In silico screening for potential inhibitors from the phytocompounds of Carica papaya against Zika virus NS5 protein [version 2; peer review: 1 approved with reservations, 1 not approved]

Background The Zika virus (ZIKV) infection has emerged as a global health threat. The causal reasoning is that Zika infection is linked to the development of microcephaly in newborns and Guillain-Barré syndrome in adults. With no clinically approved antiviral treatment for ZIKV, the need for the dev...

Full description

Saved in:
Bibliographic Details
Published inF1000 research Vol. 12; p. 655
Main Authors Kumaree, Kishore Krishna, Anthikapalli, Naga Venkata Anusha, Prasansuklab, Anchalee
Format Journal Article
LanguageEnglish
Published London Faculty of 1000 Ltd 01.01.2023
F1000 Research Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background The Zika virus (ZIKV) infection has emerged as a global health threat. The causal reasoning is that Zika infection is linked to the development of microcephaly in newborns and Guillain-Barré syndrome in adults. With no clinically approved antiviral treatment for ZIKV, the need for the development of potential inhibitors against the virus is essential. In this study, we aimed to screen phytochemicals from papaya ( Carica papaya L.) against NS5 protein domains of ZIKV. Methods Approximately 193 phytochemicals from an online database (IMPACT) were subjected to molecular docking using AutoDock Vina against the NS5-MTase protein domain (5WXB) and -RdRp domain (5U04). Results Our results showed that β-sitosterol, carpaine, violaxanthin, pseudocarpaine, Δ7-avenasterols, Rutin, and cis-β-carotene had the highest binding affinity to both protein domains, with β-sitosterol having the most favorable binding energy. Furthermore, ADMET analysis revealed that selected compounds had good pharmacokinetic properties and were nontoxic. Conclusions Our findings suggest that papaya-derived phytochemicals could be potential candidates for developing antiviral drugs against ZIKV. However, further experimental studies using cell lines and in vivo models are needed to validate their efficacy and safety.
Bibliography:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2046-1402
2046-1402
DOI:10.12688/f1000research.134956.2