In Situ Construction of Flexible Low‐Dimensional van der Waals Material Photodetectors
By virtue of the excellent flexibility, conformability, portability, and aesthetics, wearable photodetectors have attracted worldwide research enthusiasm over the past decade. However, traditional bulk covalent semiconductors are difficult to be applied to wearable photodetectors due to their pronou...
Saved in:
Published in | Advanced Physics Research Vol. 4; no. 6 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2751-1200 2751-1200 |
DOI | 10.1002/apxr.202400183 |
Cover
Loading…
Abstract | By virtue of the excellent flexibility, conformability, portability, and aesthetics, wearable photodetectors have attracted worldwide research enthusiasm over the past decade. However, traditional bulk covalent semiconductors are difficult to be applied to wearable photodetectors due to their pronounced rigidity. Profiting from the self‐passivated surface, excellent carrier mobility, and strong light‐harvesting ability, low‐dimensional van der Waals materials (LDvdWMs) have shown immense potential for application in wearable optoelectronic devices. Nevertheless, the preparation of flexible photodetectors through exfoliation/transfer or solution methods has suffered from severe drawbacks spanning low production yield, severe contamination, and uncompetitive device properties. Therefore, researchers have been committed to exploring alternative preparation strategies. In response to this, the current review systematically summarizes the latest research advancements in directly constructing LDvdWM photodetectors on flexible substrates, including developing low‐melting‐point targeted materials, electron‐beam‐enabled crystallization, photonic crystallization, modified chemical vapor deposition, and pulsed‐laser deposition, with the elaboration on the fundamental mechanisms enabling in situ deposition of LDvdWMs. Finally, the tricky challenges standing in the way in this field have been epitomized and potential solutions addressing them have been proposed. On the whole, this review underscores distinctive pathways for the development of flexible LDvdWM photodetectors, which probably usher in next‐generation wearable optoelectronic technologies.
This review summarizes the progress in directly constructing low‐dimensional van der Waals material photodetectors on flexible substrates, including developing low‐melting‐point materials, electron‐beam‐enabled crystallization, photonic crystallization, modified chemical vapor deposition, and pulsed‐laser deposition, with a keen eye on fundamental mechanisms. Finally, prevalent challenges have been epitomized and potential solutions have been proposed, providing new pathways for next‐generation wearable technologies. |
---|---|
AbstractList | Abstract By virtue of the excellent flexibility, conformability, portability, and aesthetics, wearable photodetectors have attracted worldwide research enthusiasm over the past decade. However, traditional bulk covalent semiconductors are difficult to be applied to wearable photodetectors due to their pronounced rigidity. Profiting from the self‐passivated surface, excellent carrier mobility, and strong light‐harvesting ability, low‐dimensional van der Waals materials (LDvdWMs) have shown immense potential for application in wearable optoelectronic devices. Nevertheless, the preparation of flexible photodetectors through exfoliation/transfer or solution methods has suffered from severe drawbacks spanning low production yield, severe contamination, and uncompetitive device properties. Therefore, researchers have been committed to exploring alternative preparation strategies. In response to this, the current review systematically summarizes the latest research advancements in directly constructing LDvdWM photodetectors on flexible substrates, including developing low‐melting‐point targeted materials, electron‐beam‐enabled crystallization, photonic crystallization, modified chemical vapor deposition, and pulsed‐laser deposition, with the elaboration on the fundamental mechanisms enabling in situ deposition of LDvdWMs. Finally, the tricky challenges standing in the way in this field have been epitomized and potential solutions addressing them have been proposed. On the whole, this review underscores distinctive pathways for the development of flexible LDvdWM photodetectors, which probably usher in next‐generation wearable optoelectronic technologies. By virtue of the excellent flexibility, conformability, portability, and aesthetics, wearable photodetectors have attracted worldwide research enthusiasm over the past decade. However, traditional bulk covalent semiconductors are difficult to be applied to wearable photodetectors due to their pronounced rigidity. Profiting from the self‐passivated surface, excellent carrier mobility, and strong light‐harvesting ability, low‐dimensional van der Waals materials (LDvdWMs) have shown immense potential for application in wearable optoelectronic devices. Nevertheless, the preparation of flexible photodetectors through exfoliation/transfer or solution methods has suffered from severe drawbacks spanning low production yield, severe contamination, and uncompetitive device properties. Therefore, researchers have been committed to exploring alternative preparation strategies. In response to this, the current review systematically summarizes the latest research advancements in directly constructing LDvdWM photodetectors on flexible substrates, including developing low‐melting‐point targeted materials, electron‐beam‐enabled crystallization, photonic crystallization, modified chemical vapor deposition, and pulsed‐laser deposition, with the elaboration on the fundamental mechanisms enabling in situ deposition of LDvdWMs. Finally, the tricky challenges standing in the way in this field have been epitomized and potential solutions addressing them have been proposed. On the whole, this review underscores distinctive pathways for the development of flexible LDvdWM photodetectors, which probably usher in next‐generation wearable optoelectronic technologies. This review summarizes the progress in directly constructing low‐dimensional van der Waals material photodetectors on flexible substrates, including developing low‐melting‐point materials, electron‐beam‐enabled crystallization, photonic crystallization, modified chemical vapor deposition, and pulsed‐laser deposition, with a keen eye on fundamental mechanisms. Finally, prevalent challenges have been epitomized and potential solutions have been proposed, providing new pathways for next‐generation wearable technologies. By virtue of the excellent flexibility, conformability, portability, and aesthetics, wearable photodetectors have attracted worldwide research enthusiasm over the past decade. However, traditional bulk covalent semiconductors are difficult to be applied to wearable photodetectors due to their pronounced rigidity. Profiting from the self‐passivated surface, excellent carrier mobility, and strong light‐harvesting ability, low‐dimensional van der Waals materials (LDvdWMs) have shown immense potential for application in wearable optoelectronic devices. Nevertheless, the preparation of flexible photodetectors through exfoliation/transfer or solution methods has suffered from severe drawbacks spanning low production yield, severe contamination, and uncompetitive device properties. Therefore, researchers have been committed to exploring alternative preparation strategies. In response to this, the current review systematically summarizes the latest research advancements in directly constructing LDvdWM photodetectors on flexible substrates, including developing low‐melting‐point targeted materials, electron‐beam‐enabled crystallization, photonic crystallization, modified chemical vapor deposition, and pulsed‐laser deposition, with the elaboration on the fundamental mechanisms enabling in situ deposition of LDvdWMs. Finally, the tricky challenges standing in the way in this field have been epitomized and potential solutions addressing them have been proposed. On the whole, this review underscores distinctive pathways for the development of flexible LDvdWM photodetectors, which probably usher in next‐generation wearable optoelectronic technologies. |
Author | Du, Chun Ma, Yuhang Yao, Jiandong Ma, Churong Guan, Xinyi Zheng, Zhaoqiang Chen, Yu Liang, Huanrong |
Author_xml | – sequence: 1 givenname: Yu surname: Chen fullname: Chen, Yu organization: Sun Yat‐sen University – sequence: 2 givenname: Huanrong surname: Liang fullname: Liang, Huanrong organization: Sun Yat‐sen University – sequence: 3 givenname: Xinyi surname: Guan fullname: Guan, Xinyi organization: Sun Yat‐sen University – sequence: 4 givenname: Yuhang surname: Ma fullname: Ma, Yuhang organization: Sun Yat‐sen University – sequence: 5 givenname: Zhaoqiang surname: Zheng fullname: Zheng, Zhaoqiang email: zhengzhq5@mail2.sysu.edu.cn organization: Guangdong University of Technology – sequence: 6 givenname: Churong surname: Ma fullname: Ma, Churong organization: Jinan University – sequence: 7 givenname: Chun surname: Du fullname: Du, Chun organization: Jinan University – sequence: 8 givenname: Jiandong orcidid: 0000-0003-3499-2928 surname: Yao fullname: Yao, Jiandong email: yaojd3@mail.sysu.edu.cn organization: Sun Yat‐sen University |
BookMark | eNqFkLlOxDAQhi0EEmdL7RfYxWN746REy7XSIhCHoLPG8RiMQoyccHU8As_IkxBYhOioZvQfX_Gvs-U2tcTYNogxCCF38OElj6WQWggo1RJbk2YCI5BCLP_5V9lW192JoVBWoDSssetZy89j_8inqe36_Fj3MbU8BX7Q0Et0DfF5ev54e9-L99R2g4cNf8KWe8r8CrHp-DH2lOMgn96mPnnqqe5T7jbZShhs2vq5G-zyYP9iejSanxzOprvzUS1NoUYOEQKACmVVGyiMchCItK6o8IBaFSVCaaQKhdNOIhoRSmdcgaUOzgz5DTZbcH3CO_uQ4z3mV5sw2m8h5RuLuY91Q9b7iZC1d974oLWSLviKsESBk6ryFAbWeMGqc-q6TOGXB8J-zWy_Zra_Mw-FyaLwHBt6_Sdtd0-vz0AqUOoTyw-E1Q |
Cites_doi | 10.1002/adfm.202312692 10.1002/adfm.202003495 10.1021/acsnano.4c02863 10.1002/adfm.201806611 10.1039/C8NR00108A 10.1002/adom.202401723 10.1038/s41928-024-01250-9 10.1002/smll.202401216 10.1039/D3MH00733B 10.1038/natrevmats.2016.100 10.1002/adfm.202305252 10.1038/nphoton.2010.157 10.1039/C7CE00926G 10.1063/5.0216735 10.1038/s41467-019-09016-0 10.1002/adom.202401035 10.1002/adsr.202300029 10.1007/s12274-024-6895-8 10.1088/1361-6463/ab3716 10.1002/adma.202413247 10.1039/C7RA06353A 10.1002/adfm.202413903 10.1021/acsaelm.3c00362 10.1002/adma.202101150 10.1002/adma.202313721 10.1021/acsnano.0c10250 10.1126/science.adn9476 10.1002/lpor.202401319 10.1063/1.5139467 10.1088/1361-6641/abb185 10.1088/2631-7990/ad6aae 10.1016/j.jmst.2023.12.059 10.1039/C7NR01016H 10.1016/j.jmst.2024.10.049 10.1002/adom.202401114 10.1002/adfm.201601019 10.1088/0957-4484/27/22/225501 10.1021/acsnano.4c08636 10.1088/2631-7990/ad57a0 10.1002/adma.201600606 10.1088/2631-7990/ad6aad 10.1016/j.jmst.2024.05.044 10.1063/5.0021330 10.1021/acsnano.3c05178 10.1002/adom.202301055 10.1039/D3MH01636F 10.1002/adma.202411137 10.1007/BF01045361 10.1007/s42864-021-00098-2 10.1016/j.mattod.2022.03.015 10.1039/D3MH01093G 10.1038/s41928-023-00983-3 10.1007/s40843-020-1354-2 10.1021/acsami.3c13552 10.1021/acsami.8b12896 10.1039/D4TC03507K 10.1021/acsnano.2c05114 10.1002/adma.202400858 10.1088/1361-6528/aa8317 10.1088/2053-1583/ad9287 10.1039/C6TC02296K 10.1016/j.jallcom.2024.177366 10.1002/adom.202300463 10.1002/adma.202409898 10.1021/acsami.0c19666 10.1016/j.nanoms.2019.09.009 10.1039/D3NR03538G 10.1063/5.0130479 10.1002/adfm.201909849 10.1088/2752-5724/ad2f6a 10.1021/acsami.9b04045 10.1002/advs.202403463 10.1039/C4NR07313D 10.1002/lpor.202400819 10.1021/acsnano.4c00787 10.1002/adma.201808138 10.1038/s41598-017-00865-7 10.1088/2752-5724/ad7c6c 10.1116/6.0000253 10.1002/lpor.202400669 10.1088/2053-1583/ab7a72 10.1002/adfm.202300159 10.1088/2752-5724/ad47cf 10.1088/2752-5724/ad89e2 10.1039/D4NR03543G 10.1038/s41565-023-01460-w 10.1002/smll.202405645 10.1021/acsnano.3c10411 10.1002/adfm.201703448 10.1038/nmat3673 10.1002/adma.201501678 10.1021/acsnano.1c00571 10.1021/acs.nanolett.4c00956 10.1039/D4NR00615A 10.1002/smll.201704524 10.1002/adfm.202406434 10.1002/adfm.202416994 10.1088/2053-1583/aa6fd2 10.1021/acs.chemmater.1c02054 10.1002/adfm.201600318 10.1021/acsanm.3c01732 10.1021/nl500817g 10.1021/acsnano.1c01643 10.1088/1361-6528/aadc73 10.1002/adma.202211562 10.1016/j.jmst.2023.05.007 10.1126/science.adg8017 10.1039/D4NH00170B 10.1021/acsnano.3c09527 10.1016/j.rinp.2019.102841 10.1016/0925-8388(91)90053-X 10.1021/acsami.7b02166 10.1088/1361-648X/ac1368 10.1007/s12613-022-2426-3 10.1002/adfm.201701611 10.1002/lpor.202300286 10.1002/lpor.202400661 10.1088/1361-6528/abc285 10.1002/adma.202301020 10.1039/C9NR02173F 10.1021/acsnano.8b04945 10.1002/adfm.202300588 10.1002/adma.201803165 10.1039/D2MH01495E 10.1002/adfm.202316267 10.1002/adfm.202302984 10.1002/adma.202410275 10.1002/adfm.202403770 10.1038/s41928-024-01129-9 10.1021/acsanm.3c05369 10.1088/1361-6528/ac2b6c 10.1002/adfm.202202580 10.1002/adom.202102335 10.1021/acsami.4c01605 10.1016/j.mattod.2024.03.004 10.1016/j.jmst.2024.08.011 10.1021/acsnano.4c01436 10.1002/adfm.202415491 10.1126/sciadv.adn0560 10.1038/s41578-023-00583-9 10.1002/aelm.202300340 10.1038/s41467-017-01824-6 10.1016/j.mssp.2023.107616 10.1016/j.vacuum.2020.109950 10.1002/aelm.201900566 10.1002/smll.201501488 10.1116/6.0002544 10.1002/adma.202404013 10.1021/acsnano.3c12938 10.1021/acs.nanolett.4c02533 10.1002/smll.202406217 10.1088/2752-5724/ac72b9 10.1016/j.matlet.2024.136285 10.1021/acsnano.3c05849 10.1063/1.2115075 10.1039/D2NH00557C 10.1002/lpor.202400480 10.1021/nl400107k 10.1016/j.solmat.2024.112736 10.1063/5.0021781 10.1038/s41467-024-52944-9 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/apxr.202400183 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_dd502cdbd7df4432bfd9ea8a0a599def 10_1002_apxr_202400183 APXR12313 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Guangzhou Science and Technology Programme funderid: 2025A04J2596 – fundername: Natural Science Foundation of Guangdong Province funderid: 2022A1515011487; 2021A1515110403; 2022A1515110159; 2023A1515010652 – fundername: National Natural Science Foundation of China funderid: 52272175 |
GroupedDBID | 0R~ 24P 88I AAFWJ ABJCF ABUWG ACCMX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P M~E PCBAR PDBOC PHGZM PHGZT PIMPY AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION ARCSS PQGLB PUEGO WIN |
ID | FETCH-LOGICAL-c2763-baa1f113f89c71673b1fee449e6d1a4368a18723f6b4b2aa70f8b7b6a84fb7673 |
IEDL.DBID | DOA |
ISSN | 2751-1200 |
IngestDate | Wed Aug 27 01:31:27 EDT 2025 Thu Jul 03 08:26:57 EDT 2025 Fri Jun 13 09:31:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2763-baa1f113f89c71673b1fee449e6d1a4368a18723f6b4b2aa70f8b7b6a84fb7673 |
ORCID | 0000-0003-3499-2928 |
OpenAccessLink | https://doaj.org/article/dd502cdbd7df4432bfd9ea8a0a599def |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dd502cdbd7df4432bfd9ea8a0a599def crossref_primary_10_1002_apxr_202400183 wiley_primary_10_1002_apxr_202400183_APXR12313 |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2025 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 2019; 11 2019; 10 2020; 16 2024; 34 2024 2024; 36 2022; 29 2024; 6 2024; 7 2024; 9 2024; 1010 2014; 14 2024; 20 2019; 29 2018; 30 2024; 21 2024; 4 2022; 32 2024; 3 2024; 24 2022; 33 2010; 4 2024; 193 2018; 29 2025; 210 1991; 177 2019; 5 2023; 164 2019; 31 2019; 1 2020; 38 2024; 363 2005; 87 2020; 35 2024; 10 2024; 11 2024; 12 2024; 125 2024; 15 2024; 16 2024; 17 2024; 18 2025; 217 2016; 4 2025; 225 2023; 41 1990; 25 2020; 30 2022; 10 2022; 1 2018; 12 2016; 28 2018; 10 2016; 27 2016; 26 2022; 16 2018; 14 2017; 7 2017; 8 2023; 35 2023; 380 2017; 2 2023; 33 2017; 4 2023; 5 2019; 52 2020; 63 2023; 6 2023; 8 2023; 9 2024; 74 2024; 384 2025; 37 2025; 35 2023; 2 2024; 268 2017; 9 2020; 8 2020; 7 2021; 32 2021; 33 2013; 13 2013; 12 2025; 21 2023; 10 2021; 5 2023; 11 2023; 17 2023; 18 2023; 15 2017; 28 2017; 27 2015; 11 2023; 122 2025; 19 2021; 184 2025; 12 2015; 7 2021; 13 2021; 15 2015; 27 2020; 116 2020; 117 2017; 19 2022; 55 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 Chen J. (e_1_2_9_133_1) 2024; 18 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_156_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 Ghods S. (e_1_2_9_127_1) 2024; 18 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_161_1 Zhang Y. (e_1_2_9_35_1) 2024; 4 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 4811 year: 2024 publication-title: ACS Nano – volume: 7 start-page: 1176 year: 2024 publication-title: Nat. Electron. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 6 year: 2024 publication-title: Int. J. Extreme Manuf. – volume: 16 year: 2024 publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2024 publication-title: Mater. Futures – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 14 year: 2018 publication-title: Small – volume: 10 start-page: 9338 year: 2018 publication-title: Nanoscale – volume: 380 start-page: 1169 year: 2023 publication-title: Science – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 12 start-page: 8758 year: 2018 publication-title: ACS Nano – volume: 8 start-page: 1664 year: 2017 publication-title: Nat. Commun. – volume: 35 year: 2020 publication-title: Semicond. Sci. Technol. – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 2 year: 2023 publication-title: Adv. Sens. Res. – volume: 4 year: 2017 publication-title: 2D Mater. – volume: 5 start-page: 2862 year: 2023 publication-title: ACS Appl. Electron. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 325 year: 2021 publication-title: Tungsten – volume: 363 year: 2024 publication-title: Mater. Lett. – volume: 18 year: 2024 publication-title: Laser Photonics Rev. – volume: 74 start-page: 85 year: 2024 publication-title: Mater. Today – volume: 16 year: 2024 publication-title: Nanoscale – volume: 16 year: 2020 publication-title: Results Phys. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 20 year: 2024 publication-title: Small – volume: 26 start-page: 4405 year: 2016 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 8710 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 225 start-page: 49 year: 2025 publication-title: J. Mater. Sci. Technol. – year: 2024 publication-title: Laser Photonics Rev. – volume: 116 year: 2020 publication-title: Appl. Phys. Lett. – volume: 10 start-page: 5263 year: 2023 publication-title: Mater. Horiz. – volume: 13 start-page: 1649 year: 2013 publication-title: Nano Lett. – volume: 33 year: 2021 publication-title: J. Phys.: Condens. Matter – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 19 year: 2025 publication-title: Laser Photonics Rev. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 8 start-page: 587 year: 2023 publication-title: Nat. Rev. Mater. – volume: 14 start-page: 2800 year: 2014 publication-title: Nano Lett. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 26 start-page: 4551 year: 2016 publication-title: Adv. Funct. Mater. – volume: 164 year: 2023 publication-title: Mater. Sci. Semicond. Process. – volume: 9 start-page: 1599 year: 2024 publication-title: Nanoscale Horiz. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 8589 year: 2024 publication-title: Nat. Commun. – volume: 15 year: 2023 publication-title: Nanoscale – volume: 12 year: 2025 publication-title: 2D Mater. – volume: 63 start-page: 1560 year: 2020 publication-title: Sci. China Mater. – volume: 6 year: 2023 publication-title: ACS Appl. Nano Mater. – volume: 8 year: 2020 publication-title: APL Mater. – year: 2024 publication-title: Adv. Mater. – volume: 32 year: 2021 publication-title: Nanotechnology – volume: 184 year: 2021 publication-title: Vacuum – volume: 4 start-page: 527 year: 2010 publication-title: Nat. Photonics – volume: 12 year: 2024 publication-title: J. Mater. Chem. C – volume: 24 start-page: 6529 year: 2024 publication-title: Nano Lett. – volume: 164 start-page: 150 year: 2023 publication-title: J. Mater. Sci. Technol. – volume: 21 year: 2024 publication-title: Small – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 16 start-page: 1033 year: 2024 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 641 year: 2023 publication-title: Nanoscale Horiz. – volume: 19 start-page: 5341 year: 2017 publication-title: CrystEngComm – volume: 11 start-page: 792 year: 2024 publication-title: Mater. Horiz. – volume: 177 start-page: 17 year: 1991 publication-title: J. Alloys Compd. – volume: 10 start-page: 1188 year: 2019 publication-title: Nat. Commun. – volume: 384 start-page: 1100 year: 2024 publication-title: Science – volume: 12 year: 2024 publication-title: Adv. Opt. Mater. – volume: 12 start-page: 754 year: 2013 publication-title: Nat. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 122 year: 2023 publication-title: Appl. Phys. Lett. – volume: 4 year: 2024 publication-title: Microstructures – volume: 15 start-page: 8638 year: 2021 publication-title: ACS Nano – volume: 15 start-page: 1858 year: 2021 publication-title: ACS Nano – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 4 start-page: 8094 year: 2016 publication-title: J. Mater. Chem. C – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 28 year: 2017 publication-title: Nanotechnology – volume: 1 year: 2022 publication-title: Mater. Futures – volume: 10 year: 2024 publication-title: Sci. Adv. – volume: 7 start-page: 786 year: 2017 publication-title: Sci. Rep. – volume: 38 year: 2020 publication-title: J. Vac. Sci. Technol., A – volume: 18 year: 2024 publication-title: ACS Nano – volume: 87 year: 2005 publication-title: Appl. Phys. Lett. – volume: 9 year: 2023 publication-title: Adv. Electron. Mater. – volume: 1010 year: 2024 publication-title: J. Alloys Compd. – volume: 125 year: 2024 publication-title: Appl. Phys. Lett. – volume: 17 year: 2023 publication-title: ACS Nano – volume: 11 year: 2023 publication-title: Adv. Opt. Mater. – volume: 217 start-page: 9 year: 2025 publication-title: J. Mater. Sci. Technol. – volume: 6 start-page: 506 year: 2023 publication-title: Nat. Electron. – volume: 52 year: 2019 publication-title: J. Phys. D: Appl. Phys. – volume: 17 start-page: 9756 year: 2024 publication-title: Nano Res. – volume: 35 year: 2025 publication-title: Adv. Funct. Mater. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 55 start-page: 74 year: 2022 publication-title: Mater. Today – volume: 10 start-page: 3369 year: 2023 publication-title: Mater. Horiz. – volume: 33 start-page: 7417 year: 2021 publication-title: Chem. Mater. – volume: 11 start-page: 5423 year: 2015 publication-title: Small – volume: 15 year: 2021 publication-title: ACS Nano – volume: 41 year: 2023 publication-title: J. Vac. Sci. Technol., A – volume: 1 start-page: 299 year: 2019 publication-title: Nano Mater. Sci. – volume: 28 start-page: 5025 year: 2016 publication-title: Adv. Mater. – year: 2024 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 1623 year: 1990 publication-title: J. Mater. Sci. – volume: 7 start-page: 7252 year: 2015 publication-title: Nanoscale – volume: 210 start-page: 20 year: 2025 publication-title: J. Mater. Sci. Technol. – volume: 33 year: 2022 publication-title: Nanotechnology – volume: 27 year: 2016 publication-title: Nanotechnology – volume: 29 start-page: 671 year: 2022 publication-title: Int. J. Miner., Metall. Mater. – volume: 7 year: 2020 publication-title: 2D Mater. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 11 year: 2024 publication-title: Adv. Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 21 year: 2025 publication-title: Small – volume: 7 start-page: 2992 year: 2024 publication-title: ACS Appl. Nano Mater. – volume: 24 year: 2024 publication-title: Nano Lett. – volume: 17 year: 2023 publication-title: Laser Photonics Rev. – volume: 117 year: 2020 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 216 year: 2024 publication-title: Nat. Electron. – volume: 37 year: 2025 publication-title: Adv. Mater. – volume: 27 start-page: 5223 year: 2015 publication-title: Adv. Mater. – volume: 193 start-page: 217 year: 2024 publication-title: J. Mater. Sci. Technol. – volume: 9 start-page: 6246 year: 2017 publication-title: Nanoscale – volume: 268 year: 2024 publication-title: Sol. Energy Mater. Sol. Cells – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 18 start-page: 1439 year: 2023 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 2579 year: 2023 publication-title: Mater. Horiz. – ident: e_1_2_9_152_1 doi: 10.1002/adfm.202312692 – ident: e_1_2_9_100_1 doi: 10.1002/adfm.202003495 – ident: e_1_2_9_124_1 doi: 10.1021/acsnano.4c02863 – ident: e_1_2_9_144_1 doi: 10.1002/adfm.201806611 – ident: e_1_2_9_89_1 doi: 10.1039/C8NR00108A – ident: e_1_2_9_50_1 doi: 10.1002/adom.202401723 – ident: e_1_2_9_147_1 doi: 10.1038/s41928-024-01250-9 – ident: e_1_2_9_130_1 doi: 10.1002/smll.202401216 – ident: e_1_2_9_39_1 doi: 10.1039/D3MH00733B – ident: e_1_2_9_2_1 doi: 10.1038/natrevmats.2016.100 – ident: e_1_2_9_148_1 doi: 10.1002/adfm.202305252 – ident: e_1_2_9_1_1 doi: 10.1038/nphoton.2010.157 – ident: e_1_2_9_86_1 doi: 10.1039/C7CE00926G – ident: e_1_2_9_111_1 doi: 10.1063/5.0216735 – ident: e_1_2_9_95_1 doi: 10.1038/s41467-019-09016-0 – ident: e_1_2_9_163_1 doi: 10.1002/adom.202401035 – ident: e_1_2_9_132_1 doi: 10.1002/adsr.202300029 – ident: e_1_2_9_46_1 doi: 10.1007/s12274-024-6895-8 – ident: e_1_2_9_84_1 doi: 10.1088/1361-6463/ab3716 – ident: e_1_2_9_13_1 doi: 10.1002/adma.202413247 – ident: e_1_2_9_74_1 doi: 10.1039/C7RA06353A – ident: e_1_2_9_15_1 doi: 10.1002/adfm.202413903 – ident: e_1_2_9_83_1 doi: 10.1021/acsaelm.3c00362 – ident: e_1_2_9_125_1 doi: 10.1002/adma.202101150 – ident: e_1_2_9_56_1 doi: 10.1002/adma.202313721 – ident: e_1_2_9_126_1 doi: 10.1021/acsnano.0c10250 – ident: e_1_2_9_30_1 doi: 10.1126/science.adn9476 – ident: e_1_2_9_135_1 doi: 10.1002/lpor.202401319 – ident: e_1_2_9_116_1 doi: 10.1063/1.5139467 – ident: e_1_2_9_72_1 doi: 10.1088/1361-6641/abb185 – ident: e_1_2_9_160_1 doi: 10.1088/2631-7990/ad6aae – ident: e_1_2_9_36_1 doi: 10.1016/j.jmst.2023.12.059 – ident: e_1_2_9_155_1 doi: 10.1039/C7NR01016H – ident: e_1_2_9_110_1 doi: 10.1016/j.jmst.2024.10.049 – ident: e_1_2_9_18_1 doi: 10.1002/adom.202401114 – ident: e_1_2_9_88_1 doi: 10.1002/adfm.201601019 – ident: e_1_2_9_108_1 doi: 10.1088/0957-4484/27/22/225501 – ident: e_1_2_9_10_1 doi: 10.1021/acsnano.4c08636 – ident: e_1_2_9_14_1 doi: 10.1088/2631-7990/ad57a0 – ident: e_1_2_9_91_1 doi: 10.1002/adma.201600606 – ident: e_1_2_9_158_1 doi: 10.1088/2631-7990/ad6aad – ident: e_1_2_9_16_1 doi: 10.1016/j.jmst.2024.05.044 – ident: e_1_2_9_112_1 doi: 10.1063/5.0021330 – ident: e_1_2_9_20_1 doi: 10.1021/acsnano.3c05178 – ident: e_1_2_9_98_1 doi: 10.1002/adom.202301055 – ident: e_1_2_9_154_1 doi: 10.1039/D3MH01636F – ident: e_1_2_9_37_1 doi: 10.1002/adma.202411137 – ident: e_1_2_9_71_1 doi: 10.1007/BF01045361 – ident: e_1_2_9_49_1 doi: 10.1007/s42864-021-00098-2 – ident: e_1_2_9_26_1 doi: 10.1016/j.mattod.2022.03.015 – ident: e_1_2_9_150_1 doi: 10.1039/D3MH01093G – ident: e_1_2_9_28_1 doi: 10.1038/s41928-023-00983-3 – ident: e_1_2_9_137_1 doi: 10.1007/s40843-020-1354-2 – ident: e_1_2_9_52_1 doi: 10.1021/acsami.3c13552 – ident: e_1_2_9_94_1 doi: 10.1021/acsami.8b12896 – ident: e_1_2_9_65_1 doi: 10.1039/D4TC03507K – volume: 18 year: 2024 ident: e_1_2_9_133_1 publication-title: ACS Nano – ident: e_1_2_9_9_1 doi: 10.1021/acsnano.2c05114 – ident: e_1_2_9_45_1 doi: 10.1002/adma.202400858 – ident: e_1_2_9_161_1 doi: 10.1088/1361-6528/aa8317 – ident: e_1_2_9_38_1 doi: 10.1088/2053-1583/ad9287 – ident: e_1_2_9_109_1 doi: 10.1039/C6TC02296K – ident: e_1_2_9_40_1 doi: 10.1016/j.jallcom.2024.177366 – ident: e_1_2_9_48_1 doi: 10.1002/adom.202300463 – ident: e_1_2_9_42_1 doi: 10.1002/adma.202409898 – ident: e_1_2_9_96_1 doi: 10.1021/acsami.0c19666 – ident: e_1_2_9_53_1 doi: 10.1016/j.nanoms.2019.09.009 – ident: e_1_2_9_122_1 doi: 10.1039/D3NR03538G – ident: e_1_2_9_113_1 doi: 10.1063/5.0130479 – ident: e_1_2_9_107_1 doi: 10.1002/adfm.201909849 – ident: e_1_2_9_153_1 doi: 10.1088/2752-5724/ad2f6a – ident: e_1_2_9_156_1 doi: 10.1021/acsami.9b04045 – ident: e_1_2_9_47_1 doi: 10.1002/advs.202403463 – ident: e_1_2_9_59_1 doi: 10.1039/C4NR07313D – ident: e_1_2_9_134_1 doi: 10.1002/lpor.202400819 – ident: e_1_2_9_103_1 doi: 10.1021/acsnano.4c00787 – ident: e_1_2_9_17_1 doi: 10.1002/adma.201808138 – ident: e_1_2_9_64_1 doi: 10.1038/s41598-017-00865-7 – ident: e_1_2_9_24_1 doi: 10.1088/2752-5724/ad7c6c – ident: e_1_2_9_78_1 doi: 10.1116/6.0000253 – ident: e_1_2_9_99_1 doi: 10.1002/lpor.202400669 – ident: e_1_2_9_118_1 doi: 10.1088/2053-1583/ab7a72 – ident: e_1_2_9_63_1 doi: 10.1002/adfm.202300159 – ident: e_1_2_9_123_1 doi: 10.1088/2752-5724/ad47cf – ident: e_1_2_9_6_1 doi: 10.1088/2752-5724/ad89e2 – ident: e_1_2_9_4_1 doi: 10.1039/D4NR03543G – ident: e_1_2_9_68_1 doi: 10.1038/s41565-023-01460-w – ident: e_1_2_9_51_1 doi: 10.1002/smll.202405645 – ident: e_1_2_9_54_1 doi: 10.1021/acsnano.3c10411 – ident: e_1_2_9_142_1 doi: 10.1002/adfm.201703448 – ident: e_1_2_9_92_1 doi: 10.1038/nmat3673 – ident: e_1_2_9_93_1 doi: 10.1002/adma.201501678 – ident: e_1_2_9_80_1 doi: 10.1021/acsnano.1c00571 – ident: e_1_2_9_120_1 doi: 10.1021/acs.nanolett.4c00956 – ident: e_1_2_9_138_1 doi: 10.1039/D4NR00615A – ident: e_1_2_9_66_1 doi: 10.1002/smll.201704524 – ident: e_1_2_9_151_1 doi: 10.1002/adfm.202406434 – ident: e_1_2_9_131_1 doi: 10.1002/adfm.202416994 – ident: e_1_2_9_85_1 doi: 10.1088/2053-1583/aa6fd2 – ident: e_1_2_9_105_1 doi: 10.1021/acs.chemmater.1c02054 – ident: e_1_2_9_141_1 doi: 10.1002/adfm.201600318 – ident: e_1_2_9_157_1 doi: 10.1021/acsanm.3c01732 – ident: e_1_2_9_58_1 doi: 10.1021/nl500817g – ident: e_1_2_9_162_1 doi: 10.1021/acsnano.1c01643 – ident: e_1_2_9_143_1 doi: 10.1088/1361-6528/aadc73 – ident: e_1_2_9_115_1 doi: 10.1002/adma.202211562 – ident: e_1_2_9_11_1 doi: 10.1016/j.jmst.2023.05.007 – ident: e_1_2_9_27_1 doi: 10.1126/science.adg8017 – ident: e_1_2_9_25_1 doi: 10.1039/D4NH00170B – ident: e_1_2_9_55_1 doi: 10.1021/acsnano.3c09527 – ident: e_1_2_9_76_1 doi: 10.1016/j.rinp.2019.102841 – ident: e_1_2_9_73_1 doi: 10.1016/0925-8388(91)90053-X – ident: e_1_2_9_117_1 doi: 10.1021/acsami.7b02166 – ident: e_1_2_9_90_1 doi: 10.1088/1361-648X/ac1368 – ident: e_1_2_9_69_1 doi: 10.1007/s12613-022-2426-3 – ident: e_1_2_9_62_1 doi: 10.1002/adfm.201701611 – ident: e_1_2_9_34_1 doi: 10.1002/lpor.202300286 – ident: e_1_2_9_33_1 doi: 10.1002/lpor.202400661 – ident: e_1_2_9_79_1 doi: 10.1088/1361-6528/abc285 – ident: e_1_2_9_5_1 doi: 10.1002/adma.202301020 – ident: e_1_2_9_67_1 doi: 10.1039/C9NR02173F – ident: e_1_2_9_75_1 doi: 10.1021/acsnano.8b04945 – ident: e_1_2_9_102_1 doi: 10.1002/adfm.202300588 – ident: e_1_2_9_21_1 doi: 10.1002/adma.201803165 – ident: e_1_2_9_32_1 doi: 10.1039/D2MH01495E – ident: e_1_2_9_128_1 doi: 10.1002/adfm.202316267 – ident: e_1_2_9_101_1 doi: 10.1002/adfm.202302984 – ident: e_1_2_9_12_1 doi: 10.1002/adma.202410275 – ident: e_1_2_9_149_1 doi: 10.1002/adfm.202403770 – ident: e_1_2_9_31_1 doi: 10.1038/s41928-024-01129-9 – ident: e_1_2_9_140_1 doi: 10.1021/acsanm.3c05369 – ident: e_1_2_9_97_1 doi: 10.1088/1361-6528/ac2b6c – ident: e_1_2_9_145_1 doi: 10.1002/adfm.202202580 – ident: e_1_2_9_43_1 doi: 10.1002/adom.202102335 – ident: e_1_2_9_121_1 doi: 10.1021/acsami.4c01605 – ident: e_1_2_9_7_1 doi: 10.1016/j.mattod.2024.03.004 – ident: e_1_2_9_104_1 doi: 10.1016/j.jmst.2024.08.011 – ident: e_1_2_9_41_1 doi: 10.1021/acsnano.4c01436 – ident: e_1_2_9_8_1 doi: 10.1002/adfm.202415491 – ident: e_1_2_9_129_1 doi: 10.1126/sciadv.adn0560 – ident: e_1_2_9_3_1 doi: 10.1038/s41578-023-00583-9 – ident: e_1_2_9_19_1 doi: 10.1002/aelm.202300340 – ident: e_1_2_9_22_1 doi: 10.1038/s41467-017-01824-6 – volume: 18 year: 2024 ident: e_1_2_9_127_1 publication-title: ACS Nano – ident: e_1_2_9_81_1 doi: 10.1016/j.mssp.2023.107616 – ident: e_1_2_9_77_1 doi: 10.1016/j.vacuum.2020.109950 – ident: e_1_2_9_119_1 doi: 10.1002/aelm.201900566 – volume: 4 year: 2024 ident: e_1_2_9_35_1 publication-title: Microstructures – ident: e_1_2_9_87_1 doi: 10.1002/smll.201501488 – ident: e_1_2_9_82_1 doi: 10.1116/6.0002544 – ident: e_1_2_9_164_1 doi: 10.1002/adma.202404013 – ident: e_1_2_9_23_1 doi: 10.1021/acsnano.3c12938 – ident: e_1_2_9_44_1 doi: 10.1021/acs.nanolett.4c02533 – ident: e_1_2_9_61_1 doi: 10.1002/smll.202406217 – ident: e_1_2_9_159_1 doi: 10.1088/2752-5724/ac72b9 – ident: e_1_2_9_139_1 doi: 10.1016/j.matlet.2024.136285 – ident: e_1_2_9_60_1 doi: 10.1021/acsnano.3c05849 – ident: e_1_2_9_146_1 doi: 10.1063/1.2115075 – ident: e_1_2_9_114_1 doi: 10.1039/D2NH00557C – ident: e_1_2_9_136_1 doi: 10.1002/lpor.202400480 – ident: e_1_2_9_57_1 doi: 10.1021/nl400107k – ident: e_1_2_9_70_1 doi: 10.1016/j.solmat.2024.112736 – ident: e_1_2_9_106_1 doi: 10.1063/5.0021781 – ident: e_1_2_9_29_1 doi: 10.1038/s41467-024-52944-9 |
SSID | ssj0002891341 |
Score | 2.3066492 |
Snippet | By virtue of the excellent flexibility, conformability, portability, and aesthetics, wearable photodetectors have attracted worldwide research enthusiasm over... Abstract By virtue of the excellent flexibility, conformability, portability, and aesthetics, wearable photodetectors have attracted worldwide research... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
SubjectTerms | flexible photodetectors in situ fabrication low‐dimensional van der Waals materials low‐temperature growth wearable devices |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1NS8MwGMeDzosXUVScb-QgeAprXtomx_kypjgZvuBuJWkSFaQdW0WPfgQ_o5_EJN2qO4nXkrbwvCRP_01-DwBHlMe5VkQipjFDLFcYKZYkSHLFqE0iZoKUPbhO-vfschSPfp3ir_kQjeDmMyPM1z7BpZp2fqChcvzueZ5-D6QLy2Ww4s_Xeno-YcNGZSH-L1xoX0nSGCPsYmJOboxIZ_ERCytTAPgvFqxhxemtg7VZqQi7tW83wJIpNsHoooC3z9Ur9J025-xXWFrY82RL9WLgVfn29fF55qn9NXEDumIZajOBD9LFGhzIKkQdHD6VValNFXT76Ra4753fnfbRrDsCyombFJCSEluMqeUidx89KVXYGsOYMInG0oPlJeYpcQZXzDlDppHlKlWJ5Myq1I3fBq2iLMwOgJyIWIlYG68CceOKSBppjuMcs1xQKtrgeG6ZbFxDMLIad0wyb8OssWEbnHjDNaM8vDpcKCeP2SwXMq3jiLgI0am2jFGirBZGchnJWAhtbBvUjv_jXVl3OLpxCy-mu_-9YQ-sEt_HN6gp-6Dl3GUOXHFRqcMQP9_iBMiK priority: 102 providerName: Wiley-Blackwell |
Title | In Situ Construction of Flexible Low‐Dimensional van der Waals Material Photodetectors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400183 https://doaj.org/article/dd502cdbd7df4432bfd9ea8a0a599def |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7uRFFBXnj5GD4Kmu-dE2OU7dmOJkqMPeStIkqIx2aEVP4p_g3-hfYpJuYzvt4qWHEpLyfY-8l9fweQCcEBblSmIRUIVoQHOJAknjOBBMUmLikGpfyh7cxv0RvU6jdKHVl7sTVuOBa-HaSkUhttOpRBlKCZZGcS2YCEXEudLG7b425i0cpl7q32eOVDajNIa4LSafDv_prkwiRpaikIf1LyenPrr0tsDmNC2EnfpztsGaLnZAelXA--fqHbqumjPOKywN7DmKpRxreFN-_H7_XDpCf03XgDYxhkq_wkdh_QoOROU9DA6fyqpUuvI1-rddMOp1Hy76wbQTQpBjuwEEUghkECKG8dwecBIikdGaUq5jhYSDyAvEEmzFldQKL5LQMJnIWDBqZGLH74FGURZ6H0CGeSR5pLSr-DBtE0YSKoaiHNGcE8Kb4HSmTDapgRdZjTbGmdMwm2vYBOdOuPkoB6r2L6z5sqn5slXma4IzL_uKtbLOML2zQRaRg_9Y9RBsYNfH11dTjkDDmlAf2-Siki2wjumw5b3JPgdf3T-1i9C9 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3JTsMwEIYtKAe4IBAgyuoDEqeIeEliH9mqAm1VsYjeIju2AQk1FQTBkUfgGXkSPE5b1BPiGjmJNIs9-WN_g9ABE0lhNFURN4RHvNAk0jxNIyU0Zy6NuQ1SdreXtu_45SCZ7CaEszA1H2IquEFmhPkaEhwE6aNfaqgafQDQEzZB-ricRws8pRnkJuX9qcxC4Tdc6F9Js4RExAfFBN0Y06PZR8wsTYHgP1uxhiWntYKWx7UiPq6du4rm7HANDS6G-OapesPQanMCf8Wlwy1AW-pnizvl-_fn1xlg-2vkBvbVMjb2Bd8rH2y4q6oQdrj_WFalsVUQ7l_X0V3r_Pa0HY3bI0QF9bNCpJUijhDmhCz8V0_GNHHWci5taogCsrwiIqPe4pp7b6gsdkJnOlWCO5358RuoMSyHdhNhQWWiZWIsyEDC-iqSxUaQpCC8kIzJJjqcWCYf1RSMvOYd0xxsmE9t2EQnYLjpKKBXhwvly0M-TobcmCSmPkRMZhznjGpnpFVCxSqR0ljXRLXn_3hXftwfXPuVl7Ct_96wjxbbt91O3rnoXW2jJQpNfYO0soMa3nV211cald4LsfQDxgrL9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMeDriBeRFFxfeYgeCo2j7bJcX0U3yzq6uKlJE2igrTLWtGjH8HP6CcxSburexKvJW1h5j-Z6bT9DQA7hEW5klgEVCEa0FyiQNI4DgSTlJg4pNq3si8u4-MePe1H_V9_8dd8iHHDzUWG369dgA-U2fuBhorBu-N5um8grSynwYxD5Vldz3Rue_e9cZ8Fu_dwfoAlTiIUIKuKEbsxxHuTF5nITR7hP1my-pyTLoD5pliEndq7i2BKF0ugf1LA66fqFbpZmyP6KywNTB3bUj5reF6-fX18Hjpuf83cgLZchkoP4Z2waoMXovK6g93HsiqVrnzn_mUZ9NKjm4PjoJmPEOTYbguBFAIZhIhhPLePPQmRyGhNKdexQsKh5QViCbYml9S6QyShYTKRsWDUyMSuXwGtoiz0KoAM80jySGnXB2LalpEkVAxFOaI5J4S3we7IMtmgxmBkNfAYZ86G2diGbbDvDDde5fDV_kA5fMiaaMiUikJsNaISZSglWBrFtWAiFBHnSps2qF3_x72yTrd_ZVMvImv_PWEbzHYP0-z85PJsHcxhN9TXt1Y2QMt6Tm_aSqOSW42YvgGh1szu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Construction+of+Flexible+Low%E2%80%90Dimensional+van+der+Waals+Material+Photodetectors&rft.jtitle=Advanced+Physics+Research&rft.au=Yu+Chen&rft.au=Huanrong+Liang&rft.au=Xinyi+Guan&rft.au=Yuhang+Ma&rft.date=2025-06-01&rft.pub=Wiley-VCH&rft.eissn=2751-1200&rft.volume=4&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202400183&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dd502cdbd7df4432bfd9ea8a0a599def |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |