherent in biomechanical models is revealed, and a model reduction framework is proposed. This approach optimizes parameter identifiability and prediction accuracy, demonstrated through improved brain tissue and patellar tendon models. |
Author | Tang, Jiabao Mao, Yiqi Liu, Wenyang Hou, Shujuan |
Author_xml | – sequence: 1 givenname: Jiabao surname: Tang fullname: Tang, Jiabao organization: Hunan University – sequence: 2 givenname: Wenyang orcidid: 0000-0001-8373-0890 surname: Liu fullname: Liu, Wenyang email: liuwenyang@hnu.edu.cn organization: Hunan University – sequence: 3 givenname: Yiqi surname: Mao fullname: Mao, Yiqi organization: Hunan University – sequence: 4 givenname: Shujuan surname: Hou fullname: Hou, Shujuan email: shujuanhou@hnu.edu.cn organization: Hunan University |
BookMark | eNqFkE1OwzAQRi1UJErplrUvkGI7cWwvS_mLVFREQWJnuY4DrlI7soOgrDgCZ-QkpAQhdsxmRqM330jvEAycdwaAY4wmGCFyoprXMCGIUNQV2QNDwihOMEFo8Gc-AOMY1zuCC5xmeAjksvZNY52JEc68iza2xukttA6eWr8x-kk5q1UNr31p6giVK2HRRli42NhgSnj2rOrP949lo7TpIbhoWruxb6q13h2B_UrV0Yx_-gjcX5zfza6S-eKymE3niSYspwnXpdBcML4SWZkRzRDOqirLMF1pVRotUkoJqlgqcsGQZjSjJCcdYLBhTPB0BIo-t_RqLZtgNypspVdWfi98eJQqtFbXRvKc5Hn3gnVCMlJRgRTmpiJcKbMShHZZkz5LBx9jMNVvHkZyZ1vubMtf290B7Q9ebG22_9ByevNwi0ma0vQLcVmEuQ |
Cites_doi | 10.1073/pnas.2213913120 10.1016/j.mbs.2016.10.009 10.1093/oso/9780198865247.001.0001 10.1098/rsta.2015.0202 10.1126/science.1238723 10.1103/PhysRevE.68.021904 10.1016/j.actbio.2016.10.036 10.1016/j.jmps.2023.105404 10.1016/j.ijengsci.2023.103955 10.1016/j.envsoft.2020.104717 10.1016/j.envsoft.2022.105578 10.1126/sciadv.abm5952 10.1371/journal.pcbi.1010844 10.1016/j.cma.2023.116534 10.1016/j.actbio.2023.01.055 10.1063/5.0084988 10.1088/1361-6633/aca6f8 10.1016/j.actbio.2019.08.017 10.1038/s41593-022-01043-3 10.1007/s10237-023-01761-y 10.1063/1.4923066 10.1016/j.jmps.2018.08.009 10.1073/pnas.1715306115 10.1007/s10409-024-24430-x 10.1115/1.4050978 10.1038/s43586-020-00001-2 10.1371/journal.pcbi.0030189 10.1016/0167-9473(93)90193-W 10.1016/j.engfracmech.2024.110476 10.1016/S0022-3697(99)00252-8 10.1103/PhysRevLett.126.200601 10.1016/j.jmps.2019.103777 10.1023/A:1008929526011 10.1016/S1369-7021(05)71123-8 10.1098/rsif.2023.0607 10.1103/PhysRevLett.97.150601 10.1109/TPAMI.1984.4767596 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/apxr.202500002 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_862662c7720042f590a18ef28aaeb925 10_1002_apxr_202500002 APXR12335 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 12272132; 11922206; 12172125 |
GroupedDBID | 0R~ 24P 88I AAFWJ ABJCF ABUWG ACCMX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P M~E PCBAR PDBOC PHGZM PHGZT PIMPY AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION ARCSS PQGLB PUEGO WIN |
ID | FETCH-LOGICAL-c2765-8cd9c8978b94d42c7014ff4415bcadec935520f7396970c7545262f44e1e77983 |
IEDL.DBID | 24P |
ISSN | 2751-1200 |
IngestDate | Wed Aug 27 01:15:08 EDT 2025 Thu Jul 03 08:44:06 EDT 2025 Fri Jun 13 09:31:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2765-8cd9c8978b94d42c7014ff4415bcadec935520f7396970c7545262f44e1e77983 |
ORCID | 0000-0001-8373-0890 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202500002 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_862662c7720042f590a18ef28aaeb925 crossref_primary_10_1002_apxr_202500002 wiley_primary_10_1002_apxr_202500002_APXR12335 |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2025 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 2022; 156 2018; 121 2023; 160 2006; 97 2021; 86 2023; 180 2017; 48 2023; 120 2019; 99 2021; 126 2023; 19 2015; 143 2013; 342 2022; 25 2021; 1 2021; 73 2016; 282 1993; 15 2023; 193 2023; 23 2020; 130 2021 2000; 10 2022; 8 2005; 8 2024; 418 2018; 115 1984; 6 2000; 61 2003; 68 2023; 159 2024; 41 2016; 374 2024; 21 2024; 310 2020; 135 2014 2007; 3 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 99 start-page: 1 year: 2019 publication-title: Acta Biomater. – volume: 41 year: 2024 publication-title: Acta Mech. Sin. – volume: 156 year: 2022 publication-title: J. Chem. Phys. – volume: 61 start-page: 1 year: 2000 publication-title: J. Elasticity Phys. Sci. Solids – volume: 86 year: 2021 publication-title: Rep. Prog. Phys. – volume: 1 start-page: 1 year: 2021 publication-title: Nat. Rev. Methods Primers – volume: 68 year: 2003 publication-title: Phys. Rev. E – volume: 193 year: 2023 publication-title: Intl. J. Eng. Sci. – volume: 310 year: 2024 publication-title: Eng. Fract. Mech. – volume: 374 year: 2016 publication-title: Philos. Trans. R. Soc., A – volume: 126 year: 2021 publication-title: Phys. Rev. Lett. – volume: 23 start-page: 103 year: 2023 publication-title: Biomech. Model. Mechanobiol. – volume: 180 year: 2023 publication-title: J. Mech. Phys. Solids – volume: 8 year: 2022 publication-title: Sci. Adv. – year: 2021 – volume: 342 start-page: 604 year: 2013 publication-title: Science – volume: 135 year: 2020 publication-title: J. Mech. Phys. Solids – volume: 3 year: 2007 publication-title: PLoS Comput. Biol. – volume: 143 year: 2015 publication-title: J. Chem. Phys. – volume: 10 start-page: 325 year: 2000 publication-title: Statistics Comp. – volume: 282 start-page: 147 year: 2016 publication-title: Math. Biosci. – volume: 418 year: 2024 publication-title: Comp. Methods Appl. Mech. Eng. – year: 2014 – volume: 48 start-page: 319 year: 2017 publication-title: Acta Biomater. – volume: 21 year: 2024 publication-title: J. R. Soc., Interface – volume: 15 start-page: 211 year: 1993 publication-title: Comput. Statistics Data Anal. – volume: 120 year: 2023 publication-title: Proc. Natl. Acad. Sci. USA – volume: 73 year: 2021 publication-title: Appl. Mech. Rev. – volume: 130 year: 2020 publication-title: Environ. Model. Software – volume: 159 year: 2023 publication-title: Environ. Model. Software – volume: 97 year: 2006 publication-title: Phys. Rev. Lett. – volume: 115 start-page: 1760 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 160 start-page: 134 year: 2023 publication-title: Acta Biomater. – volume: 25 start-page: 458 year: 2022 publication-title: Nat. Neurosci. – volume: 121 start-page: 463 year: 2018 publication-title: J. Mech. Phys. Solids – volume: 8 start-page: 38 year: 2005 publication-title: Mater. Inform., Mater. Today – volume: 6 start-page: 721 year: 1984 publication-title: IEEE Trans. Pattern Anal. Machine Intell. – volume: 19 year: 2023 publication-title: PLoS Comput. Biol. – ident: e_1_2_9_26_1 doi: 10.1073/pnas.2213913120 – ident: e_1_2_9_15_1 doi: 10.1016/j.mbs.2016.10.009 – ident: e_1_2_9_13_1 doi: 10.1093/oso/9780198865247.001.0001 – ident: e_1_2_9_37_1 doi: 10.1098/rsta.2015.0202 – ident: e_1_2_9_19_1 doi: 10.1126/science.1238723 – ident: e_1_2_9_20_1 doi: 10.1103/PhysRevE.68.021904 – ident: e_1_2_9_5_1 doi: 10.1016/j.actbio.2016.10.036 – ident: e_1_2_9_30_1 doi: 10.1016/j.jmps.2023.105404 – ident: e_1_2_9_8_1 doi: 10.1016/j.ijengsci.2023.103955 – ident: e_1_2_9_25_1 doi: 10.1016/j.envsoft.2020.104717 – ident: e_1_2_9_22_1 doi: 10.1016/j.envsoft.2022.105578 – ident: e_1_2_9_12_1 doi: 10.1126/sciadv.abm5952 – ident: e_1_2_9_21_1 doi: 10.1371/journal.pcbi.1010844 – ident: e_1_2_9_23_1 doi: 10.1016/j.cma.2023.116534 – ident: e_1_2_9_4_1 doi: 10.1016/j.actbio.2023.01.055 – ident: e_1_2_9_32_1 doi: 10.1063/5.0084988 – ident: e_1_2_9_34_1 doi: 10.1088/1361-6633/aca6f8 – ident: e_1_2_9_1_1 doi: 10.1016/j.actbio.2019.08.017 – ident: e_1_2_9_2_1 doi: 10.1038/s41593-022-01043-3 – ident: e_1_2_9_3_1 doi: 10.1007/s10237-023-01761-y – ident: e_1_2_9_18_1 doi: 10.1063/1.4923066 – ident: e_1_2_9_6_1 doi: 10.1016/j.jmps.2018.08.009 – ident: e_1_2_9_28_1 doi: 10.1073/pnas.1715306115 – ident: e_1_2_9_24_1 doi: 10.1007/s10409-024-24430-x – ident: e_1_2_9_29_1 doi: 10.1115/1.4050978 – ident: e_1_2_9_10_1 doi: 10.1038/s43586-020-00001-2 – ident: e_1_2_9_14_1 doi: 10.1371/journal.pcbi.0030189 – ident: e_1_2_9_33_1 – ident: e_1_2_9_16_1 doi: 10.1016/0167-9473(93)90193-W – ident: e_1_2_9_9_1 doi: 10.1016/j.engfracmech.2024.110476 – ident: e_1_2_9_7_1 doi: 10.1016/S0022-3697(99)00252-8 – ident: e_1_2_9_27_1 doi: 10.1103/PhysRevLett.126.200601 – ident: e_1_2_9_31_1 doi: 10.1016/j.jmps.2019.103777 – ident: e_1_2_9_36_1 doi: 10.1023/A:1008929526011 – ident: e_1_2_9_38_1 doi: 10.1016/S1369-7021(05)71123-8 – ident: e_1_2_9_11_1 doi: 10.1098/rsif.2023.0607 – ident: e_1_2_9_17_1 doi: 10.1103/PhysRevLett.97.150601 – ident: e_1_2_9_35_1 doi: 10.1109/TPAMI.1984.4767596 |
SSID | ssj0002891341 |
Score | 2.3000016 |
Snippet | Advanced medical solutions rely on dependable biomechanical modeling. An enduring challenge in the constitutive modeling of soft tissue is delicately balancing... Abstract Advanced medical solutions rely on dependable biomechanical modeling. An enduring challenge in the constitutive modeling of soft tissue is delicately... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
SubjectTerms | biomechanics constitutive models information geometry sensitivity matrix sloppiness |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxdRVKwvchA8rd3NPpI9tmppBR9YC72FbDYBpW6LbUFv_gR_o7_EmWQr9dSLt2UZkuWbJDOzmfmGkLPQRIaXWgS84BoCFHhSRtsg46aMYxtr7qiUbu-y3jC5GaWjlVZfmBPm6YE9cC30uDOmwQnE9WXTPFSRMJYJpUyRM8deCjZvJZh68ddnyFS2ZGkMWUtN35H-k2EDgPofytIKObL-v86psy7dbbJVu4W07T9nh2yYapfIwXiC9AlwGFHXWHOGDu4Hfa5oB6vmsWgXMabY0Gw8o6oqaX8-o_0Kr89NSa8Wavz9-TWAuNh4IXoPR8RrXXu5R4bd66fLXlA3RAg041kaCF3mWkDcV-RJmQAoEN9YixFRgcn0GrnSWWh5nGc5DzV3_cMZCKBCeC7ifdKoJpU5IDTiPFTCpmmR2cSyQmWIsNAwVhnBrmyS8yVAcup5L6RnOGYSoZS_UDZJB_H7lUK-avcCtChrLcp1WmySC4f-mrlk-2H0CLY2Tg__Y9YjsolD-8yvY9KYvy3MCfgY8-LULacfyMHMNA priority: 102 providerName: Directory of Open Access Journals |
Title | Sloppiness Consistency in Biomechanical Models and Its Inspired Dual‐Space Model Optimization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202500002 https://doaj.org/article/862662c7720042f590a18ef28aaeb925 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1PS8MwFMCD6MWLKCrOPyMHwVNZm_5Jetx0YxOmwznYLSRpIsLsxrqBXsSP4Gf0k5iXdtOdxEspJU3LS17yXpL3ewhd-jrQNFPMo5Iq66DYO6GV8RKqszA0oaIOpdS_S7qj6HYcj39F8Zd8iPWCG2iGG69BwYUsGj_QUDF7BZ4nAaI_0CR3IL4W6PkkGqxXWQjswrn0lYTGgRfYPrEiN_qksVnFxszkAP6bBqubcTr7aK8yFXGzbNsDtKXzQ8SHkykgFewAhV2yzQKM3jf8nOMWRNJDIC_IHUOSs0mBRZ7h3qLAvRy21HWGb5Zi8vXxObS-si4L4Xs7bLxU8ZhHaNRpP153vSpJgqcITWKPqSxVzPqCMo2yiChqfR5jwEuScMBeAT-d-IaGaZJSX1GXU5zYAtBINGXhMdrOp7k-QTig1BfMxLFMTGSIFIk1vX2mbF1ZYDW1hq5WAuKzkoXBS-ox4SBKvhZlDbVAfutSwLB2D6bzJ16pBAdfKrE_TEFRiYlTXwRMG8KE0DIlcQ2V7f_Ht3hzMH6w828Yn_73hTO0C0_Lk1_naHsxX-oLa2MsZN11o7rz0O21_97-BqjRy4U |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIAtVAZYEAgQ5ekBiSlq4iR2MrZA1UJbKtpK3SzHsRFSSas-JNj4CfxGfgk-Jw3qhNii6PLQ2Wff2b7vELp2ladYKiOHJUyaAMVcCSW1Q5lKfV_7klmUUrdHW6PgYRyuTxNCLkzOhygX3MAy7HgNBg4L0rVfaqiYvQPQkwDSH3CS2wElDGyTBP1ymYXANpytX0lY6Dme6RRrdKNLapuv2JiaLMF_02O1U05zH-0VviKu5417gLZUdoj4YDIFpoIZobCttrkAr_cDv2a4Aan0kMkLisdQ5WyywCJLcXu5wO0M9tRViu9WYvL9-TUwwbLKhfCTGTfeioTMIzRq3g9vW05RJcGRhNHQiWQay8gEg0kcpAGRzAQ9WkOYlMAJewkAdeJq5sc0Zq5ktqg4MQLQSiyO_GNUyaaZOkHYY8wVkQ7DhOpAk0RQ43u7kTTvSj1jqlV0s1YQn-UwDJ5jjwkHVfJSlVXUAP2VUgCxtjem8xde2ASHYIqaH2ZgqUSHsSu8SGkSCaGSmIRVlHeAP77F6_3xs5mA_fD0vw9coZ3WsNvhnXbv8QztgkR-DOwcVZbzlbowDscyubRd6gcfAczL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEICDtCBeRFGxPnMQPC3dzT6SPbbW0vqoxbpSvIRsNhGhbksfoDd_gr_RX2Jmd7vak3hbluyDyUwyk2S-QejMVo6iiWQWjak0AYq5EkpqK6AqcV3tSpqhlG57QSfyrob-8FcWf86HKBfcwDKy8RoMfJLo-g80VEzegOdJgOgPNMkqoPKMXlcbj9FTVK6zENiHywpYEuo7lmO0YslutEl99SUrc1OG8F91WbM5p72FNgtnETfy3t1GayrdQXwwGgNUwQxROCu3OQO39x2_pLgJufSQyguSx1DmbDTDIk1wdz7D3RQ21VWCWwsx-vr4HJhoWeWN8J0ZOF6LjMxdFLUvHy46VlEmwZKEBr7FZBJKZqLBOPQSj0hqoh6tIU6K4Yi9BII6sTV1wyCktqRZVXFiGkA30ZC5e6iSjlO1j7BDqS2Y9v040J4msQiM820zad6VOMZWa-h8KSA-yWkYPOceEw6i5KUoa6gJ8itbAcU6uzGePvPCKDhEU4H5YQqmSrQf2sJhShMmhIpD4tdQrgF_fIs3-sN7MwO7_sF_HzhF6_1Wm990e9eHaAMa5MfAjlBlPl2oY-NwzOOTQqe-Af8ozcM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sloppiness+Consistency+in+Biomechanical+Models+and+Its+Inspired+Dual%E2%80%90Space+Model+Optimization&rft.jtitle=Advanced+Physics+Research&rft.au=Tang%2C+Jiabao&rft.au=Liu%2C+Wenyang&rft.au=Mao%2C+Yiqi&rft.au=Hou%2C+Shujuan&rft.date=2025-06-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=4&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202500002&rft.externalDBID=10.1002%252Fapxr.202500002&rft.externalDocID=APXR12335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |