Soot Mass Concentration Prediction at the GPF Inlet of GDI Engine Based on Machine Learning Methods

To improve the prediction accuracy of soot load in gasoline particulate filters (GPFs) and the control accuracy during GPF regeneration, this study developed a prediction model to predict the soot mass concentration at the GPF inlet of gasoline direct injection (GDI) engines using advanced machine l...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 18; no. 14; p. 3861
Main Authors Hu, Zhiyuan, Liu, Zeyu, Shen, Jiayi, Wang, Shimao, Tan, Piqiang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To improve the prediction accuracy of soot load in gasoline particulate filters (GPFs) and the control accuracy during GPF regeneration, this study developed a prediction model to predict the soot mass concentration at the GPF inlet of gasoline direct injection (GDI) engines using advanced machine learning methods. Three machine learning approaches, namely, support vector regression (SVR), deep neural network (DNN), and a Stacking integration model of SVR and DNN, were employed, respectively, to predict the soot mass concentration at the GPF inlet. The input data includes engine speed, torque, ignition timing, throttle valve opening angle, fuel injection pressure, and pulse width. Exhaust gas soot mass concentration at the three-way catalyst (TWC) outlet is obtained by an engine bench test. The results show that the correlation coefficients (R2) of SVR, DNN, and Stacking integration model of SVR and DNN are 0.937, 0.984, and 0.992, respectively, and the prediction ranges of soot mass concentration are 0–0.038 mg/s, 0–0.030 mg/s, and 0–0.07 mg/s, respectively. The distribution, median, and data density of prediction results obtained by the three machine learning approaches fit well with the test results. However, the prediction result of the SVR model is poor when the soot mass concentration exceeds 0.038 mg/s. The median of the prediction result obtained by the DNN model is closer to the test result, specifically for data points in the 25–75% range. However, there are a few negative prediction results in the test dataset due to overfitting. Integrating SVR and DNN models through stacked models extends the predictive range of a single SVR or DNN model while mitigating the overfitting of DNN models. The results of the study can serve as a reference for the development of accurate prediction algorithms to estimate soot loads in GPFs, which in turn can provide some basis for the control of the particulate mass and particle number (PN) emitted from GDI engines.
AbstractList To improve the prediction accuracy of soot load in gasoline particulate filters (GPFs) and the control accuracy during GPF regeneration, this study developed a prediction model to predict the soot mass concentration at the GPF inlet of gasoline direct injection (GDI) engines using advanced machine learning methods. Three machine learning approaches, namely, support vector regression (SVR), deep neural network (DNN), and a Stacking integration model of SVR and DNN, were employed, respectively, to predict the soot mass concentration at the GPF inlet. The input data includes engine speed, torque, ignition timing, throttle valve opening angle, fuel injection pressure, and pulse width. Exhaust gas soot mass concentration at the three-way catalyst (TWC) outlet is obtained by an engine bench test. The results show that the correlation coefficients (R2) of SVR, DNN, and Stacking integration model of SVR and DNN are 0.937, 0.984, and 0.992, respectively, and the prediction ranges of soot mass concentration are 0–0.038 mg/s, 0–0.030 mg/s, and 0–0.07 mg/s, respectively. The distribution, median, and data density of prediction results obtained by the three machine learning approaches fit well with the test results. However, the prediction result of the SVR model is poor when the soot mass concentration exceeds 0.038 mg/s. The median of the prediction result obtained by the DNN model is closer to the test result, specifically for data points in the 25–75% range. However, there are a few negative prediction results in the test dataset due to overfitting. Integrating SVR and DNN models through stacked models extends the predictive range of a single SVR or DNN model while mitigating the overfitting of DNN models. The results of the study can serve as a reference for the development of accurate prediction algorithms to estimate soot loads in GPFs, which in turn can provide some basis for the control of the particulate mass and particle number (PN) emitted from GDI engines.
To improve the prediction accuracy of soot load in gasoline particulate filters (GPFs) and the control accuracy during GPF regeneration, this study developed a prediction model to predict the soot mass concentration at the GPF inlet of gasoline direct injection (GDI) engines using advanced machine learning methods. Three machine learning approaches, namely, support vector regression (SVR), deep neural network (DNN), and a Stacking integration model of SVR and DNN, were employed, respectively, to predict the soot mass concentration at the GPF inlet. The input data includes engine speed, torque, ignition timing, throttle valve opening angle, fuel injection pressure, and pulse width. Exhaust gas soot mass concentration at the three-way catalyst (TWC) outlet is obtained by an engine bench test. The results show that the correlation coefficients (R[sup.2]) of SVR, DNN, and Stacking integration model of SVR and DNN are 0.937, 0.984, and 0.992, respectively, and the prediction ranges of soot mass concentration are 0–0.038 mg/s, 0–0.030 mg/s, and 0–0.07 mg/s, respectively. The distribution, median, and data density of prediction results obtained by the three machine learning approaches fit well with the test results. However, the prediction result of the SVR model is poor when the soot mass concentration exceeds 0.038 mg/s. The median of the prediction result obtained by the DNN model is closer to the test result, specifically for data points in the 25–75% range. However, there are a few negative prediction results in the test dataset due to overfitting. Integrating SVR and DNN models through stacked models extends the predictive range of a single SVR or DNN model while mitigating the overfitting of DNN models. The results of the study can serve as a reference for the development of accurate prediction algorithms to estimate soot loads in GPFs, which in turn can provide some basis for the control of the particulate mass and particle number (PN) emitted from GDI engines.
Audience Academic
Author Wang, Shimao
Liu, Zeyu
Tan, Piqiang
Shen, Jiayi
Hu, Zhiyuan
Author_xml – sequence: 1
  givenname: Zhiyuan
  orcidid: 0000-0002-0906-0128
  surname: Hu
  fullname: Hu, Zhiyuan
– sequence: 2
  givenname: Zeyu
  surname: Liu
  fullname: Liu, Zeyu
– sequence: 3
  givenname: Jiayi
  surname: Shen
  fullname: Shen, Jiayi
– sequence: 4
  givenname: Shimao
  surname: Wang
  fullname: Wang, Shimao
– sequence: 5
  givenname: Piqiang
  surname: Tan
  fullname: Tan, Piqiang
BookMark eNpNkUFvEzEQhS1UJErphV9giRtSimdnvWsfS2hDpERUAs6W7R0njlK72NtD_z1ugwBb1oye3nwa-b1lZyknYuw9iCtELT5RAgU9qgFesXPQeliAGPHsv_4Nu6z1INpBBEQ8Z_57zjPf2lr5MidPaS52jjnxu0JT9C-tnfm8J766u-XrdKSZ58BXX9b8Ju1iIv7ZVpp4822t3z8LG7IlxbTjW5r3earv2Otgj5Uu_9QL9vP25sfy62LzbbVeXm8WvhsHWIykezdOEwg5grKjAEdB9UQC-vaGwfYQHHgZBEhJTjsYxBSkcN0gUY94wdYn7pTtwTyUeG_Lk8k2mhchl52xZY7-SAYlWHRq6OSgez0q6wT1QumgpRBWuMb6cGI9lPzrkepsDvmxpLa-wQ6xA91LbK6rk2tnGzSmkNv3-XYnuo--pRNi069VgyKITrWBj6cBX3KthcLfNUGY5xDNvxDxN_12jCg
Cites_doi 10.1088/1757-899X/100/1/012069
10.1109/TEVC.2006.876364
10.1016/j.fuel.2019.116947
10.3390/en13030693
10.1007/s42154-018-0020-1
10.1016/j.apenergy.2019.01.179
10.1093/aje/kwg021
10.1016/j.applthermaleng.2017.07.021
10.3390/electronics10050584
10.1023/A:1018054314350
10.20485/jsaeijae.12.1_9
10.1016/j.fuel.2020.117451
10.1016/j.energy.2020.119072
10.1016/j.psep.2023.08.075
10.4271/2024-01-4306
10.3390/pr10050993
10.1016/j.fuel.2019.01.173
10.1016/j.jclepro.2017.02.056
10.1023/B:STCO.0000035301.49549.88
10.4271/2021-26-0208
10.1016/S0893-6080(05)80023-1
10.1243/14680874JER03109
10.1016/j.fuel.2021.122538
10.1007/s40825-022-00211-y
10.1177/1468087420910886
10.3390/en11061417
10.1109/TPAMI.2013.50
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en18143861
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_351a3b8625694978ab0e4089f9500a0b
A850031028
10_3390_en18143861
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c2761-7e94b7dd105718a701bef84ee014e0166a41fb1c5f0155eb9b160df50b2653973
IEDL.DBID BENPR
ISSN 1996-1073
IngestDate Wed Aug 27 01:24:51 EDT 2025
Fri Jul 25 19:12:18 EDT 2025
Tue Aug 05 03:51:22 EDT 2025
Thu Jul 31 00:27:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2761-7e94b7dd105718a701bef84ee014e0166a41fb1c5f0155eb9b160df50b2653973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0906-0128
OpenAccessLink https://www.proquest.com/docview/3233219453?pq-origsite=%requestingapplication%
PQID 3233219453
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_351a3b8625694978ab0e4089f9500a0b
proquest_journals_3233219453
gale_infotracacademiconefile_A850031028
crossref_primary_10_3390_en18143861
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Breiman (ref_33) 1996; 24
Kamimoto (ref_6) 2009; 10
Pu (ref_16) 2017; 125
Yin (ref_20) 2023; 178
Alex (ref_29) 2004; 14
Ting (ref_35) 1999; 10
ref_11
Shuai (ref_19) 2018; 1
ref_31
Yoshua (ref_30) 2013; 35
Cheng (ref_8) 2022; 315
Liao (ref_13) 2023; 16
Duronio (ref_1) 2020; 265
Freund (ref_34) 1997; 55
ref_17
Hoek (ref_3) 2003; 157
Wolpert (ref_32) 1992; 5
Ghanbari (ref_10) 2015; 100
Maricq (ref_21) 2023; 886
Koch (ref_26) 2022; 8
Xing (ref_28) 2017; 149
Catapano (ref_25) 2019; 245
Kumar (ref_14) 2020; 213
Qian (ref_23) 2019; 238
ref_22
Komori (ref_5) 2021; 12
Jayaprakash (ref_15) 2023; 6
Hua (ref_24) 2021; 22
ref_2
Chu (ref_18) 2020; 269
Alonso (ref_9) 2007; 11
ref_27
Seunghyup (ref_12) 2023; 37
ref_4
ref_7
References_xml – volume: 100
  start-page: 012069
  year: 2015
  ident: ref_10
  article-title: Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/100/1/012069
– volume: 11
  start-page: 46
  year: 2007
  ident: ref_9
  article-title: Combining Neural Networks and Genetic Algorithms to Predict and Reduce Diesel Engine Emissions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.876364
– volume: 55
  start-page: 119
  year: 1997
  ident: ref_34
  article-title: A desicion-theoretic generalization of on-line learning and an application to boosting
  publication-title: Eur. Conf. Comput. Learn. Theory
– volume: 265
  start-page: 116947
  year: 2020
  ident: ref_1
  article-title: Gasoline direct injection engines—A review of latest technologies and trends. Part 2
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116947
– ident: ref_4
  doi: 10.3390/en13030693
– volume: 1
  start-page: 95
  year: 2018
  ident: ref_19
  article-title: Recent Progress in Automotive Gasoline Direct Injection Engine Technology
  publication-title: Automot. Innov.
  doi: 10.1007/s42154-018-0020-1
– volume: 238
  start-page: 1269
  year: 2019
  ident: ref_23
  article-title: Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.179
– volume: 37
  start-page: 2023
  year: 2023
  ident: ref_12
  article-title: Comparative research on DNN and LSTM algorithms for soot emission prediction under transient conditions in a diesel engine
  publication-title: J. Mech. Sci. Technol.
– volume: 157
  start-page: 613
  year: 2003
  ident: ref_3
  article-title: Effects of fine and ultrafine particles on cardiorespiratory symptoms in elderly subjects with coronary heart disease: The ULTRA study
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwg021
– volume: 125
  start-page: 335
  year: 2017
  ident: ref_16
  article-title: Machine learning for nano-scale particulate matter distribution from gasoline direct injection engine
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.021
– ident: ref_11
  doi: 10.3390/electronics10050584
– volume: 6
  start-page: 2005
  year: 2023
  ident: ref_15
  article-title: Initial Development of a Physics-Aware Machine Learning Framework for Soot Mass Prediction in Gasoline Direct Injection Engines
  publication-title: SAE Int. J. Adv. Curr. Pract. Mobil.
– volume: 24
  start-page: 123
  year: 1996
  ident: ref_33
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1023/A:1018054314350
– volume: 12
  start-page: 9
  year: 2021
  ident: ref_5
  article-title: Study on Estimation Logic of GPF Temperature and Amount of Residual Soot
  publication-title: Int. J. Automot. Eng.
  doi: 10.20485/jsaeijae.12.1_9
– volume: 269
  start-page: 117451
  year: 2020
  ident: ref_18
  article-title: Laminar burning velocity and pollutant emissions of the gasoline components and its surrogate fuels: A review
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117451
– ident: ref_31
– volume: 213
  start-page: 119072
  year: 2020
  ident: ref_14
  article-title: Decanol proportional effect prediction model as additive in palm biodiesel using ANN and RSM technique for diesel engine
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119072
– volume: 178
  start-page: 836
  year: 2023
  ident: ref_20
  article-title: A review of the development and application of soot modelling for modern diesel engines and the soot modelling for different fuels
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2023.08.075
– volume: 16
  start-page: 2041
  year: 2023
  ident: ref_13
  article-title: CRDI Engine Emission Prediction Models with Injection Parameters Based on ANN and SVM to Improve the SOOT-NOx Trade-Off
  publication-title: J. Appl. Fluid Mech.
– ident: ref_27
– ident: ref_17
  doi: 10.4271/2024-01-4306
– ident: ref_2
  doi: 10.3390/pr10050993
– volume: 245
  start-page: 253
  year: 2019
  ident: ref_25
  article-title: Influence of ethanol blended and dual fueled with gasoline on soot formation and particulate matter emissions in a small displacement spark ignition engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.01.173
– volume: 149
  start-page: 461
  year: 2017
  ident: ref_28
  article-title: Individual particles emitted from gasoline engines: Impact of engine types, engine loads and fuel components
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.02.056
– volume: 14
  start-page: 199
  year: 2004
  ident: ref_29
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 886
  start-page: 161225
  year: 2023
  ident: ref_21
  article-title: Engine, aftertreatment, fuel quality and non-tailpipe achievements to lower gasoline vehicle PM emissions: Literature review and future prospects
  publication-title: Appl. Energy
– ident: ref_7
  doi: 10.4271/2021-26-0208
– volume: 5
  start-page: 241
  year: 1992
  ident: ref_32
  article-title: Stacked generalization
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 10
  start-page: 323
  year: 2009
  ident: ref_6
  article-title: Light scattering technique for estimating soot mass loading in diesel particulate filters
  publication-title: Int. J. Engine Res.
  doi: 10.1243/14680874JER03109
– volume: 315
  start-page: 122538
  year: 2022
  ident: ref_8
  article-title: Synergistic effect analysis on sooting tendency based on soot-specialized artificial neural network algorithm with experimental and numerical validation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122538
– volume: 8
  start-page: 9
  year: 2022
  ident: ref_26
  article-title: Influence of Global Operating Parameters on the Reactivity of Soot Particles from Direct Injection Gasoline Engines
  publication-title: Emiss. Control Sci. Technol.
  doi: 10.1007/s40825-022-00211-y
– volume: 22
  start-page: 1395
  year: 2021
  ident: ref_24
  article-title: Effects of alcohol addition to traditional fuels on soot formation: A review
  publication-title: Int. J. Engine Res.
  doi: 10.1177/1468087420910886
– ident: ref_22
  doi: 10.3390/en11061417
– volume: 35
  start-page: 1798
  year: 2013
  ident: ref_30
  article-title: Representation Learning: A Review and New Perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 10
  start-page: 271
  year: 1999
  ident: ref_35
  article-title: Issues in Stacked Generalization
  publication-title: J. Articial Intell. Res.
SSID ssj0000331333
Score 2.3912346
Snippet To improve the prediction accuracy of soot load in gasoline particulate filters (GPFs) and the control accuracy during GPF regeneration, this study developed a...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 3861
SubjectTerms Accuracy
Air pollution
Air quality management
Algorithms
Data collection
Datasets
Diesel engines
Energy consumption
Engines
Gasoline
GDI engine
GPF
Machine learning
Methods
Neural networks
prediction
soot mass concentration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE1dXCSh4Kpt08miPvtZdYWVBBW-hSRNvXdld_7-TtOp6EC8eCqWENszXzHxDJt8Qci4KpQITIZMcqkxop7IiCJaFXOvSOSFdUtefPKjRs7h_kS8rrb5iTVgrD9wabgCSV2CRd0tVxm5olWVesKIMpWSsYjZ6X4x5K8lU8sEAmHxBq0cKmNcPfIOxTECh-I8IlIT6f3PHKcYMt8lWRw7pZTupHbLmm12yuSIZuEfc42y2pBOkvPQ6njhsOtlbOp3HLZd0Wy0p0jp6Nx3ScYO40Fmgdzdj2r6IXmHgqimOm6RCSk87jdVXOkntpBf75Hl4-3Q9yrpGCZnLteKZ9qWwuq5jz15eVJpx60MhvMf8By-lKsGD5U6GyJC8LS1XrA6S2Twq02o4IOvNrPGHhAqHDCYAWBBaOFWXrISA3_DBgbVge-Ts03jmrdXDMJhHRBObbxP3yFW069eIqGGdHiCypkPW_IVsj1xEVExcaWhLV3UHBnCiUbPKXBYyCZvmRY_0P4Ez3RJcGMgB0B0LCUf_MZtjspHH1r-pUrdP1pfzd3-CfGRpT9Ov9wGEQ9hv
  priority: 102
  providerName: Directory of Open Access Journals
Title Soot Mass Concentration Prediction at the GPF Inlet of GDI Engine Based on Machine Learning Methods
URI https://www.proquest.com/docview/3233219453
https://doaj.org/article/351a3b8625694978ab0e4089f9500a0b
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFLcGXLYD2qfWAZWlTdopws7zV04TZbQwqajahtSbFTs2t4S15f_n2XVhHLZDoiiJ4ug9vy9__H6EfBFGqchErCSHthLaq8pEwapYa914L6TP6Prza3V5I34s5bIMuK3LssqdT8yOuht8GiM_hRoArUtI-Hb3p0qsUWl2tVBo7JEDdMEGi6-DycX14ufjKAsDwCIMtrikgPX9aegxpgkwij-LRBmw_19uOcea6WtyWJJEerbV6hvyIvRvyau_oAPfEf9rGDZ0jqkvPU87D_sCf0sXqzT1ki_bDcX0js4WU3rVo37oEOns-xXdfohOMIB1FN-b5wWVgRas1Vs6z7TS6_fkZnrx-_yyKoQJla-14pUOjXC66xJ3LzetZtyFaEQIWAfhoVQreHTcy5gypeAaxxXromSuTgi1Gj6Q_X7ow0dChcdMJgI4EFp41TWsgYhthOjBOXAj8nknPHu3xcWwWE8kEdsnEY_IJMn18Y2EZZ1vDKtbW0zDguQtOKyspGoS313rWBAMW28kYy3Dpr4mrdhkcShL35aNA_ijCbvKnhmZAU5rMyLHO8XZYopr-9RxPv3_8RF5WSdy37wW95jsb1b34QQzjo0bkz0znY1L5xrnuh3PsyV_AGUQ1Xg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKGAJEKeoTsZ2kgNCfbAP2lSVaKXeTOzYvSVld6uKP8VvZOwkLRzg1kOkKLbsaDzjmfHj-wDei0Ipz4VPZIp1InKrksILnvgsz0trhbQRXb86UvNT8fVMnm3Ar_EuTDhWOc6JcaJuOhvWyLcxQyTrEhI_X_xIAmtU2F0dKTR6tThwP68oZVt9WuzT-H7IsumXk715MrAKJDajnD3JXSlM3jSB4DYt6pynxvlCOEfJAj1K1SL1JrXSh3DCmdKkijdecpMFGNccqd07cFcglsGiiunsek2HI1LKhz0KKpXzbdeSBxVYqPQvvxfpAf7lBKJnmz6Ch0NIynZ6HXoMG659Ag_-ACp8CvZb161ZRYE22wv3HNsBbJcdL8NGT3yt14yCSTY7nrJFS9rAOs9m-wvWN8R2yV02jOpV8fimYwOy6zmrIon16hmc3oogn8Nm27XuBTBhKW7yiAZFLqxqSl6ipz6ct2gMmgm8G4WnL3oUDk3ZSxCxvhHxBHaDXK9rBOTs-KFbnuvBEDXKtEZDeZxUZWDXqw13glPvpeS85tTVxzAqOtg3ydLWwzUF-tGAlKV3ChnhVLNiAlvjwOnB8Ff6Rk1f_r_4Ldybn1SH-nBxdPAK7meBVjieAt6CzfXy0r2mWGdt3kQFY_D9tjX6N4yoDKE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkLwgPgpCgMsAeIpqpOzneQBoXVdtzJaVcCkvXmxY-8tGW0R4l_jr-PspBs8wNseIkWJZVvns-_OPn8fwBtRKOW58IlMsUpEblVSeMETn-V5aa2QNqLrzxfq-FR8PJNnO_BrexcmpFVu18S4UNetDXvkI8wQaXYJiSPfp0UsJ9MPl9-SwCAVTlq3dBqdipy4nz8ofFu_n01orN9m2fTw68Fx0jMMJDaj-D3JXSlMXteB7DYtqpynxvlCOEeBAz1KVSL1JrXSB9fCmdKkitdecpMFSNccqd5bsJtTVMQHsDs-XCw_X-3wcEQKALHDREUs-cg1ZE8FFir9ywpGsoB_mYRo56b34V7voLL9TqMewI5rHsLdP2ALH4H90rYbNie3mx2EW49ND73Llqtw7BNfqw0j15IdLads1pBusNazo8mMdRWxMRnPmlG5eUzmdKzHeb1g80hpvX4MpzciyicwaNrGPQUmLHlRHtGgyIVVdclL9NSG8xaNQTOE11vh6csOk0NTLBNErK9FPIRxkOtViYCjHT-0qwvdT0uNMq3QUFQnVRm49irDneDUeik5rzg19S6Mig6znWRpq_7SAnU04Gbp_UJGcNWsGMLeduB0vwys9bXSPvv_71dwm7RZf5otTp7DnSxwDMeU4D0YbFbf3QtyfDbmZa9hDM5vWql_A6TtEjM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soot+Mass+Concentration+Prediction+at+the+GPF+Inlet+of+GDI+Engine+Based+on+Machine+Learning+Methods&rft.jtitle=Energies+%28Basel%29&rft.au=Hu%2C+Zhiyuan&rft.au=Liu+Zeyu&rft.au=Shen%2C+Jiayi&rft.au=Wang+Shimao&rft.date=2025-07-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=18&rft.issue=14&rft.spage=3861&rft_id=info:doi/10.3390%2Fen18143861&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon