In Situ Construction of Flexible Low‐Dimensional van der Waals Material Photodetectors

By virtue of the excellent flexibility, conformability, portability, and aesthetics, wearable photodetectors have attracted worldwide research enthusiasm over the past decade. However, traditional bulk covalent semiconductors are difficult to be applied to wearable photodetectors due to their pronou...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Physics Research Vol. 4; no. 6
Main Authors Chen, Yu, Liang, Huanrong, Guan, Xinyi, Ma, Yuhang, Zheng, Zhaoqiang, Ma, Churong, Du, Chun, Yao, Jiandong
Format Journal Article
LanguageEnglish
Published Wiley-VCH 01.06.2025
Subjects
Online AccessGet full text
ISSN2751-1200
2751-1200
DOI10.1002/apxr.202400183

Cover

Loading…
Abstract By virtue of the excellent flexibility, conformability, portability, and aesthetics, wearable photodetectors have attracted worldwide research enthusiasm over the past decade. However, traditional bulk covalent semiconductors are difficult to be applied to wearable photodetectors due to their pronounced rigidity. Profiting from the self‐passivated surface, excellent carrier mobility, and strong light‐harvesting ability, low‐dimensional van der Waals materials (LDvdWMs) have shown immense potential for application in wearable optoelectronic devices. Nevertheless, the preparation of flexible photodetectors through exfoliation/transfer or solution methods has suffered from severe drawbacks spanning low production yield, severe contamination, and uncompetitive device properties. Therefore, researchers have been committed to exploring alternative preparation strategies. In response to this, the current review systematically summarizes the latest research advancements in directly constructing LDvdWM photodetectors on flexible substrates, including developing low‐melting‐point targeted materials, electron‐beam‐enabled crystallization, photonic crystallization, modified chemical vapor deposition, and pulsed‐laser deposition, with the elaboration on the fundamental mechanisms enabling in situ deposition of LDvdWMs. Finally, the tricky challenges standing in the way in this field have been epitomized and potential solutions addressing them have been proposed. On the whole, this review underscores distinctive pathways for the development of flexible LDvdWM photodetectors, which probably usher in next‐generation wearable optoelectronic technologies. This review summarizes the progress in directly constructing low‐dimensional van der Waals material photodetectors on flexible substrates, including developing low‐melting‐point materials, electron‐beam‐enabled crystallization, photonic crystallization, modified chemical vapor deposition, and pulsed‐laser deposition, with a keen eye on fundamental mechanisms. Finally, prevalent challenges have been epitomized and potential solutions have been proposed, providing new pathways for next‐generation wearable technologies.
AbstractList Abstract By virtue of the excellent flexibility, conformability, portability, and aesthetics, wearable photodetectors have attracted worldwide research enthusiasm over the past decade. However, traditional bulk covalent semiconductors are difficult to be applied to wearable photodetectors due to their pronounced rigidity. Profiting from the self‐passivated surface, excellent carrier mobility, and strong light‐harvesting ability, low‐dimensional van der Waals materials (LDvdWMs) have shown immense potential for application in wearable optoelectronic devices. Nevertheless, the preparation of flexible photodetectors through exfoliation/transfer or solution methods has suffered from severe drawbacks spanning low production yield, severe contamination, and uncompetitive device properties. Therefore, researchers have been committed to exploring alternative preparation strategies. In response to this, the current review systematically summarizes the latest research advancements in directly constructing LDvdWM photodetectors on flexible substrates, including developing low‐melting‐point targeted materials, electron‐beam‐enabled crystallization, photonic crystallization, modified chemical vapor deposition, and pulsed‐laser deposition, with the elaboration on the fundamental mechanisms enabling in situ deposition of LDvdWMs. Finally, the tricky challenges standing in the way in this field have been epitomized and potential solutions addressing them have been proposed. On the whole, this review underscores distinctive pathways for the development of flexible LDvdWM photodetectors, which probably usher in next‐generation wearable optoelectronic technologies.
By virtue of the excellent flexibility, conformability, portability, and aesthetics, wearable photodetectors have attracted worldwide research enthusiasm over the past decade. However, traditional bulk covalent semiconductors are difficult to be applied to wearable photodetectors due to their pronounced rigidity. Profiting from the self‐passivated surface, excellent carrier mobility, and strong light‐harvesting ability, low‐dimensional van der Waals materials (LDvdWMs) have shown immense potential for application in wearable optoelectronic devices. Nevertheless, the preparation of flexible photodetectors through exfoliation/transfer or solution methods has suffered from severe drawbacks spanning low production yield, severe contamination, and uncompetitive device properties. Therefore, researchers have been committed to exploring alternative preparation strategies. In response to this, the current review systematically summarizes the latest research advancements in directly constructing LDvdWM photodetectors on flexible substrates, including developing low‐melting‐point targeted materials, electron‐beam‐enabled crystallization, photonic crystallization, modified chemical vapor deposition, and pulsed‐laser deposition, with the elaboration on the fundamental mechanisms enabling in situ deposition of LDvdWMs. Finally, the tricky challenges standing in the way in this field have been epitomized and potential solutions addressing them have been proposed. On the whole, this review underscores distinctive pathways for the development of flexible LDvdWM photodetectors, which probably usher in next‐generation wearable optoelectronic technologies. This review summarizes the progress in directly constructing low‐dimensional van der Waals material photodetectors on flexible substrates, including developing low‐melting‐point materials, electron‐beam‐enabled crystallization, photonic crystallization, modified chemical vapor deposition, and pulsed‐laser deposition, with a keen eye on fundamental mechanisms. Finally, prevalent challenges have been epitomized and potential solutions have been proposed, providing new pathways for next‐generation wearable technologies.
By virtue of the excellent flexibility, conformability, portability, and aesthetics, wearable photodetectors have attracted worldwide research enthusiasm over the past decade. However, traditional bulk covalent semiconductors are difficult to be applied to wearable photodetectors due to their pronounced rigidity. Profiting from the self‐passivated surface, excellent carrier mobility, and strong light‐harvesting ability, low‐dimensional van der Waals materials (LDvdWMs) have shown immense potential for application in wearable optoelectronic devices. Nevertheless, the preparation of flexible photodetectors through exfoliation/transfer or solution methods has suffered from severe drawbacks spanning low production yield, severe contamination, and uncompetitive device properties. Therefore, researchers have been committed to exploring alternative preparation strategies. In response to this, the current review systematically summarizes the latest research advancements in directly constructing LDvdWM photodetectors on flexible substrates, including developing low‐melting‐point targeted materials, electron‐beam‐enabled crystallization, photonic crystallization, modified chemical vapor deposition, and pulsed‐laser deposition, with the elaboration on the fundamental mechanisms enabling in situ deposition of LDvdWMs. Finally, the tricky challenges standing in the way in this field have been epitomized and potential solutions addressing them have been proposed. On the whole, this review underscores distinctive pathways for the development of flexible LDvdWM photodetectors, which probably usher in next‐generation wearable optoelectronic technologies.
Author Du, Chun
Ma, Yuhang
Yao, Jiandong
Ma, Churong
Guan, Xinyi
Zheng, Zhaoqiang
Chen, Yu
Liang, Huanrong
Author_xml – sequence: 1
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: Sun Yat‐sen University
– sequence: 2
  givenname: Huanrong
  surname: Liang
  fullname: Liang, Huanrong
  organization: Sun Yat‐sen University
– sequence: 3
  givenname: Xinyi
  surname: Guan
  fullname: Guan, Xinyi
  organization: Sun Yat‐sen University
– sequence: 4
  givenname: Yuhang
  surname: Ma
  fullname: Ma, Yuhang
  organization: Sun Yat‐sen University
– sequence: 5
  givenname: Zhaoqiang
  surname: Zheng
  fullname: Zheng, Zhaoqiang
  email: zhengzhq5@mail2.sysu.edu.cn
  organization: Guangdong University of Technology
– sequence: 6
  givenname: Churong
  surname: Ma
  fullname: Ma, Churong
  organization: Jinan University
– sequence: 7
  givenname: Chun
  surname: Du
  fullname: Du, Chun
  organization: Jinan University
– sequence: 8
  givenname: Jiandong
  orcidid: 0000-0003-3499-2928
  surname: Yao
  fullname: Yao, Jiandong
  email: yaojd3@mail.sysu.edu.cn
  organization: Sun Yat‐sen University
BookMark eNqFkLlOxDAQhi0EEmdL7RfYxWN746REy7XSIhCHoLPG8RiMQoyccHU8As_IkxBYhOioZvQfX_Gvs-U2tcTYNogxCCF38OElj6WQWggo1RJbk2YCI5BCLP_5V9lW192JoVBWoDSssetZy89j_8inqe36_Fj3MbU8BX7Q0Et0DfF5ev54e9-L99R2g4cNf8KWe8r8CrHp-DH2lOMgn96mPnnqqe5T7jbZShhs2vq5G-zyYP9iejSanxzOprvzUS1NoUYOEQKACmVVGyiMchCItK6o8IBaFSVCaaQKhdNOIhoRSmdcgaUOzgz5DTZbcH3CO_uQ4z3mV5sw2m8h5RuLuY91Q9b7iZC1d974oLWSLviKsESBk6ryFAbWeMGqc-q6TOGXB8J-zWy_Zra_Mw-FyaLwHBt6_Sdtd0-vz0AqUOoTyw-E1Q
Cites_doi 10.1002/adfm.202312692
10.1002/adfm.202003495
10.1021/acsnano.4c02863
10.1002/adfm.201806611
10.1039/C8NR00108A
10.1002/adom.202401723
10.1038/s41928-024-01250-9
10.1002/smll.202401216
10.1039/D3MH00733B
10.1038/natrevmats.2016.100
10.1002/adfm.202305252
10.1038/nphoton.2010.157
10.1039/C7CE00926G
10.1063/5.0216735
10.1038/s41467-019-09016-0
10.1002/adom.202401035
10.1002/adsr.202300029
10.1007/s12274-024-6895-8
10.1088/1361-6463/ab3716
10.1002/adma.202413247
10.1039/C7RA06353A
10.1002/adfm.202413903
10.1021/acsaelm.3c00362
10.1002/adma.202101150
10.1002/adma.202313721
10.1021/acsnano.0c10250
10.1126/science.adn9476
10.1002/lpor.202401319
10.1063/1.5139467
10.1088/1361-6641/abb185
10.1088/2631-7990/ad6aae
10.1016/j.jmst.2023.12.059
10.1039/C7NR01016H
10.1016/j.jmst.2024.10.049
10.1002/adom.202401114
10.1002/adfm.201601019
10.1088/0957-4484/27/22/225501
10.1021/acsnano.4c08636
10.1088/2631-7990/ad57a0
10.1002/adma.201600606
10.1088/2631-7990/ad6aad
10.1016/j.jmst.2024.05.044
10.1063/5.0021330
10.1021/acsnano.3c05178
10.1002/adom.202301055
10.1039/D3MH01636F
10.1002/adma.202411137
10.1007/BF01045361
10.1007/s42864-021-00098-2
10.1016/j.mattod.2022.03.015
10.1039/D3MH01093G
10.1038/s41928-023-00983-3
10.1007/s40843-020-1354-2
10.1021/acsami.3c13552
10.1021/acsami.8b12896
10.1039/D4TC03507K
10.1021/acsnano.2c05114
10.1002/adma.202400858
10.1088/1361-6528/aa8317
10.1088/2053-1583/ad9287
10.1039/C6TC02296K
10.1016/j.jallcom.2024.177366
10.1002/adom.202300463
10.1002/adma.202409898
10.1021/acsami.0c19666
10.1016/j.nanoms.2019.09.009
10.1039/D3NR03538G
10.1063/5.0130479
10.1002/adfm.201909849
10.1088/2752-5724/ad2f6a
10.1021/acsami.9b04045
10.1002/advs.202403463
10.1039/C4NR07313D
10.1002/lpor.202400819
10.1021/acsnano.4c00787
10.1002/adma.201808138
10.1038/s41598-017-00865-7
10.1088/2752-5724/ad7c6c
10.1116/6.0000253
10.1002/lpor.202400669
10.1088/2053-1583/ab7a72
10.1002/adfm.202300159
10.1088/2752-5724/ad47cf
10.1088/2752-5724/ad89e2
10.1039/D4NR03543G
10.1038/s41565-023-01460-w
10.1002/smll.202405645
10.1021/acsnano.3c10411
10.1002/adfm.201703448
10.1038/nmat3673
10.1002/adma.201501678
10.1021/acsnano.1c00571
10.1021/acs.nanolett.4c00956
10.1039/D4NR00615A
10.1002/smll.201704524
10.1002/adfm.202406434
10.1002/adfm.202416994
10.1088/2053-1583/aa6fd2
10.1021/acs.chemmater.1c02054
10.1002/adfm.201600318
10.1021/acsanm.3c01732
10.1021/nl500817g
10.1021/acsnano.1c01643
10.1088/1361-6528/aadc73
10.1002/adma.202211562
10.1016/j.jmst.2023.05.007
10.1126/science.adg8017
10.1039/D4NH00170B
10.1021/acsnano.3c09527
10.1016/j.rinp.2019.102841
10.1016/0925-8388(91)90053-X
10.1021/acsami.7b02166
10.1088/1361-648X/ac1368
10.1007/s12613-022-2426-3
10.1002/adfm.201701611
10.1002/lpor.202300286
10.1002/lpor.202400661
10.1088/1361-6528/abc285
10.1002/adma.202301020
10.1039/C9NR02173F
10.1021/acsnano.8b04945
10.1002/adfm.202300588
10.1002/adma.201803165
10.1039/D2MH01495E
10.1002/adfm.202316267
10.1002/adfm.202302984
10.1002/adma.202410275
10.1002/adfm.202403770
10.1038/s41928-024-01129-9
10.1021/acsanm.3c05369
10.1088/1361-6528/ac2b6c
10.1002/adfm.202202580
10.1002/adom.202102335
10.1021/acsami.4c01605
10.1016/j.mattod.2024.03.004
10.1016/j.jmst.2024.08.011
10.1021/acsnano.4c01436
10.1002/adfm.202415491
10.1126/sciadv.adn0560
10.1038/s41578-023-00583-9
10.1002/aelm.202300340
10.1038/s41467-017-01824-6
10.1016/j.mssp.2023.107616
10.1016/j.vacuum.2020.109950
10.1002/aelm.201900566
10.1002/smll.201501488
10.1116/6.0002544
10.1002/adma.202404013
10.1021/acsnano.3c12938
10.1021/acs.nanolett.4c02533
10.1002/smll.202406217
10.1088/2752-5724/ac72b9
10.1016/j.matlet.2024.136285
10.1021/acsnano.3c05849
10.1063/1.2115075
10.1039/D2NH00557C
10.1002/lpor.202400480
10.1021/nl400107k
10.1016/j.solmat.2024.112736
10.1063/5.0021781
10.1038/s41467-024-52944-9
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
Copyright_xml – notice: 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/apxr.202400183
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2751-1200
EndPage n/a
ExternalDocumentID oai_doaj_org_article_dd502cdbd7df4432bfd9ea8a0a599def
10_1002_apxr_202400183
APXR12313
Genre reviewArticle
GrantInformation_xml – fundername: Guangzhou Science and Technology Programme
  funderid: 2025A04J2596
– fundername: Natural Science Foundation of Guangdong Province
  funderid: 2022A1515011487; 2021A1515110403; 2022A1515110159; 2023A1515010652
– fundername: National Natural Science Foundation of China
  funderid: 52272175
GroupedDBID 0R~
24P
88I
AAFWJ
ABJCF
ABUWG
ACCMX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
KB.
M2P
M~E
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
ARCSS
PQGLB
PUEGO
WIN
ID FETCH-LOGICAL-c2763-baa1f113f89c71673b1fee449e6d1a4368a18723f6b4b2aa70f8b7b6a84fb7673
IEDL.DBID DOA
ISSN 2751-1200
IngestDate Wed Aug 27 01:31:27 EDT 2025
Thu Jul 03 08:26:57 EDT 2025
Fri Jun 13 09:31:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2763-baa1f113f89c71673b1fee449e6d1a4368a18723f6b4b2aa70f8b7b6a84fb7673
ORCID 0000-0003-3499-2928
OpenAccessLink https://doaj.org/article/dd502cdbd7df4432bfd9ea8a0a599def
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_dd502cdbd7df4432bfd9ea8a0a599def
crossref_primary_10_1002_apxr_202400183
wiley_primary_10_1002_apxr_202400183_APXR12313
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Advanced Physics Research
PublicationYear 2025
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 2019; 11
2019; 10
2020; 16
2024; 34
2024
2024; 36
2022; 29
2024; 6
2024; 7
2024; 9
2024; 1010
2014; 14
2024; 20
2019; 29
2018; 30
2024; 21
2024; 4
2022; 32
2024; 3
2024; 24
2022; 33
2010; 4
2024; 193
2018; 29
2025; 210
1991; 177
2019; 5
2023; 164
2019; 31
2019; 1
2020; 38
2024; 363
2005; 87
2020; 35
2024; 10
2024; 11
2024; 12
2024; 125
2024; 15
2024; 16
2024; 17
2024; 18
2025; 217
2016; 4
2025; 225
2023; 41
1990; 25
2020; 30
2022; 10
2022; 1
2018; 12
2016; 28
2018; 10
2016; 27
2016; 26
2022; 16
2018; 14
2017; 7
2017; 8
2023; 35
2023; 380
2017; 2
2023; 33
2017; 4
2023; 5
2019; 52
2020; 63
2023; 6
2023; 8
2023; 9
2024; 74
2024; 384
2025; 37
2025; 35
2023; 2
2024; 268
2017; 9
2020; 8
2020; 7
2021; 32
2021; 33
2013; 13
2013; 12
2025; 21
2023; 10
2021; 5
2023; 11
2023; 17
2023; 18
2023; 15
2017; 28
2017; 27
2015; 11
2023; 122
2025; 19
2021; 184
2025; 12
2015; 7
2021; 13
2021; 15
2015; 27
2020; 116
2020; 117
2017; 19
2022; 55
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
Chen J. (e_1_2_9_133_1) 2024; 18
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_18_1
e_1_2_9_160_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_156_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
Ghods S. (e_1_2_9_127_1) 2024; 18
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_161_1
Zhang Y. (e_1_2_9_35_1) 2024; 4
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_29_1
e_1_2_9_150_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 4811
  year: 2024
  publication-title: ACS Nano
– volume: 7
  start-page: 1176
  year: 2024
  publication-title: Nat. Electron.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2024
  publication-title: Int. J. Extreme Manuf.
– volume: 16
  year: 2024
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2024
  publication-title: Mater. Futures
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 10
  start-page: 9338
  year: 2018
  publication-title: Nanoscale
– volume: 380
  start-page: 1169
  year: 2023
  publication-title: Science
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 12
  start-page: 8758
  year: 2018
  publication-title: ACS Nano
– volume: 8
  start-page: 1664
  year: 2017
  publication-title: Nat. Commun.
– volume: 35
  year: 2020
  publication-title: Semicond. Sci. Technol.
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 2
  year: 2023
  publication-title: Adv. Sens. Res.
– volume: 4
  year: 2017
  publication-title: 2D Mater.
– volume: 5
  start-page: 2862
  year: 2023
  publication-title: ACS Appl. Electron. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 325
  year: 2021
  publication-title: Tungsten
– volume: 363
  year: 2024
  publication-title: Mater. Lett.
– volume: 18
  year: 2024
  publication-title: Laser Photonics Rev.
– volume: 74
  start-page: 85
  year: 2024
  publication-title: Mater. Today
– volume: 16
  year: 2024
  publication-title: Nanoscale
– volume: 16
  year: 2020
  publication-title: Results Phys.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 20
  year: 2024
  publication-title: Small
– volume: 26
  start-page: 4405
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 8710
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 225
  start-page: 49
  year: 2025
  publication-title: J. Mater. Sci. Technol.
– year: 2024
  publication-title: Laser Photonics Rev.
– volume: 116
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 5263
  year: 2023
  publication-title: Mater. Horiz.
– volume: 13
  start-page: 1649
  year: 2013
  publication-title: Nano Lett.
– volume: 33
  year: 2021
  publication-title: J. Phys.: Condens. Matter
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 19
  year: 2025
  publication-title: Laser Photonics Rev.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 8
  start-page: 587
  year: 2023
  publication-title: Nat. Rev. Mater.
– volume: 14
  start-page: 2800
  year: 2014
  publication-title: Nano Lett.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 26
  start-page: 4551
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 164
  year: 2023
  publication-title: Mater. Sci. Semicond. Process.
– volume: 9
  start-page: 1599
  year: 2024
  publication-title: Nanoscale Horiz.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 8589
  year: 2024
  publication-title: Nat. Commun.
– volume: 15
  year: 2023
  publication-title: Nanoscale
– volume: 12
  year: 2025
  publication-title: 2D Mater.
– volume: 63
  start-page: 1560
  year: 2020
  publication-title: Sci. China Mater.
– volume: 6
  year: 2023
  publication-title: ACS Appl. Nano Mater.
– volume: 8
  year: 2020
  publication-title: APL Mater.
– year: 2024
  publication-title: Adv. Mater.
– volume: 32
  year: 2021
  publication-title: Nanotechnology
– volume: 184
  year: 2021
  publication-title: Vacuum
– volume: 4
  start-page: 527
  year: 2010
  publication-title: Nat. Photonics
– volume: 12
  year: 2024
  publication-title: J. Mater. Chem. C
– volume: 24
  start-page: 6529
  year: 2024
  publication-title: Nano Lett.
– volume: 164
  start-page: 150
  year: 2023
  publication-title: J. Mater. Sci. Technol.
– volume: 21
  year: 2024
  publication-title: Small
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 16
  start-page: 1033
  year: 2024
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 641
  year: 2023
  publication-title: Nanoscale Horiz.
– volume: 19
  start-page: 5341
  year: 2017
  publication-title: CrystEngComm
– volume: 11
  start-page: 792
  year: 2024
  publication-title: Mater. Horiz.
– volume: 177
  start-page: 17
  year: 1991
  publication-title: J. Alloys Compd.
– volume: 10
  start-page: 1188
  year: 2019
  publication-title: Nat. Commun.
– volume: 384
  start-page: 1100
  year: 2024
  publication-title: Science
– volume: 12
  year: 2024
  publication-title: Adv. Opt. Mater.
– volume: 12
  start-page: 754
  year: 2013
  publication-title: Nat. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 122
  year: 2023
  publication-title: Appl. Phys. Lett.
– volume: 4
  year: 2024
  publication-title: Microstructures
– volume: 15
  start-page: 8638
  year: 2021
  publication-title: ACS Nano
– volume: 15
  start-page: 1858
  year: 2021
  publication-title: ACS Nano
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 4
  start-page: 8094
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 28
  year: 2017
  publication-title: Nanotechnology
– volume: 1
  year: 2022
  publication-title: Mater. Futures
– volume: 10
  year: 2024
  publication-title: Sci. Adv.
– volume: 7
  start-page: 786
  year: 2017
  publication-title: Sci. Rep.
– volume: 38
  year: 2020
  publication-title: J. Vac. Sci. Technol., A
– volume: 18
  year: 2024
  publication-title: ACS Nano
– volume: 87
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 9
  year: 2023
  publication-title: Adv. Electron. Mater.
– volume: 1010
  year: 2024
  publication-title: J. Alloys Compd.
– volume: 125
  year: 2024
  publication-title: Appl. Phys. Lett.
– volume: 17
  year: 2023
  publication-title: ACS Nano
– volume: 11
  year: 2023
  publication-title: Adv. Opt. Mater.
– volume: 217
  start-page: 9
  year: 2025
  publication-title: J. Mater. Sci. Technol.
– volume: 6
  start-page: 506
  year: 2023
  publication-title: Nat. Electron.
– volume: 52
  year: 2019
  publication-title: J. Phys. D: Appl. Phys.
– volume: 17
  start-page: 9756
  year: 2024
  publication-title: Nano Res.
– volume: 35
  year: 2025
  publication-title: Adv. Funct. Mater.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 55
  start-page: 74
  year: 2022
  publication-title: Mater. Today
– volume: 10
  start-page: 3369
  year: 2023
  publication-title: Mater. Horiz.
– volume: 33
  start-page: 7417
  year: 2021
  publication-title: Chem. Mater.
– volume: 11
  start-page: 5423
  year: 2015
  publication-title: Small
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 41
  year: 2023
  publication-title: J. Vac. Sci. Technol., A
– volume: 1
  start-page: 299
  year: 2019
  publication-title: Nano Mater. Sci.
– volume: 28
  start-page: 5025
  year: 2016
  publication-title: Adv. Mater.
– year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 1623
  year: 1990
  publication-title: J. Mater. Sci.
– volume: 7
  start-page: 7252
  year: 2015
  publication-title: Nanoscale
– volume: 210
  start-page: 20
  year: 2025
  publication-title: J. Mater. Sci. Technol.
– volume: 33
  year: 2022
  publication-title: Nanotechnology
– volume: 27
  year: 2016
  publication-title: Nanotechnology
– volume: 29
  start-page: 671
  year: 2022
  publication-title: Int. J. Miner., Metall. Mater.
– volume: 7
  year: 2020
  publication-title: 2D Mater.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  year: 2024
  publication-title: Adv. Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 21
  year: 2025
  publication-title: Small
– volume: 7
  start-page: 2992
  year: 2024
  publication-title: ACS Appl. Nano Mater.
– volume: 24
  year: 2024
  publication-title: Nano Lett.
– volume: 17
  year: 2023
  publication-title: Laser Photonics Rev.
– volume: 117
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 216
  year: 2024
  publication-title: Nat. Electron.
– volume: 37
  year: 2025
  publication-title: Adv. Mater.
– volume: 27
  start-page: 5223
  year: 2015
  publication-title: Adv. Mater.
– volume: 193
  start-page: 217
  year: 2024
  publication-title: J. Mater. Sci. Technol.
– volume: 9
  start-page: 6246
  year: 2017
  publication-title: Nanoscale
– volume: 268
  year: 2024
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 1439
  year: 2023
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 2579
  year: 2023
  publication-title: Mater. Horiz.
– ident: e_1_2_9_152_1
  doi: 10.1002/adfm.202312692
– ident: e_1_2_9_100_1
  doi: 10.1002/adfm.202003495
– ident: e_1_2_9_124_1
  doi: 10.1021/acsnano.4c02863
– ident: e_1_2_9_144_1
  doi: 10.1002/adfm.201806611
– ident: e_1_2_9_89_1
  doi: 10.1039/C8NR00108A
– ident: e_1_2_9_50_1
  doi: 10.1002/adom.202401723
– ident: e_1_2_9_147_1
  doi: 10.1038/s41928-024-01250-9
– ident: e_1_2_9_130_1
  doi: 10.1002/smll.202401216
– ident: e_1_2_9_39_1
  doi: 10.1039/D3MH00733B
– ident: e_1_2_9_2_1
  doi: 10.1038/natrevmats.2016.100
– ident: e_1_2_9_148_1
  doi: 10.1002/adfm.202305252
– ident: e_1_2_9_1_1
  doi: 10.1038/nphoton.2010.157
– ident: e_1_2_9_86_1
  doi: 10.1039/C7CE00926G
– ident: e_1_2_9_111_1
  doi: 10.1063/5.0216735
– ident: e_1_2_9_95_1
  doi: 10.1038/s41467-019-09016-0
– ident: e_1_2_9_163_1
  doi: 10.1002/adom.202401035
– ident: e_1_2_9_132_1
  doi: 10.1002/adsr.202300029
– ident: e_1_2_9_46_1
  doi: 10.1007/s12274-024-6895-8
– ident: e_1_2_9_84_1
  doi: 10.1088/1361-6463/ab3716
– ident: e_1_2_9_13_1
  doi: 10.1002/adma.202413247
– ident: e_1_2_9_74_1
  doi: 10.1039/C7RA06353A
– ident: e_1_2_9_15_1
  doi: 10.1002/adfm.202413903
– ident: e_1_2_9_83_1
  doi: 10.1021/acsaelm.3c00362
– ident: e_1_2_9_125_1
  doi: 10.1002/adma.202101150
– ident: e_1_2_9_56_1
  doi: 10.1002/adma.202313721
– ident: e_1_2_9_126_1
  doi: 10.1021/acsnano.0c10250
– ident: e_1_2_9_30_1
  doi: 10.1126/science.adn9476
– ident: e_1_2_9_135_1
  doi: 10.1002/lpor.202401319
– ident: e_1_2_9_116_1
  doi: 10.1063/1.5139467
– ident: e_1_2_9_72_1
  doi: 10.1088/1361-6641/abb185
– ident: e_1_2_9_160_1
  doi: 10.1088/2631-7990/ad6aae
– ident: e_1_2_9_36_1
  doi: 10.1016/j.jmst.2023.12.059
– ident: e_1_2_9_155_1
  doi: 10.1039/C7NR01016H
– ident: e_1_2_9_110_1
  doi: 10.1016/j.jmst.2024.10.049
– ident: e_1_2_9_18_1
  doi: 10.1002/adom.202401114
– ident: e_1_2_9_88_1
  doi: 10.1002/adfm.201601019
– ident: e_1_2_9_108_1
  doi: 10.1088/0957-4484/27/22/225501
– ident: e_1_2_9_10_1
  doi: 10.1021/acsnano.4c08636
– ident: e_1_2_9_14_1
  doi: 10.1088/2631-7990/ad57a0
– ident: e_1_2_9_91_1
  doi: 10.1002/adma.201600606
– ident: e_1_2_9_158_1
  doi: 10.1088/2631-7990/ad6aad
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jmst.2024.05.044
– ident: e_1_2_9_112_1
  doi: 10.1063/5.0021330
– ident: e_1_2_9_20_1
  doi: 10.1021/acsnano.3c05178
– ident: e_1_2_9_98_1
  doi: 10.1002/adom.202301055
– ident: e_1_2_9_154_1
  doi: 10.1039/D3MH01636F
– ident: e_1_2_9_37_1
  doi: 10.1002/adma.202411137
– ident: e_1_2_9_71_1
  doi: 10.1007/BF01045361
– ident: e_1_2_9_49_1
  doi: 10.1007/s42864-021-00098-2
– ident: e_1_2_9_26_1
  doi: 10.1016/j.mattod.2022.03.015
– ident: e_1_2_9_150_1
  doi: 10.1039/D3MH01093G
– ident: e_1_2_9_28_1
  doi: 10.1038/s41928-023-00983-3
– ident: e_1_2_9_137_1
  doi: 10.1007/s40843-020-1354-2
– ident: e_1_2_9_52_1
  doi: 10.1021/acsami.3c13552
– ident: e_1_2_9_94_1
  doi: 10.1021/acsami.8b12896
– ident: e_1_2_9_65_1
  doi: 10.1039/D4TC03507K
– volume: 18
  year: 2024
  ident: e_1_2_9_133_1
  publication-title: ACS Nano
– ident: e_1_2_9_9_1
  doi: 10.1021/acsnano.2c05114
– ident: e_1_2_9_45_1
  doi: 10.1002/adma.202400858
– ident: e_1_2_9_161_1
  doi: 10.1088/1361-6528/aa8317
– ident: e_1_2_9_38_1
  doi: 10.1088/2053-1583/ad9287
– ident: e_1_2_9_109_1
  doi: 10.1039/C6TC02296K
– ident: e_1_2_9_40_1
  doi: 10.1016/j.jallcom.2024.177366
– ident: e_1_2_9_48_1
  doi: 10.1002/adom.202300463
– ident: e_1_2_9_42_1
  doi: 10.1002/adma.202409898
– ident: e_1_2_9_96_1
  doi: 10.1021/acsami.0c19666
– ident: e_1_2_9_53_1
  doi: 10.1016/j.nanoms.2019.09.009
– ident: e_1_2_9_122_1
  doi: 10.1039/D3NR03538G
– ident: e_1_2_9_113_1
  doi: 10.1063/5.0130479
– ident: e_1_2_9_107_1
  doi: 10.1002/adfm.201909849
– ident: e_1_2_9_153_1
  doi: 10.1088/2752-5724/ad2f6a
– ident: e_1_2_9_156_1
  doi: 10.1021/acsami.9b04045
– ident: e_1_2_9_47_1
  doi: 10.1002/advs.202403463
– ident: e_1_2_9_59_1
  doi: 10.1039/C4NR07313D
– ident: e_1_2_9_134_1
  doi: 10.1002/lpor.202400819
– ident: e_1_2_9_103_1
  doi: 10.1021/acsnano.4c00787
– ident: e_1_2_9_17_1
  doi: 10.1002/adma.201808138
– ident: e_1_2_9_64_1
  doi: 10.1038/s41598-017-00865-7
– ident: e_1_2_9_24_1
  doi: 10.1088/2752-5724/ad7c6c
– ident: e_1_2_9_78_1
  doi: 10.1116/6.0000253
– ident: e_1_2_9_99_1
  doi: 10.1002/lpor.202400669
– ident: e_1_2_9_118_1
  doi: 10.1088/2053-1583/ab7a72
– ident: e_1_2_9_63_1
  doi: 10.1002/adfm.202300159
– ident: e_1_2_9_123_1
  doi: 10.1088/2752-5724/ad47cf
– ident: e_1_2_9_6_1
  doi: 10.1088/2752-5724/ad89e2
– ident: e_1_2_9_4_1
  doi: 10.1039/D4NR03543G
– ident: e_1_2_9_68_1
  doi: 10.1038/s41565-023-01460-w
– ident: e_1_2_9_51_1
  doi: 10.1002/smll.202405645
– ident: e_1_2_9_54_1
  doi: 10.1021/acsnano.3c10411
– ident: e_1_2_9_142_1
  doi: 10.1002/adfm.201703448
– ident: e_1_2_9_92_1
  doi: 10.1038/nmat3673
– ident: e_1_2_9_93_1
  doi: 10.1002/adma.201501678
– ident: e_1_2_9_80_1
  doi: 10.1021/acsnano.1c00571
– ident: e_1_2_9_120_1
  doi: 10.1021/acs.nanolett.4c00956
– ident: e_1_2_9_138_1
  doi: 10.1039/D4NR00615A
– ident: e_1_2_9_66_1
  doi: 10.1002/smll.201704524
– ident: e_1_2_9_151_1
  doi: 10.1002/adfm.202406434
– ident: e_1_2_9_131_1
  doi: 10.1002/adfm.202416994
– ident: e_1_2_9_85_1
  doi: 10.1088/2053-1583/aa6fd2
– ident: e_1_2_9_105_1
  doi: 10.1021/acs.chemmater.1c02054
– ident: e_1_2_9_141_1
  doi: 10.1002/adfm.201600318
– ident: e_1_2_9_157_1
  doi: 10.1021/acsanm.3c01732
– ident: e_1_2_9_58_1
  doi: 10.1021/nl500817g
– ident: e_1_2_9_162_1
  doi: 10.1021/acsnano.1c01643
– ident: e_1_2_9_143_1
  doi: 10.1088/1361-6528/aadc73
– ident: e_1_2_9_115_1
  doi: 10.1002/adma.202211562
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jmst.2023.05.007
– ident: e_1_2_9_27_1
  doi: 10.1126/science.adg8017
– ident: e_1_2_9_25_1
  doi: 10.1039/D4NH00170B
– ident: e_1_2_9_55_1
  doi: 10.1021/acsnano.3c09527
– ident: e_1_2_9_76_1
  doi: 10.1016/j.rinp.2019.102841
– ident: e_1_2_9_73_1
  doi: 10.1016/0925-8388(91)90053-X
– ident: e_1_2_9_117_1
  doi: 10.1021/acsami.7b02166
– ident: e_1_2_9_90_1
  doi: 10.1088/1361-648X/ac1368
– ident: e_1_2_9_69_1
  doi: 10.1007/s12613-022-2426-3
– ident: e_1_2_9_62_1
  doi: 10.1002/adfm.201701611
– ident: e_1_2_9_34_1
  doi: 10.1002/lpor.202300286
– ident: e_1_2_9_33_1
  doi: 10.1002/lpor.202400661
– ident: e_1_2_9_79_1
  doi: 10.1088/1361-6528/abc285
– ident: e_1_2_9_5_1
  doi: 10.1002/adma.202301020
– ident: e_1_2_9_67_1
  doi: 10.1039/C9NR02173F
– ident: e_1_2_9_75_1
  doi: 10.1021/acsnano.8b04945
– ident: e_1_2_9_102_1
  doi: 10.1002/adfm.202300588
– ident: e_1_2_9_21_1
  doi: 10.1002/adma.201803165
– ident: e_1_2_9_32_1
  doi: 10.1039/D2MH01495E
– ident: e_1_2_9_128_1
  doi: 10.1002/adfm.202316267
– ident: e_1_2_9_101_1
  doi: 10.1002/adfm.202302984
– ident: e_1_2_9_12_1
  doi: 10.1002/adma.202410275
– ident: e_1_2_9_149_1
  doi: 10.1002/adfm.202403770
– ident: e_1_2_9_31_1
  doi: 10.1038/s41928-024-01129-9
– ident: e_1_2_9_140_1
  doi: 10.1021/acsanm.3c05369
– ident: e_1_2_9_97_1
  doi: 10.1088/1361-6528/ac2b6c
– ident: e_1_2_9_145_1
  doi: 10.1002/adfm.202202580
– ident: e_1_2_9_43_1
  doi: 10.1002/adom.202102335
– ident: e_1_2_9_121_1
  doi: 10.1021/acsami.4c01605
– ident: e_1_2_9_7_1
  doi: 10.1016/j.mattod.2024.03.004
– ident: e_1_2_9_104_1
  doi: 10.1016/j.jmst.2024.08.011
– ident: e_1_2_9_41_1
  doi: 10.1021/acsnano.4c01436
– ident: e_1_2_9_8_1
  doi: 10.1002/adfm.202415491
– ident: e_1_2_9_129_1
  doi: 10.1126/sciadv.adn0560
– ident: e_1_2_9_3_1
  doi: 10.1038/s41578-023-00583-9
– ident: e_1_2_9_19_1
  doi: 10.1002/aelm.202300340
– ident: e_1_2_9_22_1
  doi: 10.1038/s41467-017-01824-6
– volume: 18
  year: 2024
  ident: e_1_2_9_127_1
  publication-title: ACS Nano
– ident: e_1_2_9_81_1
  doi: 10.1016/j.mssp.2023.107616
– ident: e_1_2_9_77_1
  doi: 10.1016/j.vacuum.2020.109950
– ident: e_1_2_9_119_1
  doi: 10.1002/aelm.201900566
– volume: 4
  year: 2024
  ident: e_1_2_9_35_1
  publication-title: Microstructures
– ident: e_1_2_9_87_1
  doi: 10.1002/smll.201501488
– ident: e_1_2_9_82_1
  doi: 10.1116/6.0002544
– ident: e_1_2_9_164_1
  doi: 10.1002/adma.202404013
– ident: e_1_2_9_23_1
  doi: 10.1021/acsnano.3c12938
– ident: e_1_2_9_44_1
  doi: 10.1021/acs.nanolett.4c02533
– ident: e_1_2_9_61_1
  doi: 10.1002/smll.202406217
– ident: e_1_2_9_159_1
  doi: 10.1088/2752-5724/ac72b9
– ident: e_1_2_9_139_1
  doi: 10.1016/j.matlet.2024.136285
– ident: e_1_2_9_60_1
  doi: 10.1021/acsnano.3c05849
– ident: e_1_2_9_146_1
  doi: 10.1063/1.2115075
– ident: e_1_2_9_114_1
  doi: 10.1039/D2NH00557C
– ident: e_1_2_9_136_1
  doi: 10.1002/lpor.202400480
– ident: e_1_2_9_57_1
  doi: 10.1021/nl400107k
– ident: e_1_2_9_70_1
  doi: 10.1016/j.solmat.2024.112736
– ident: e_1_2_9_106_1
  doi: 10.1063/5.0021781
– ident: e_1_2_9_29_1
  doi: 10.1038/s41467-024-52944-9
SSID ssj0002891341
Score 2.3066492
Snippet By virtue of the excellent flexibility, conformability, portability, and aesthetics, wearable photodetectors have attracted worldwide research enthusiasm over...
Abstract By virtue of the excellent flexibility, conformability, portability, and aesthetics, wearable photodetectors have attracted worldwide research...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms flexible photodetectors
in situ fabrication
low‐dimensional van der Waals materials
low‐temperature growth
wearable devices
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1NS8MwGMeDzosXUVScb-QgeAprXtomx_kypjgZvuBuJWkSFaQdW0WPfgQ_o5_EJN2qO4nXkrbwvCRP_01-DwBHlMe5VkQipjFDLFcYKZYkSHLFqE0iZoKUPbhO-vfschSPfp3ir_kQjeDmMyPM1z7BpZp2fqChcvzueZ5-D6QLy2Ww4s_Xeno-YcNGZSH-L1xoX0nSGCPsYmJOboxIZ_ERCytTAPgvFqxhxemtg7VZqQi7tW83wJIpNsHoooC3z9Ur9J025-xXWFrY82RL9WLgVfn29fF55qn9NXEDumIZajOBD9LFGhzIKkQdHD6VValNFXT76Ra4753fnfbRrDsCyombFJCSEluMqeUidx89KVXYGsOYMInG0oPlJeYpcQZXzDlDppHlKlWJ5Myq1I3fBq2iLMwOgJyIWIlYG68CceOKSBppjuMcs1xQKtrgeG6ZbFxDMLIad0wyb8OssWEbnHjDNaM8vDpcKCeP2SwXMq3jiLgI0am2jFGirBZGchnJWAhtbBvUjv_jXVl3OLpxCy-mu_-9YQ-sEt_HN6gp-6Dl3GUOXHFRqcMQP9_iBMiK
  priority: 102
  providerName: Wiley-Blackwell
Title In Situ Construction of Flexible Low‐Dimensional van der Waals Material Photodetectors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400183
https://doaj.org/article/dd502cdbd7df4432bfd9ea8a0a599def
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7uRFFBXnj5GD4Kmu-dE2OU7dmOJkqMPeStIkqIx2aEVP4p_g3-hfYpJuYzvt4qWHEpLyfY-8l9fweQCcEBblSmIRUIVoQHOJAknjOBBMUmLikGpfyh7cxv0RvU6jdKHVl7sTVuOBa-HaSkUhttOpRBlKCZZGcS2YCEXEudLG7b425i0cpl7q32eOVDajNIa4LSafDv_prkwiRpaikIf1LyenPrr0tsDmNC2EnfpztsGaLnZAelXA--fqHbqumjPOKywN7DmKpRxreFN-_H7_XDpCf03XgDYxhkq_wkdh_QoOROU9DA6fyqpUuvI1-rddMOp1Hy76wbQTQpBjuwEEUghkECKG8dwecBIikdGaUq5jhYSDyAvEEmzFldQKL5LQMJnIWDBqZGLH74FGURZ6H0CGeSR5pLSr-DBtE0YSKoaiHNGcE8Kb4HSmTDapgRdZjTbGmdMwm2vYBOdOuPkoB6r2L6z5sqn5slXma4IzL_uKtbLOML2zQRaRg_9Y9RBsYNfH11dTjkDDmlAf2-Siki2wjumw5b3JPgdf3T-1i9C9
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3JTsMwEIYtKAe4IBAgyuoDEqeIeEliH9mqAm1VsYjeIju2AQk1FQTBkUfgGXkSPE5b1BPiGjmJNIs9-WN_g9ABE0lhNFURN4RHvNAk0jxNIyU0Zy6NuQ1SdreXtu_45SCZ7CaEszA1H2IquEFmhPkaEhwE6aNfaqgafQDQEzZB-ricRws8pRnkJuX9qcxC4Tdc6F9Js4RExAfFBN0Y06PZR8wsTYHgP1uxhiWntYKWx7UiPq6du4rm7HANDS6G-OapesPQanMCf8Wlwy1AW-pnizvl-_fn1xlg-2vkBvbVMjb2Bd8rH2y4q6oQdrj_WFalsVUQ7l_X0V3r_Pa0HY3bI0QF9bNCpJUijhDmhCz8V0_GNHHWci5taogCsrwiIqPe4pp7b6gsdkJnOlWCO5358RuoMSyHdhNhQWWiZWIsyEDC-iqSxUaQpCC8kIzJJjqcWCYf1RSMvOYd0xxsmE9t2EQnYLjpKKBXhwvly0M-TobcmCSmPkRMZhznjGpnpFVCxSqR0ljXRLXn_3hXftwfXPuVl7Ct_96wjxbbt91O3rnoXW2jJQpNfYO0soMa3nV211cald4LsfQDxgrL9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMeDriBeRFFxfeYgeCo2j7bJcX0U3yzq6uKlJE2igrTLWtGjH8HP6CcxSburexKvJW1h5j-Z6bT9DQA7hEW5klgEVCEa0FyiQNI4DgSTlJg4pNq3si8u4-MePe1H_V9_8dd8iHHDzUWG369dgA-U2fuBhorBu-N5um8grSynwYxD5Vldz3Rue_e9cZ8Fu_dwfoAlTiIUIKuKEbsxxHuTF5nITR7hP1my-pyTLoD5pliEndq7i2BKF0ugf1LA66fqFbpZmyP6KywNTB3bUj5reF6-fX18Hjpuf83cgLZchkoP4Z2waoMXovK6g93HsiqVrnzn_mUZ9NKjm4PjoJmPEOTYbguBFAIZhIhhPLePPQmRyGhNKdexQsKh5QViCbYml9S6QyShYTKRsWDUyMSuXwGtoiz0KoAM80jySGnXB2LalpEkVAxFOaI5J4S3we7IMtmgxmBkNfAYZ86G2diGbbDvDDde5fDV_kA5fMiaaMiUikJsNaISZSglWBrFtWAiFBHnSps2qF3_x72yTrd_ZVMvImv_PWEbzHYP0-z85PJsHcxhN9TXt1Y2QMt6Tm_aSqOSW42YvgGh1szu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Construction+of+Flexible+Low%E2%80%90Dimensional+van+der+Waals+Material+Photodetectors&rft.jtitle=Advanced+Physics+Research&rft.au=Yu+Chen&rft.au=Huanrong+Liang&rft.au=Xinyi+Guan&rft.au=Yuhang+Ma&rft.date=2025-06-01&rft.pub=Wiley-VCH&rft.eissn=2751-1200&rft.volume=4&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202400183&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dd502cdbd7df4432bfd9ea8a0a599def
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon