MSKFaceNet: A Lightweight Face Recognition Neural Network for Low-Power Devices

In recent years, the rapid development of lightweight convolutional neural networks (CNNs) and lightweight vision transformers (ViTs) has led to significant progress in the field of mobile computing. However, deploying facial recognition models on low-power devices (with power consumption below 10 w...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 120533 - 120546
Main Authors Zhang, Peng, Ma, Qinghua, Li, Yi, Cui, Min
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the rapid development of lightweight convolutional neural networks (CNNs) and lightweight vision transformers (ViTs) has led to significant progress in the field of mobile computing. However, deploying facial recognition models on low-power devices (with power consumption below 10 watts) remains challenging. To address this issue, we designed a lightweight facial recognition network specifically optimized for low-power devices-MSKFaceNet (Multi-Scale Kernels Face Network). First, we propose a novel lightweight convolutional neural network module called MSKFNet. MSKFNet adopts a bottleneck design and introduces variable kernel convolutions from VarKNet, combined with channel shuffle and structural re-parameterization techniques, establishing an efficient CNN module for embedded systems. Built upon the MSKFNet module, MSKFaceNet further integrates a lightweight SE module to enhance its feature representation capabilities. Finally, we designed a real-time facial recognition attendance system based on MSKFaceNet and developed a prototype device. Experimental results show that MSKFaceNet, with only 0.54M parameters and 0.25 GFLOPS, achieves a recognition accuracy of 99.39% on the LFW dataset while delivering an inference speed of 10.8ms on the Jetson Nano platform. The proposed attendance system effectively and accurately performs facial recognition and attendance recording, significantly improving the efficiency and fairness of attendance management.
AbstractList In recent years, the rapid development of lightweight convolutional neural networks (CNNs) and lightweight vision transformers (ViTs) has led to significant progress in the field of mobile computing. However, deploying facial recognition models on low-power devices (with power consumption below 10 watts) remains challenging. To address this issue, we designed a lightweight facial recognition network specifically optimized for low-power devices-MSKFaceNet (Multi-Scale Kernels Face Network). First, we propose a novel lightweight convolutional neural network module called MSKFNet. MSKFNet adopts a bottleneck design and introduces variable kernel convolutions from VarKNet, combined with channel shuffle and structural re-parameterization techniques, establishing an efficient CNN module for embedded systems. Built upon the MSKFNet module, MSKFaceNet further integrates a lightweight SE module to enhance its feature representation capabilities. Finally, we designed a real-time facial recognition attendance system based on MSKFaceNet and developed a prototype device. Experimental results show that MSKFaceNet, with only 0.54M parameters and 0.25 GFLOPS, achieves a recognition accuracy of 99.39% on the LFW dataset while delivering an inference speed of 10.8ms on the Jetson Nano platform. The proposed attendance system effectively and accurately performs facial recognition and attendance recording, significantly improving the efficiency and fairness of attendance management.
Author Ma, Qinghua
Zhang, Peng
Li, Yi
Cui, Min
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0002-7593-1534
  surname: Zhang
  fullname: Zhang, Peng
  email: zhangpeng6@nuc.edu.cn
  organization: School of Instrument and Electronics, North University of China, Taiyuan, China
– sequence: 2
  givenname: Qinghua
  orcidid: 0009-0002-1023-7266
  surname: Ma
  fullname: Ma, Qinghua
  organization: School of Instrument and Electronics, North University of China, Taiyuan, China
– sequence: 3
  givenname: Yi
  orcidid: 0009-0001-0368-7085
  surname: Li
  fullname: Li, Yi
  organization: School of Information Science and Technology, Northwest University, Xi'an, China
– sequence: 4
  givenname: Min
  orcidid: 0009-0004-2554-2815
  surname: Cui
  fullname: Cui, Min
  organization: School of Instrument and Electronics, North University of China, Taiyuan, China
BookMark eNpNUU1PwzAMjdCQGINfAIdKnDvy0aQJt2lsgBgfYnCOssQZHaOBtGPi39OtE-CDbT35Pdt6h6hThhIQOiG4TwhW54PhcDSd9immvM-4zCTJ9lCXEqFSxpno_OsP0HFVLXATsoF43kUPd9PbsbFwD_VFMkgmxfy1XsMmJxs4eQIb5mVRF6FM7mEVzbIp9TrEt8SHmEzCOn0Ma4jJJXwVFqojtO_NsoLjXe2hl_HoeXidTh6uboaDSWppLrLUOCxnjgpmOAdD83zmiPDYCwdYUgVEUWq5EMYJZZxjmWHZTDYv-twS7jnroZtW1wWz0B-xeDfxWwdT6C0Q4lybWBd2CdoyhZ2FGVChMs-c4bmXREkiVU7wVuus1fqI4XMFVa0XYRXL5nzNKMNcEEpxM8XaKRtDVUXwv1sJ1hsjdGuE3hihd0Y0rNOWVQDAH4NgQQXn7AemZoP9
CODEN IAECCG
Cites_doi 10.1162/jocn.1991.3.1.71
10.1007/s00586-006-0143-7
10.l007/978-3-319-46448-0_2
10.1109/CVPR52729.2023.00764
10.1007/978-1-4842-6168-2_11
10.1109/ICCV48922.2021.00060
10.1109/icassp.2013.6638949
10.1109/ATSIP.2018.8364450
10.1007/978-3-319-97909-0_46
10.1109/CVPR42600.2020.00165
10.1002/jemt.20370
10.1016/j.sigpro.2010.08.010
10.1109/CVPR52688.2022.01553
10.1109/CVPR52688.2022.01166
10.1109/CVPR52688.2022.01055
10.1109/UEMCON47517.2019.8993089
10.1109/ICCVW.2019.00333
10.1007/978-1-4842-6168-2_10
10.1109/34.598228
10.1109/TBIOM.2023.3242085
10.1109/ACCESS.2024.3447018
10.1109/ICCVW.2019.00323
10.1016/j.engappai.2023.106513
10.1109/CVPR42600.2020.00835
10.1109/CVPR46437.2021.01352
10.1609/aaai.v29i1.9797
10.1109/ACCESS.2023.3266068
10.1007/978-3-030-01264-9_8
10.1145/3289602.3293972
10.1364/OL.422930
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3584814
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals (ODIN)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 120546
ExternalDocumentID oai_doaj_org_article_c390dcebe2694f3da57f8198189710f5
10_1109_ACCESS_2025_3584814
11062655
Genre orig-research
GrantInformation_xml – fundername: National Defence Fund
  grantid: 2023-JJ-0353
  funderid: 10.13039/501100001809
– fundername: National Natural Foundation of China
  grantid: 62373247
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2764-ad08bd263a55ea277bd16f0f6de0829e1922c566ad69add34a34b8202f7c15f53
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:22:49 EDT 2025
Thu Jul 17 02:03:36 EDT 2025
Thu Jul 24 02:19:32 EDT 2025
Wed Aug 27 02:13:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2764-ad08bd263a55ea277bd16f0f6de0829e1922c566ad69add34a34b8202f7c15f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7593-1534
0009-0002-1023-7266
0009-0001-0368-7085
0009-0004-2554-2815
OpenAccessLink https://doaj.org/article/c390dcebe2694f3da57f8198189710f5
PQID 3230561220
PQPubID 4845423
PageCount 14
ParticipantIDs proquest_journals_3230561220
doaj_primary_oai_doaj_org_article_c390dcebe2694f3da57f8198189710f5
crossref_primary_10_1109_ACCESS_2025_3584814
ieee_primary_11062655
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref33
ref10
ref32
ref1
ref17
ref16
ref19
ref18
Zhang (ref11) 2019
ref24
ref23
ref26
ref25
ref20
Han (ref4); 28
ref22
ref21
Gupta (ref2)
ref28
ref27
Zhang (ref29) 2024; 60
ref8
ref7
ref9
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1162/jocn.1991.3.1.71
– ident: ref15
  doi: 10.1007/s00586-006-0143-7
– ident: ref28
  doi: 10.l007/978-3-319-46448-0_2
– start-page: 40676
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref2
  article-title: Siamese masked autoencoders
– ident: ref18
  doi: 10.1109/CVPR52729.2023.00764
– ident: ref24
  doi: 10.1007/978-1-4842-6168-2_11
– year: 2019
  ident: ref11
  article-title: VarGNet: Variable group convolutional neural network for efficient embedded computing
  publication-title: arXiv:1907.05653
– ident: ref22
  doi: 10.1109/ICCV48922.2021.00060
– ident: ref3
  doi: 10.1109/icassp.2013.6638949
– ident: ref30
  doi: 10.1109/ATSIP.2018.8364450
– volume: 28
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref4
  article-title: Learning both weights and connections for efficient neural network
– volume: 60
  start-page: 23
  issue: 13
  year: 2024
  ident: ref29
  article-title: Reviewof object detection based on event cameras
  publication-title: Comput. Eng. Appl.
– ident: ref5
  doi: 10.1007/978-3-319-97909-0_46
– ident: ref8
  doi: 10.1109/CVPR42600.2020.00165
– ident: ref33
  doi: 10.1002/jemt.20370
– ident: ref16
  doi: 10.1016/j.sigpro.2010.08.010
– ident: ref1
  doi: 10.1109/CVPR52688.2022.01553
– ident: ref12
  doi: 10.1109/CVPR52688.2022.01166
– ident: ref23
  doi: 10.1109/CVPR52688.2022.01055
– ident: ref19
  doi: 10.1109/UEMCON47517.2019.8993089
– ident: ref6
  doi: 10.1109/ICCVW.2019.00333
– ident: ref10
  doi: 10.1007/978-1-4842-6168-2_10
– ident: ref14
  doi: 10.1109/34.598228
– ident: ref31
  doi: 10.1109/TBIOM.2023.3242085
– ident: ref21
  doi: 10.1109/ACCESS.2024.3447018
– ident: ref9
  doi: 10.1109/ICCVW.2019.00323
– ident: ref27
  doi: 10.1016/j.engappai.2023.106513
– ident: ref34
  doi: 10.1109/CVPR42600.2020.00835
– ident: ref17
  doi: 10.1109/CVPR46437.2021.01352
– ident: ref32
  doi: 10.1609/aaai.v29i1.9797
– ident: ref7
  doi: 10.1109/ACCESS.2023.3266068
– ident: ref25
  doi: 10.1007/978-3-030-01264-9_8
– ident: ref20
  doi: 10.1145/3289602.3293972
– ident: ref26
  doi: 10.1364/OL.422930
SSID ssj0000816957
Score 2.3338315
Snippet In recent years, the rapid development of lightweight convolutional neural networks (CNNs) and lightweight vision transformers (ViTs) has led to significant...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 120533
SubjectTerms Accuracy
Artificial neural networks
attendance machine
Computational efficiency
Convolutional codes
Convolutional neural networks
Electronic devices
Embedded systems
Face recognition
Kernel
lightweight
local features
Modules
multi-scale
Neural networks
Parameterization
Performance evaluation
Power management
Real time
Real-time systems
Time and attendance systems
Transformers
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4VTu2hQEvVAK186LEbdv1alltIG6EW0gqKxM3y84KUVCUREr-eGa8DhQqpt5W1D9tjj7-ZnfkG4BPnLXedkqj9VKqk1a5yrZOVR2OosY2NnSeH_ulUH1_Ib5fqsiSr51yYGGMOPotDusz_8sPcL8lVto9HFeJvpdZgDS23Plnr3qFCFSQ61RZmoabu9kfjMQ4CbUCuhkIRb7x8dPpkkv5SVeUfVZzPl8kGTFc968NKrobLhRv62yekjf_d9U14XZAmG_VLYwtexNkbePUX_-Bb-HF6_n1ifZzGxSEbsRMy1G-yr5RRMztbRRfNZ4xYPPB10z5snCHWZSfzm-onVVljX2JWONtwMfn6a3xclQoLleetlpUN9YELXAurVLS8bV1odKqTDpFybiPCP-4R8NmgO1SEQlohHWIGnlrfqKTEO1ifzWfxPTAXtKW6v2SgyUiseAdKi0yIlpSWYQCfVzNvfvdEGiYbIHVnekEZEpQpghrAEUnn_lZiwc4NOKumbCrjRVcHj8uQ0nGTCFa1CREOYpAOgVNSA9gmSTx8rwhhAHsrYZuyZa-N4Nma4rzeeeaxXXhJXewdMHuwvvizjB8Qkizcx7wU7wCVwtrD
  priority: 102
  providerName: IEEE
Title MSKFaceNet: A Lightweight Face Recognition Neural Network for Low-Power Devices
URI https://ieeexplore.ieee.org/document/11062655
https://www.proquest.com/docview/3230561220
https://doaj.org/article/c390dcebe2694f3da57f8198189710f5
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQH0UUSuWBkdDEsZ2GrRSqCtqCgErdLDu2xxRBUf8-d04KRQwsrFYUx3fOvXuW7x0h54xlzOSCQ_QTPuJamshkhkcFkKFEJ9rlBR7oT6ZyNON3czHfaPWFd8IqeeDKcN0CSLktYCosufSp1SLzgGKAMzmAow_qpYB5G2QqxOBeInOR1TJDSZx3-4MBrAgIIROXqUARef4DioJif91i5VdcDmAz3CO7dZZI-9XX7ZMtVx6QnQ3twEPyMHm-H-rCTd3yivbpGEn2KpxzUhymT-ubQYuSogIHvG5aXfmmkKfS8WIVPWKHNHrjQrBoktnw9mUwiuruCFHBMskjbeOesUymWginWZYZm0gfe2kd1ss6SN1YAcmatjKHIJZynXIDeM98ViTCi_SINMpF6Y4JNVZq7NmL5Io7VLTrCZkGMTMvJLctcrE2lHqtRDBUIA9xriq7KrSrqu3aItdozK9HUcE6DIBfVe1X9ZdfW6SJrvieD7grkwLG22vfqPp3e1cpC0yIsfjkP-Y-Jdu4nuqkpU0ay7cPdwa5x9J0wjbrhDLBT-640aQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BOQAHnkUECuyBI07tfbnmFgJRoIlB0Eq9rfZ5QUqqkqgSv56Z9aa8hMTNWvmx3lnPfDOe-QbgJectd52SqP1UqqTVrnKtk5VHZ6ixjY2dp4D-stfzU_nhTJ2VYvVcCxNjzMlncUyH-V9-WPsthcoO0VQh_lbqOtxAw6-aoVzrKqRCPSQ61RZuoabuDifTKb4GeoFcjYUi5nj5m_3JNP2lr8pfyjhbmNld6HdzGxJLvo63Gzf23_-gbfzvyd-DOwVrssmwOe7Dtbh6ALd_YSB8CB-XX45n1sc-bl6zCVuQq36Zo6WMhtnnXX7ResWIxwNv1w-J4wzRLlusL6tP1GeNvY1Z5ezD6ezdyXRelR4LleetlpUN9ZELXAurVLS8bV1odKqTDpGqbiMCQO4R8tmgO1SFQlohHaIGnlrfqKTEI9hbrVfxMTAXtKXOv-SiyUi8eEdKi0yJlpSWYQSvditvzgcqDZNdkLozg6AMCcoUQY3gDUnn6lTiwc4DuKqmfFbGi64OHjciFeQmEaxqE2IcRCEdQqekRrBPkvj5vCKEERzshG3KR_vNCJ79Kc7rJ_-47AXcnJ8sF2bxvj9-CrdoukM45gD2Nhfb-AwBysY9z9vyByqZ3gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSKFaceNet%3A+A+Lightweight+Face+Recognition+Neural+Network+for+Low-Power+Devices&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Peng&rft.au=Ma%2C+Qinghua&rft.au=Li%2C+Yi&rft.au=Cui%2C+Min&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=120533&rft.epage=120546&rft_id=info:doi/10.1109%2FACCESS.2025.3584814&rft.externalDocID=11062655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon