MSKFaceNet: A Lightweight Face Recognition Neural Network for Low-Power Devices
In recent years, the rapid development of lightweight convolutional neural networks (CNNs) and lightweight vision transformers (ViTs) has led to significant progress in the field of mobile computing. However, deploying facial recognition models on low-power devices (with power consumption below 10 w...
Saved in:
Published in | IEEE access Vol. 13; pp. 120533 - 120546 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, the rapid development of lightweight convolutional neural networks (CNNs) and lightweight vision transformers (ViTs) has led to significant progress in the field of mobile computing. However, deploying facial recognition models on low-power devices (with power consumption below 10 watts) remains challenging. To address this issue, we designed a lightweight facial recognition network specifically optimized for low-power devices-MSKFaceNet (Multi-Scale Kernels Face Network). First, we propose a novel lightweight convolutional neural network module called MSKFNet. MSKFNet adopts a bottleneck design and introduces variable kernel convolutions from VarKNet, combined with channel shuffle and structural re-parameterization techniques, establishing an efficient CNN module for embedded systems. Built upon the MSKFNet module, MSKFaceNet further integrates a lightweight SE module to enhance its feature representation capabilities. Finally, we designed a real-time facial recognition attendance system based on MSKFaceNet and developed a prototype device. Experimental results show that MSKFaceNet, with only 0.54M parameters and 0.25 GFLOPS, achieves a recognition accuracy of 99.39% on the LFW dataset while delivering an inference speed of 10.8ms on the Jetson Nano platform. The proposed attendance system effectively and accurately performs facial recognition and attendance recording, significantly improving the efficiency and fairness of attendance management. |
---|---|
AbstractList | In recent years, the rapid development of lightweight convolutional neural networks (CNNs) and lightweight vision transformers (ViTs) has led to significant progress in the field of mobile computing. However, deploying facial recognition models on low-power devices (with power consumption below 10 watts) remains challenging. To address this issue, we designed a lightweight facial recognition network specifically optimized for low-power devices-MSKFaceNet (Multi-Scale Kernels Face Network). First, we propose a novel lightweight convolutional neural network module called MSKFNet. MSKFNet adopts a bottleneck design and introduces variable kernel convolutions from VarKNet, combined with channel shuffle and structural re-parameterization techniques, establishing an efficient CNN module for embedded systems. Built upon the MSKFNet module, MSKFaceNet further integrates a lightweight SE module to enhance its feature representation capabilities. Finally, we designed a real-time facial recognition attendance system based on MSKFaceNet and developed a prototype device. Experimental results show that MSKFaceNet, with only 0.54M parameters and 0.25 GFLOPS, achieves a recognition accuracy of 99.39% on the LFW dataset while delivering an inference speed of 10.8ms on the Jetson Nano platform. The proposed attendance system effectively and accurately performs facial recognition and attendance recording, significantly improving the efficiency and fairness of attendance management. |
Author | Ma, Qinghua Zhang, Peng Li, Yi Cui, Min |
Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0002-7593-1534 surname: Zhang fullname: Zhang, Peng email: zhangpeng6@nuc.edu.cn organization: School of Instrument and Electronics, North University of China, Taiyuan, China – sequence: 2 givenname: Qinghua orcidid: 0009-0002-1023-7266 surname: Ma fullname: Ma, Qinghua organization: School of Instrument and Electronics, North University of China, Taiyuan, China – sequence: 3 givenname: Yi orcidid: 0009-0001-0368-7085 surname: Li fullname: Li, Yi organization: School of Information Science and Technology, Northwest University, Xi'an, China – sequence: 4 givenname: Min orcidid: 0009-0004-2554-2815 surname: Cui fullname: Cui, Min organization: School of Instrument and Electronics, North University of China, Taiyuan, China |
BookMark | eNpNUU1PwzAMjdCQGINfAIdKnDvy0aQJt2lsgBgfYnCOssQZHaOBtGPi39OtE-CDbT35Pdt6h6hThhIQOiG4TwhW54PhcDSd9immvM-4zCTJ9lCXEqFSxpno_OsP0HFVLXATsoF43kUPd9PbsbFwD_VFMkgmxfy1XsMmJxs4eQIb5mVRF6FM7mEVzbIp9TrEt8SHmEzCOn0Ma4jJJXwVFqojtO_NsoLjXe2hl_HoeXidTh6uboaDSWppLrLUOCxnjgpmOAdD83zmiPDYCwdYUgVEUWq5EMYJZZxjmWHZTDYv-twS7jnroZtW1wWz0B-xeDfxWwdT6C0Q4lybWBd2CdoyhZ2FGVChMs-c4bmXREkiVU7wVuus1fqI4XMFVa0XYRXL5nzNKMNcEEpxM8XaKRtDVUXwv1sJ1hsjdGuE3hihd0Y0rNOWVQDAH4NgQQXn7AemZoP9 |
CODEN | IAECCG |
Cites_doi | 10.1162/jocn.1991.3.1.71 10.1007/s00586-006-0143-7 10.l007/978-3-319-46448-0_2 10.1109/CVPR52729.2023.00764 10.1007/978-1-4842-6168-2_11 10.1109/ICCV48922.2021.00060 10.1109/icassp.2013.6638949 10.1109/ATSIP.2018.8364450 10.1007/978-3-319-97909-0_46 10.1109/CVPR42600.2020.00165 10.1002/jemt.20370 10.1016/j.sigpro.2010.08.010 10.1109/CVPR52688.2022.01553 10.1109/CVPR52688.2022.01166 10.1109/CVPR52688.2022.01055 10.1109/UEMCON47517.2019.8993089 10.1109/ICCVW.2019.00333 10.1007/978-1-4842-6168-2_10 10.1109/34.598228 10.1109/TBIOM.2023.3242085 10.1109/ACCESS.2024.3447018 10.1109/ICCVW.2019.00323 10.1016/j.engappai.2023.106513 10.1109/CVPR42600.2020.00835 10.1109/CVPR46437.2021.01352 10.1609/aaai.v29i1.9797 10.1109/ACCESS.2023.3266068 10.1007/978-3-030-01264-9_8 10.1145/3289602.3293972 10.1364/OL.422930 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2025.3584814 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals (ODIN) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 120546 |
ExternalDocumentID | oai_doaj_org_article_c390dcebe2694f3da57f8198189710f5 10_1109_ACCESS_2025_3584814 11062655 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Defence Fund grantid: 2023-JJ-0353 funderid: 10.13039/501100001809 – fundername: National Natural Foundation of China grantid: 62373247 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2764-ad08bd263a55ea277bd16f0f6de0829e1922c566ad69add34a34b8202f7c15f53 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:22:49 EDT 2025 Thu Jul 17 02:03:36 EDT 2025 Thu Jul 24 02:19:32 EDT 2025 Wed Aug 27 02:13:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2764-ad08bd263a55ea277bd16f0f6de0829e1922c566ad69add34a34b8202f7c15f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7593-1534 0009-0002-1023-7266 0009-0001-0368-7085 0009-0004-2554-2815 |
OpenAccessLink | https://doaj.org/article/c390dcebe2694f3da57f8198189710f5 |
PQID | 3230561220 |
PQPubID | 4845423 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3230561220 doaj_primary_oai_doaj_org_article_c390dcebe2694f3da57f8198189710f5 crossref_primary_10_1109_ACCESS_2025_3584814 ieee_primary_11062655 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref33 ref10 ref32 ref1 ref17 ref16 ref19 ref18 Zhang (ref11) 2019 ref24 ref23 ref26 ref25 ref20 Han (ref4); 28 ref22 ref21 Gupta (ref2) ref28 ref27 Zhang (ref29) 2024; 60 ref8 ref7 ref9 ref3 ref6 ref5 |
References_xml | – ident: ref13 doi: 10.1162/jocn.1991.3.1.71 – ident: ref15 doi: 10.1007/s00586-006-0143-7 – ident: ref28 doi: 10.l007/978-3-319-46448-0_2 – start-page: 40676 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref2 article-title: Siamese masked autoencoders – ident: ref18 doi: 10.1109/CVPR52729.2023.00764 – ident: ref24 doi: 10.1007/978-1-4842-6168-2_11 – year: 2019 ident: ref11 article-title: VarGNet: Variable group convolutional neural network for efficient embedded computing publication-title: arXiv:1907.05653 – ident: ref22 doi: 10.1109/ICCV48922.2021.00060 – ident: ref3 doi: 10.1109/icassp.2013.6638949 – ident: ref30 doi: 10.1109/ATSIP.2018.8364450 – volume: 28 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref4 article-title: Learning both weights and connections for efficient neural network – volume: 60 start-page: 23 issue: 13 year: 2024 ident: ref29 article-title: Reviewof object detection based on event cameras publication-title: Comput. Eng. Appl. – ident: ref5 doi: 10.1007/978-3-319-97909-0_46 – ident: ref8 doi: 10.1109/CVPR42600.2020.00165 – ident: ref33 doi: 10.1002/jemt.20370 – ident: ref16 doi: 10.1016/j.sigpro.2010.08.010 – ident: ref1 doi: 10.1109/CVPR52688.2022.01553 – ident: ref12 doi: 10.1109/CVPR52688.2022.01166 – ident: ref23 doi: 10.1109/CVPR52688.2022.01055 – ident: ref19 doi: 10.1109/UEMCON47517.2019.8993089 – ident: ref6 doi: 10.1109/ICCVW.2019.00333 – ident: ref10 doi: 10.1007/978-1-4842-6168-2_10 – ident: ref14 doi: 10.1109/34.598228 – ident: ref31 doi: 10.1109/TBIOM.2023.3242085 – ident: ref21 doi: 10.1109/ACCESS.2024.3447018 – ident: ref9 doi: 10.1109/ICCVW.2019.00323 – ident: ref27 doi: 10.1016/j.engappai.2023.106513 – ident: ref34 doi: 10.1109/CVPR42600.2020.00835 – ident: ref17 doi: 10.1109/CVPR46437.2021.01352 – ident: ref32 doi: 10.1609/aaai.v29i1.9797 – ident: ref7 doi: 10.1109/ACCESS.2023.3266068 – ident: ref25 doi: 10.1007/978-3-030-01264-9_8 – ident: ref20 doi: 10.1145/3289602.3293972 – ident: ref26 doi: 10.1364/OL.422930 |
SSID | ssj0000816957 |
Score | 2.3338315 |
Snippet | In recent years, the rapid development of lightweight convolutional neural networks (CNNs) and lightweight vision transformers (ViTs) has led to significant... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 120533 |
SubjectTerms | Accuracy Artificial neural networks attendance machine Computational efficiency Convolutional codes Convolutional neural networks Electronic devices Embedded systems Face recognition Kernel lightweight local features Modules multi-scale Neural networks Parameterization Performance evaluation Power management Real time Real-time systems Time and attendance systems Transformers |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4VTu2hQEvVAK186LEbdv1alltIG6EW0gqKxM3y84KUVCUREr-eGa8DhQqpt5W1D9tjj7-ZnfkG4BPnLXedkqj9VKqk1a5yrZOVR2OosY2NnSeH_ulUH1_Ib5fqsiSr51yYGGMOPotDusz_8sPcL8lVto9HFeJvpdZgDS23Plnr3qFCFSQ61RZmoabu9kfjMQ4CbUCuhkIRb7x8dPpkkv5SVeUfVZzPl8kGTFc968NKrobLhRv62yekjf_d9U14XZAmG_VLYwtexNkbePUX_-Bb-HF6_n1ifZzGxSEbsRMy1G-yr5RRMztbRRfNZ4xYPPB10z5snCHWZSfzm-onVVljX2JWONtwMfn6a3xclQoLleetlpUN9YELXAurVLS8bV1odKqTDpFybiPCP-4R8NmgO1SEQlohHWIGnlrfqKTEO1ifzWfxPTAXtKW6v2SgyUiseAdKi0yIlpSWYQCfVzNvfvdEGiYbIHVnekEZEpQpghrAEUnn_lZiwc4NOKumbCrjRVcHj8uQ0nGTCFa1CREOYpAOgVNSA9gmSTx8rwhhAHsrYZuyZa-N4Nma4rzeeeaxXXhJXewdMHuwvvizjB8Qkizcx7wU7wCVwtrD priority: 102 providerName: IEEE |
Title | MSKFaceNet: A Lightweight Face Recognition Neural Network for Low-Power Devices |
URI | https://ieeexplore.ieee.org/document/11062655 https://www.proquest.com/docview/3230561220 https://doaj.org/article/c390dcebe2694f3da57f8198189710f5 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQH0UUSuWBkdDEsZ2GrRSqCtqCgErdLDu2xxRBUf8-d04KRQwsrFYUx3fOvXuW7x0h54xlzOSCQ_QTPuJamshkhkcFkKFEJ9rlBR7oT6ZyNON3czHfaPWFd8IqeeDKcN0CSLktYCosufSp1SLzgGKAMzmAow_qpYB5G2QqxOBeInOR1TJDSZx3-4MBrAgIIROXqUARef4DioJif91i5VdcDmAz3CO7dZZI-9XX7ZMtVx6QnQ3twEPyMHm-H-rCTd3yivbpGEn2KpxzUhymT-ubQYuSogIHvG5aXfmmkKfS8WIVPWKHNHrjQrBoktnw9mUwiuruCFHBMskjbeOesUymWginWZYZm0gfe2kd1ss6SN1YAcmatjKHIJZynXIDeM98ViTCi_SINMpF6Y4JNVZq7NmL5Io7VLTrCZkGMTMvJLctcrE2lHqtRDBUIA9xriq7KrSrqu3aItdozK9HUcE6DIBfVe1X9ZdfW6SJrvieD7grkwLG22vfqPp3e1cpC0yIsfjkP-Y-Jdu4nuqkpU0ay7cPdwa5x9J0wjbrhDLBT-640aQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BOQAHnkUECuyBI07tfbnmFgJRoIlB0Eq9rfZ5QUqqkqgSv56Z9aa8hMTNWvmx3lnPfDOe-QbgJectd52SqP1UqqTVrnKtk5VHZ6ixjY2dp4D-stfzU_nhTJ2VYvVcCxNjzMlncUyH-V9-WPsthcoO0VQh_lbqOtxAw6-aoVzrKqRCPSQ61RZuoabuDifTKb4GeoFcjYUi5nj5m_3JNP2lr8pfyjhbmNld6HdzGxJLvo63Gzf23_-gbfzvyd-DOwVrssmwOe7Dtbh6ALd_YSB8CB-XX45n1sc-bl6zCVuQq36Zo6WMhtnnXX7ResWIxwNv1w-J4wzRLlusL6tP1GeNvY1Z5ezD6ezdyXRelR4LleetlpUN9ZELXAurVLS8bV1odKqTDpGqbiMCQO4R8tmgO1SFQlohHaIGnlrfqKTEI9hbrVfxMTAXtKXOv-SiyUi8eEdKi0yJlpSWYQSvditvzgcqDZNdkLozg6AMCcoUQY3gDUnn6lTiwc4DuKqmfFbGi64OHjciFeQmEaxqE2IcRCEdQqekRrBPkvj5vCKEERzshG3KR_vNCJ79Kc7rJ_-47AXcnJ8sF2bxvj9-CrdoukM45gD2Nhfb-AwBysY9z9vyByqZ3gw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSKFaceNet%3A+A+Lightweight+Face+Recognition+Neural+Network+for+Low-Power+Devices&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Peng&rft.au=Ma%2C+Qinghua&rft.au=Li%2C+Yi&rft.au=Cui%2C+Min&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=120533&rft.epage=120546&rft_id=info:doi/10.1109%2FACCESS.2025.3584814&rft.externalDocID=11062655 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |