Sloppiness Consistency in Biomechanical Models and Its Inspired Dual‐Space Model Optimization

Advanced medical solutions rely on dependable biomechanical modeling. An enduring challenge in the constitutive modeling of soft tissue is delicately balancing model complexity, goodness‐of‐fit, and parameter identifiability, all of which impact the reliability of material behavior predictions under...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Physics Research Vol. 4; no. 6
Main Authors Tang, Jiabao, Liu, Wenyang, Mao, Yiqi, Hou, Shujuan
Format Journal Article
LanguageEnglish
Published Wiley-VCH 01.06.2025
Subjects
Online AccessGet full text
ISSN2751-1200
2751-1200
DOI10.1002/apxr.202500002

Cover

Loading…
Abstract Advanced medical solutions rely on dependable biomechanical modeling. An enduring challenge in the constitutive modeling of soft tissue is delicately balancing model complexity, goodness‐of‐fit, and parameter identifiability, all of which impact the reliability of material behavior predictions under mechanical loading. It is established that biomechanical constitutive models, whether physically motivated or neural network derived, are typically sloppy from the information theory perspective. By analyzing the sensitivity matrix associated with posterior distributions of the constitutive parameters, a consistent pattern revealing the regularity in parameter combinations across experimental protocols characterizing tissue mechanical behavior and prior beliefs with varying levels of informativeness is discovered. The discovered pattern inspires to construct a sloppiness‐based parameter hyperspace and proposes a model reduction program that performs model optimization by exploring four sub‐hyperspaces. The proposed program offers a guide for effectively simplifying models while tightly ensuring parameter identifiability and prediction accuracy. Clear improvements are showcased to the brain tissue constitutive models discovered by neural networks and a physically motivated constitutive model of the human patellar tendon. This study addresses the challenge of balancing complexity, accuracy, and parameter identifiability in soft tissue constitutive modeling. By leveraging information geometry and sensitivity analysis, the sloppiness inherent in biomechanical models is revealed, and a model reduction framework is proposed. This approach optimizes parameter identifiability and prediction accuracy, demonstrated through improved brain tissue and patellar tendon models.
AbstractList Abstract Advanced medical solutions rely on dependable biomechanical modeling. An enduring challenge in the constitutive modeling of soft tissue is delicately balancing model complexity, goodness‐of‐fit, and parameter identifiability, all of which impact the reliability of material behavior predictions under mechanical loading. It is established that biomechanical constitutive models, whether physically motivated or neural network derived, are typically sloppy from the information theory perspective. By analyzing the sensitivity matrix associated with posterior distributions of the constitutive parameters, a consistent pattern revealing the regularity in parameter combinations across experimental protocols characterizing tissue mechanical behavior and prior beliefs with varying levels of informativeness is discovered. The discovered pattern inspires to construct a sloppiness‐based parameter hyperspace and proposes a model reduction program that performs model optimization by exploring four sub‐hyperspaces. The proposed program offers a guide for effectively simplifying models while tightly ensuring parameter identifiability and prediction accuracy. Clear improvements are showcased to the brain tissue constitutive models discovered by neural networks and a physically motivated constitutive model of the human patellar tendon.
Advanced medical solutions rely on dependable biomechanical modeling. An enduring challenge in the constitutive modeling of soft tissue is delicately balancing model complexity, goodness‐of‐fit, and parameter identifiability, all of which impact the reliability of material behavior predictions under mechanical loading. It is established that biomechanical constitutive models, whether physically motivated or neural network derived, are typically sloppy from the information theory perspective. By analyzing the sensitivity matrix associated with posterior distributions of the constitutive parameters, a consistent pattern revealing the regularity in parameter combinations across experimental protocols characterizing tissue mechanical behavior and prior beliefs with varying levels of informativeness is discovered. The discovered pattern inspires to construct a sloppiness‐based parameter hyperspace and proposes a model reduction program that performs model optimization by exploring four sub‐hyperspaces. The proposed program offers a guide for effectively simplifying models while tightly ensuring parameter identifiability and prediction accuracy. Clear improvements are showcased to the brain tissue constitutive models discovered by neural networks and a physically motivated constitutive model of the human patellar tendon.
Advanced medical solutions rely on dependable biomechanical modeling. An enduring challenge in the constitutive modeling of soft tissue is delicately balancing model complexity, goodness‐of‐fit, and parameter identifiability, all of which impact the reliability of material behavior predictions under mechanical loading. It is established that biomechanical constitutive models, whether physically motivated or neural network derived, are typically sloppy from the information theory perspective. By analyzing the sensitivity matrix associated with posterior distributions of the constitutive parameters, a consistent pattern revealing the regularity in parameter combinations across experimental protocols characterizing tissue mechanical behavior and prior beliefs with varying levels of informativeness is discovered. The discovered pattern inspires to construct a sloppiness‐based parameter hyperspace and proposes a model reduction program that performs model optimization by exploring four sub‐hyperspaces. The proposed program offers a guide for effectively simplifying models while tightly ensuring parameter identifiability and prediction accuracy. Clear improvements are showcased to the brain tissue constitutive models discovered by neural networks and a physically motivated constitutive model of the human patellar tendon. This study addresses the challenge of balancing complexity, accuracy, and parameter identifiability in soft tissue constitutive modeling. By leveraging information geometry and sensitivity analysis, the sloppiness inherent in biomechanical models is revealed, and a model reduction framework is proposed. This approach optimizes parameter identifiability and prediction accuracy, demonstrated through improved brain tissue and patellar tendon models.
Author Tang, Jiabao
Mao, Yiqi
Liu, Wenyang
Hou, Shujuan
Author_xml – sequence: 1
  givenname: Jiabao
  surname: Tang
  fullname: Tang, Jiabao
  organization: Hunan University
– sequence: 2
  givenname: Wenyang
  orcidid: 0000-0001-8373-0890
  surname: Liu
  fullname: Liu, Wenyang
  email: liuwenyang@hnu.edu.cn
  organization: Hunan University
– sequence: 3
  givenname: Yiqi
  surname: Mao
  fullname: Mao, Yiqi
  organization: Hunan University
– sequence: 4
  givenname: Shujuan
  surname: Hou
  fullname: Hou, Shujuan
  email: shujuanhou@hnu.edu.cn
  organization: Hunan University
BookMark eNqFkE1OwzAQRi1UJErplrUvkGI7cWwvS_mLVFREQWJnuY4DrlI7soOgrDgCZ-QkpAQhdsxmRqM330jvEAycdwaAY4wmGCFyoprXMCGIUNQV2QNDwihOMEFo8Gc-AOMY1zuCC5xmeAjksvZNY52JEc68iza2xukttA6eWr8x-kk5q1UNr31p6giVK2HRRli42NhgSnj2rOrP949lo7TpIbhoWruxb6q13h2B_UrV0Yx_-gjcX5zfza6S-eKymE3niSYspwnXpdBcML4SWZkRzRDOqirLMF1pVRotUkoJqlgqcsGQZjSjJCcdYLBhTPB0BIo-t_RqLZtgNypspVdWfi98eJQqtFbXRvKc5Hn3gnVCMlJRgRTmpiJcKbMShHZZkz5LBx9jMNVvHkZyZ1vubMtf290B7Q9ebG22_9ByevNwi0ma0vQLcVmEuQ
Cites_doi 10.1073/pnas.2213913120
10.1016/j.mbs.2016.10.009
10.1093/oso/9780198865247.001.0001
10.1098/rsta.2015.0202
10.1126/science.1238723
10.1103/PhysRevE.68.021904
10.1016/j.actbio.2016.10.036
10.1016/j.jmps.2023.105404
10.1016/j.ijengsci.2023.103955
10.1016/j.envsoft.2020.104717
10.1016/j.envsoft.2022.105578
10.1126/sciadv.abm5952
10.1371/journal.pcbi.1010844
10.1016/j.cma.2023.116534
10.1016/j.actbio.2023.01.055
10.1063/5.0084988
10.1088/1361-6633/aca6f8
10.1016/j.actbio.2019.08.017
10.1038/s41593-022-01043-3
10.1007/s10237-023-01761-y
10.1063/1.4923066
10.1016/j.jmps.2018.08.009
10.1073/pnas.1715306115
10.1007/s10409-024-24430-x
10.1115/1.4050978
10.1038/s43586-020-00001-2
10.1371/journal.pcbi.0030189
10.1016/0167-9473(93)90193-W
10.1016/j.engfracmech.2024.110476
10.1016/S0022-3697(99)00252-8
10.1103/PhysRevLett.126.200601
10.1016/j.jmps.2019.103777
10.1023/A:1008929526011
10.1016/S1369-7021(05)71123-8
10.1098/rsif.2023.0607
10.1103/PhysRevLett.97.150601
10.1109/TPAMI.1984.4767596
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
Copyright_xml – notice: 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/apxr.202500002
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2751-1200
EndPage n/a
ExternalDocumentID oai_doaj_org_article_862662c7720042f590a18ef28aaeb925
10_1002_apxr_202500002
APXR12335
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12272132; 11922206; 12172125
GroupedDBID 0R~
24P
88I
AAFWJ
ABJCF
ABUWG
ACCMX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
KB.
M2P
M~E
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
ARCSS
PQGLB
PUEGO
WIN
ID FETCH-LOGICAL-c2765-8cd9c8978b94d42c7014ff4415bcadec935520f7396970c7545262f44e1e77983
IEDL.DBID 24P
ISSN 2751-1200
IngestDate Wed Aug 27 01:15:08 EDT 2025
Thu Jul 03 08:44:06 EDT 2025
Fri Jun 13 09:31:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2765-8cd9c8978b94d42c7014ff4415bcadec935520f7396970c7545262f44e1e77983
ORCID 0000-0001-8373-0890
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202500002
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_862662c7720042f590a18ef28aaeb925
crossref_primary_10_1002_apxr_202500002
wiley_primary_10_1002_apxr_202500002_APXR12335
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Advanced Physics Research
PublicationYear 2025
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 2022; 156
2018; 121
2023; 160
2006; 97
2021; 86
2023; 180
2017; 48
2023; 120
2019; 99
2021; 126
2023; 19
2015; 143
2013; 342
2022; 25
2021; 1
2021; 73
2016; 282
1993; 15
2023; 193
2023; 23
2020; 130
2021
2000; 10
2022; 8
2005; 8
2024; 418
2018; 115
1984; 6
2000; 61
2003; 68
2023; 159
2024; 41
2016; 374
2024; 21
2024; 310
2020; 135
2014
2007; 3
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 99
  start-page: 1
  year: 2019
  publication-title: Acta Biomater.
– volume: 41
  year: 2024
  publication-title: Acta Mech. Sin.
– volume: 156
  year: 2022
  publication-title: J. Chem. Phys.
– volume: 61
  start-page: 1
  year: 2000
  publication-title: J. Elasticity Phys. Sci. Solids
– volume: 86
  year: 2021
  publication-title: Rep. Prog. Phys.
– volume: 1
  start-page: 1
  year: 2021
  publication-title: Nat. Rev. Methods Primers
– volume: 68
  year: 2003
  publication-title: Phys. Rev. E
– volume: 193
  year: 2023
  publication-title: Intl. J. Eng. Sci.
– volume: 310
  year: 2024
  publication-title: Eng. Fract. Mech.
– volume: 374
  year: 2016
  publication-title: Philos. Trans. R. Soc., A
– volume: 126
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 103
  year: 2023
  publication-title: Biomech. Model. Mechanobiol.
– volume: 180
  year: 2023
  publication-title: J. Mech. Phys. Solids
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– year: 2021
– volume: 342
  start-page: 604
  year: 2013
  publication-title: Science
– volume: 135
  year: 2020
  publication-title: J. Mech. Phys. Solids
– volume: 3
  year: 2007
  publication-title: PLoS Comput. Biol.
– volume: 143
  year: 2015
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 325
  year: 2000
  publication-title: Statistics Comp.
– volume: 282
  start-page: 147
  year: 2016
  publication-title: Math. Biosci.
– volume: 418
  year: 2024
  publication-title: Comp. Methods Appl. Mech. Eng.
– year: 2014
– volume: 48
  start-page: 319
  year: 2017
  publication-title: Acta Biomater.
– volume: 21
  year: 2024
  publication-title: J. R. Soc., Interface
– volume: 15
  start-page: 211
  year: 1993
  publication-title: Comput. Statistics Data Anal.
– volume: 120
  year: 2023
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 73
  year: 2021
  publication-title: Appl. Mech. Rev.
– volume: 130
  year: 2020
  publication-title: Environ. Model. Software
– volume: 159
  year: 2023
  publication-title: Environ. Model. Software
– volume: 97
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 115
  start-page: 1760
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 160
  start-page: 134
  year: 2023
  publication-title: Acta Biomater.
– volume: 25
  start-page: 458
  year: 2022
  publication-title: Nat. Neurosci.
– volume: 121
  start-page: 463
  year: 2018
  publication-title: J. Mech. Phys. Solids
– volume: 8
  start-page: 38
  year: 2005
  publication-title: Mater. Inform., Mater. Today
– volume: 6
  start-page: 721
  year: 1984
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– volume: 19
  year: 2023
  publication-title: PLoS Comput. Biol.
– ident: e_1_2_9_26_1
  doi: 10.1073/pnas.2213913120
– ident: e_1_2_9_15_1
  doi: 10.1016/j.mbs.2016.10.009
– ident: e_1_2_9_13_1
  doi: 10.1093/oso/9780198865247.001.0001
– ident: e_1_2_9_37_1
  doi: 10.1098/rsta.2015.0202
– ident: e_1_2_9_19_1
  doi: 10.1126/science.1238723
– ident: e_1_2_9_20_1
  doi: 10.1103/PhysRevE.68.021904
– ident: e_1_2_9_5_1
  doi: 10.1016/j.actbio.2016.10.036
– ident: e_1_2_9_30_1
  doi: 10.1016/j.jmps.2023.105404
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ijengsci.2023.103955
– ident: e_1_2_9_25_1
  doi: 10.1016/j.envsoft.2020.104717
– ident: e_1_2_9_22_1
  doi: 10.1016/j.envsoft.2022.105578
– ident: e_1_2_9_12_1
  doi: 10.1126/sciadv.abm5952
– ident: e_1_2_9_21_1
  doi: 10.1371/journal.pcbi.1010844
– ident: e_1_2_9_23_1
  doi: 10.1016/j.cma.2023.116534
– ident: e_1_2_9_4_1
  doi: 10.1016/j.actbio.2023.01.055
– ident: e_1_2_9_32_1
  doi: 10.1063/5.0084988
– ident: e_1_2_9_34_1
  doi: 10.1088/1361-6633/aca6f8
– ident: e_1_2_9_1_1
  doi: 10.1016/j.actbio.2019.08.017
– ident: e_1_2_9_2_1
  doi: 10.1038/s41593-022-01043-3
– ident: e_1_2_9_3_1
  doi: 10.1007/s10237-023-01761-y
– ident: e_1_2_9_18_1
  doi: 10.1063/1.4923066
– ident: e_1_2_9_6_1
  doi: 10.1016/j.jmps.2018.08.009
– ident: e_1_2_9_28_1
  doi: 10.1073/pnas.1715306115
– ident: e_1_2_9_24_1
  doi: 10.1007/s10409-024-24430-x
– ident: e_1_2_9_29_1
  doi: 10.1115/1.4050978
– ident: e_1_2_9_10_1
  doi: 10.1038/s43586-020-00001-2
– ident: e_1_2_9_14_1
  doi: 10.1371/journal.pcbi.0030189
– ident: e_1_2_9_33_1
– ident: e_1_2_9_16_1
  doi: 10.1016/0167-9473(93)90193-W
– ident: e_1_2_9_9_1
  doi: 10.1016/j.engfracmech.2024.110476
– ident: e_1_2_9_7_1
  doi: 10.1016/S0022-3697(99)00252-8
– ident: e_1_2_9_27_1
  doi: 10.1103/PhysRevLett.126.200601
– ident: e_1_2_9_31_1
  doi: 10.1016/j.jmps.2019.103777
– ident: e_1_2_9_36_1
  doi: 10.1023/A:1008929526011
– ident: e_1_2_9_38_1
  doi: 10.1016/S1369-7021(05)71123-8
– ident: e_1_2_9_11_1
  doi: 10.1098/rsif.2023.0607
– ident: e_1_2_9_17_1
  doi: 10.1103/PhysRevLett.97.150601
– ident: e_1_2_9_35_1
  doi: 10.1109/TPAMI.1984.4767596
SSID ssj0002891341
Score 2.3000016
Snippet Advanced medical solutions rely on dependable biomechanical modeling. An enduring challenge in the constitutive modeling of soft tissue is delicately balancing...
Abstract Advanced medical solutions rely on dependable biomechanical modeling. An enduring challenge in the constitutive modeling of soft tissue is delicately...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms biomechanics
constitutive models
information geometry
sensitivity matrix
sloppiness
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxdRVKwvchA8rd3NPpI9tmppBR9YC72FbDYBpW6LbUFv_gR_o7_EmWQr9dSLt2UZkuWbJDOzmfmGkLPQRIaXWgS84BoCFHhSRtsg46aMYxtr7qiUbu-y3jC5GaWjlVZfmBPm6YE9cC30uDOmwQnE9WXTPFSRMJYJpUyRM8deCjZvJZh68ddnyFS2ZGkMWUtN35H-k2EDgPofytIKObL-v86psy7dbbJVu4W07T9nh2yYapfIwXiC9AlwGFHXWHOGDu4Hfa5oB6vmsWgXMabY0Gw8o6oqaX8-o_0Kr89NSa8Wavz9-TWAuNh4IXoPR8RrXXu5R4bd66fLXlA3RAg041kaCF3mWkDcV-RJmQAoEN9YixFRgcn0GrnSWWh5nGc5DzV3_cMZCKBCeC7ifdKoJpU5IDTiPFTCpmmR2cSyQmWIsNAwVhnBrmyS8yVAcup5L6RnOGYSoZS_UDZJB_H7lUK-avcCtChrLcp1WmySC4f-mrlk-2H0CLY2Tg__Y9YjsolD-8yvY9KYvy3MCfgY8-LULacfyMHMNA
  priority: 102
  providerName: Directory of Open Access Journals
Title Sloppiness Consistency in Biomechanical Models and Its Inspired Dual‐Space Model Optimization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202500002
https://doaj.org/article/862662c7720042f590a18ef28aaeb925
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1PS8MwFMCD6MWLKCrOPyMHwVNZm_5Jetx0YxOmwznYLSRpIsLsxrqBXsSP4Gf0k5iXdtOdxEspJU3LS17yXpL3ewhd-jrQNFPMo5Iq66DYO6GV8RKqszA0oaIOpdS_S7qj6HYcj39F8Zd8iPWCG2iGG69BwYUsGj_QUDF7BZ4nAaI_0CR3IL4W6PkkGqxXWQjswrn0lYTGgRfYPrEiN_qksVnFxszkAP6bBqubcTr7aK8yFXGzbNsDtKXzQ8SHkykgFewAhV2yzQKM3jf8nOMWRNJDIC_IHUOSs0mBRZ7h3qLAvRy21HWGb5Zi8vXxObS-si4L4Xs7bLxU8ZhHaNRpP153vSpJgqcITWKPqSxVzPqCMo2yiChqfR5jwEuScMBeAT-d-IaGaZJSX1GXU5zYAtBINGXhMdrOp7k-QTig1BfMxLFMTGSIFIk1vX2mbF1ZYDW1hq5WAuKzkoXBS-ox4SBKvhZlDbVAfutSwLB2D6bzJ16pBAdfKrE_TEFRiYlTXwRMG8KE0DIlcQ2V7f_Ht3hzMH6w828Yn_73hTO0C0_Lk1_naHsxX-oLa2MsZN11o7rz0O21_97-BqjRy4U
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIAtVAZYEAgQ5ekBiSlq4iR2MrZA1UJbKtpK3SzHsRFSSas-JNj4CfxGfgk-Jw3qhNii6PLQ2Wff2b7vELp2ladYKiOHJUyaAMVcCSW1Q5lKfV_7klmUUrdHW6PgYRyuTxNCLkzOhygX3MAy7HgNBg4L0rVfaqiYvQPQkwDSH3CS2wElDGyTBP1ymYXANpytX0lY6Dme6RRrdKNLapuv2JiaLMF_02O1U05zH-0VviKu5417gLZUdoj4YDIFpoIZobCttrkAr_cDv2a4Aan0kMkLisdQ5WyywCJLcXu5wO0M9tRViu9WYvL9-TUwwbLKhfCTGTfeioTMIzRq3g9vW05RJcGRhNHQiWQay8gEg0kcpAGRzAQ9WkOYlMAJewkAdeJq5sc0Zq5ktqg4MQLQSiyO_GNUyaaZOkHYY8wVkQ7DhOpAk0RQ43u7kTTvSj1jqlV0s1YQn-UwDJ5jjwkHVfJSlVXUAP2VUgCxtjem8xde2ASHYIqaH2ZgqUSHsSu8SGkSCaGSmIRVlHeAP77F6_3xs5mA_fD0vw9coZ3WsNvhnXbv8QztgkR-DOwcVZbzlbowDscyubRd6gcfAczL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEICDtCBeRFGxPnMQPC3dzT6SPbbW0vqoxbpSvIRsNhGhbksfoDd_gr_RX2Jmd7vak3hbluyDyUwyk2S-QejMVo6iiWQWjak0AYq5EkpqK6AqcV3tSpqhlG57QSfyrob-8FcWf86HKBfcwDKy8RoMfJLo-g80VEzegOdJgOgPNMkqoPKMXlcbj9FTVK6zENiHywpYEuo7lmO0YslutEl99SUrc1OG8F91WbM5p72FNgtnETfy3t1GayrdQXwwGgNUwQxROCu3OQO39x2_pLgJufSQyguSx1DmbDTDIk1wdz7D3RQ21VWCWwsx-vr4HJhoWeWN8J0ZOF6LjMxdFLUvHy46VlEmwZKEBr7FZBJKZqLBOPQSj0hqoh6tIU6K4Yi9BII6sTV1wyCktqRZVXFiGkA30ZC5e6iSjlO1j7BDqS2Y9v040J4msQiM820zad6VOMZWa-h8KSA-yWkYPOceEw6i5KUoa6gJ8itbAcU6uzGePvPCKDhEU4H5YQqmSrQf2sJhShMmhIpD4tdQrgF_fIs3-sN7MwO7_sF_HzhF6_1Wm990e9eHaAMa5MfAjlBlPl2oY-NwzOOTQqe-Af8ozcM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sloppiness+Consistency+in+Biomechanical+Models+and+Its+Inspired+Dual%E2%80%90Space+Model+Optimization&rft.jtitle=Advanced+Physics+Research&rft.au=Tang%2C+Jiabao&rft.au=Liu%2C+Wenyang&rft.au=Mao%2C+Yiqi&rft.au=Hou%2C+Shujuan&rft.date=2025-06-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=4&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202500002&rft.externalDBID=10.1002%252Fapxr.202500002&rft.externalDocID=APXR12335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon