Soot Mass Concentration Prediction at the GPF Inlet of GDI Engine Based on Machine Learning Methods
To improve the prediction accuracy of soot load in gasoline particulate filters (GPFs) and the control accuracy during GPF regeneration, this study developed a prediction model to predict the soot mass concentration at the GPF inlet of gasoline direct injection (GDI) engines using advanced machine l...
Saved in:
Published in | Energies (Basel) Vol. 18; no. 14; p. 3861 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To improve the prediction accuracy of soot load in gasoline particulate filters (GPFs) and the control accuracy during GPF regeneration, this study developed a prediction model to predict the soot mass concentration at the GPF inlet of gasoline direct injection (GDI) engines using advanced machine learning methods. Three machine learning approaches, namely, support vector regression (SVR), deep neural network (DNN), and a Stacking integration model of SVR and DNN, were employed, respectively, to predict the soot mass concentration at the GPF inlet. The input data includes engine speed, torque, ignition timing, throttle valve opening angle, fuel injection pressure, and pulse width. Exhaust gas soot mass concentration at the three-way catalyst (TWC) outlet is obtained by an engine bench test. The results show that the correlation coefficients (R2) of SVR, DNN, and Stacking integration model of SVR and DNN are 0.937, 0.984, and 0.992, respectively, and the prediction ranges of soot mass concentration are 0–0.038 mg/s, 0–0.030 mg/s, and 0–0.07 mg/s, respectively. The distribution, median, and data density of prediction results obtained by the three machine learning approaches fit well with the test results. However, the prediction result of the SVR model is poor when the soot mass concentration exceeds 0.038 mg/s. The median of the prediction result obtained by the DNN model is closer to the test result, specifically for data points in the 25–75% range. However, there are a few negative prediction results in the test dataset due to overfitting. Integrating SVR and DNN models through stacked models extends the predictive range of a single SVR or DNN model while mitigating the overfitting of DNN models. The results of the study can serve as a reference for the development of accurate prediction algorithms to estimate soot loads in GPFs, which in turn can provide some basis for the control of the particulate mass and particle number (PN) emitted from GDI engines. |
---|---|
AbstractList | To improve the prediction accuracy of soot load in gasoline particulate filters (GPFs) and the control accuracy during GPF regeneration, this study developed a prediction model to predict the soot mass concentration at the GPF inlet of gasoline direct injection (GDI) engines using advanced machine learning methods. Three machine learning approaches, namely, support vector regression (SVR), deep neural network (DNN), and a Stacking integration model of SVR and DNN, were employed, respectively, to predict the soot mass concentration at the GPF inlet. The input data includes engine speed, torque, ignition timing, throttle valve opening angle, fuel injection pressure, and pulse width. Exhaust gas soot mass concentration at the three-way catalyst (TWC) outlet is obtained by an engine bench test. The results show that the correlation coefficients (R2) of SVR, DNN, and Stacking integration model of SVR and DNN are 0.937, 0.984, and 0.992, respectively, and the prediction ranges of soot mass concentration are 0–0.038 mg/s, 0–0.030 mg/s, and 0–0.07 mg/s, respectively. The distribution, median, and data density of prediction results obtained by the three machine learning approaches fit well with the test results. However, the prediction result of the SVR model is poor when the soot mass concentration exceeds 0.038 mg/s. The median of the prediction result obtained by the DNN model is closer to the test result, specifically for data points in the 25–75% range. However, there are a few negative prediction results in the test dataset due to overfitting. Integrating SVR and DNN models through stacked models extends the predictive range of a single SVR or DNN model while mitigating the overfitting of DNN models. The results of the study can serve as a reference for the development of accurate prediction algorithms to estimate soot loads in GPFs, which in turn can provide some basis for the control of the particulate mass and particle number (PN) emitted from GDI engines. To improve the prediction accuracy of soot load in gasoline particulate filters (GPFs) and the control accuracy during GPF regeneration, this study developed a prediction model to predict the soot mass concentration at the GPF inlet of gasoline direct injection (GDI) engines using advanced machine learning methods. Three machine learning approaches, namely, support vector regression (SVR), deep neural network (DNN), and a Stacking integration model of SVR and DNN, were employed, respectively, to predict the soot mass concentration at the GPF inlet. The input data includes engine speed, torque, ignition timing, throttle valve opening angle, fuel injection pressure, and pulse width. Exhaust gas soot mass concentration at the three-way catalyst (TWC) outlet is obtained by an engine bench test. The results show that the correlation coefficients (R[sup.2]) of SVR, DNN, and Stacking integration model of SVR and DNN are 0.937, 0.984, and 0.992, respectively, and the prediction ranges of soot mass concentration are 0–0.038 mg/s, 0–0.030 mg/s, and 0–0.07 mg/s, respectively. The distribution, median, and data density of prediction results obtained by the three machine learning approaches fit well with the test results. However, the prediction result of the SVR model is poor when the soot mass concentration exceeds 0.038 mg/s. The median of the prediction result obtained by the DNN model is closer to the test result, specifically for data points in the 25–75% range. However, there are a few negative prediction results in the test dataset due to overfitting. Integrating SVR and DNN models through stacked models extends the predictive range of a single SVR or DNN model while mitigating the overfitting of DNN models. The results of the study can serve as a reference for the development of accurate prediction algorithms to estimate soot loads in GPFs, which in turn can provide some basis for the control of the particulate mass and particle number (PN) emitted from GDI engines. |
Audience | Academic |
Author | Wang, Shimao Liu, Zeyu Tan, Piqiang Shen, Jiayi Hu, Zhiyuan |
Author_xml | – sequence: 1 givenname: Zhiyuan orcidid: 0000-0002-0906-0128 surname: Hu fullname: Hu, Zhiyuan – sequence: 2 givenname: Zeyu surname: Liu fullname: Liu, Zeyu – sequence: 3 givenname: Jiayi surname: Shen fullname: Shen, Jiayi – sequence: 4 givenname: Shimao surname: Wang fullname: Wang, Shimao – sequence: 5 givenname: Piqiang surname: Tan fullname: Tan, Piqiang |
BookMark | eNpNkUFvEzEQhS1UJErphV9giRtSimdnvWsfS2hDpERUAs6W7R0njlK72NtD_z1ugwBb1oye3nwa-b1lZyknYuw9iCtELT5RAgU9qgFesXPQeliAGPHsv_4Nu6z1INpBBEQ8Z_57zjPf2lr5MidPaS52jjnxu0JT9C-tnfm8J766u-XrdKSZ58BXX9b8Ju1iIv7ZVpp4822t3z8LG7IlxbTjW5r3earv2Otgj5Uu_9QL9vP25sfy62LzbbVeXm8WvhsHWIykezdOEwg5grKjAEdB9UQC-vaGwfYQHHgZBEhJTjsYxBSkcN0gUY94wdYn7pTtwTyUeG_Lk8k2mhchl52xZY7-SAYlWHRq6OSgez0q6wT1QumgpRBWuMb6cGI9lPzrkepsDvmxpLa-wQ6xA91LbK6rk2tnGzSmkNv3-XYnuo--pRNi069VgyKITrWBj6cBX3KthcLfNUGY5xDNvxDxN_12jCg |
Cites_doi | 10.1088/1757-899X/100/1/012069 10.1109/TEVC.2006.876364 10.1016/j.fuel.2019.116947 10.3390/en13030693 10.1007/s42154-018-0020-1 10.1016/j.apenergy.2019.01.179 10.1093/aje/kwg021 10.1016/j.applthermaleng.2017.07.021 10.3390/electronics10050584 10.1023/A:1018054314350 10.20485/jsaeijae.12.1_9 10.1016/j.fuel.2020.117451 10.1016/j.energy.2020.119072 10.1016/j.psep.2023.08.075 10.4271/2024-01-4306 10.3390/pr10050993 10.1016/j.fuel.2019.01.173 10.1016/j.jclepro.2017.02.056 10.1023/B:STCO.0000035301.49549.88 10.4271/2021-26-0208 10.1016/S0893-6080(05)80023-1 10.1243/14680874JER03109 10.1016/j.fuel.2021.122538 10.1007/s40825-022-00211-y 10.1177/1468087420910886 10.3390/en11061417 10.1109/TPAMI.2013.50 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en18143861 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_351a3b8625694978ab0e4089f9500a0b A850031028 10_3390_en18143861 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c2761-7e94b7dd105718a701bef84ee014e0166a41fb1c5f0155eb9b160df50b2653973 |
IEDL.DBID | BENPR |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:24:51 EDT 2025 Fri Jul 25 19:12:18 EDT 2025 Tue Aug 05 03:51:22 EDT 2025 Thu Jul 31 00:27:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2761-7e94b7dd105718a701bef84ee014e0166a41fb1c5f0155eb9b160df50b2653973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0906-0128 |
OpenAccessLink | https://www.proquest.com/docview/3233219453?pq-origsite=%requestingapplication% |
PQID | 3233219453 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_351a3b8625694978ab0e4089f9500a0b proquest_journals_3233219453 gale_infotracacademiconefile_A850031028 crossref_primary_10_3390_en18143861 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Breiman (ref_33) 1996; 24 Kamimoto (ref_6) 2009; 10 Pu (ref_16) 2017; 125 Yin (ref_20) 2023; 178 Alex (ref_29) 2004; 14 Ting (ref_35) 1999; 10 ref_11 Shuai (ref_19) 2018; 1 ref_31 Yoshua (ref_30) 2013; 35 Cheng (ref_8) 2022; 315 Liao (ref_13) 2023; 16 Duronio (ref_1) 2020; 265 Freund (ref_34) 1997; 55 ref_17 Hoek (ref_3) 2003; 157 Wolpert (ref_32) 1992; 5 Ghanbari (ref_10) 2015; 100 Maricq (ref_21) 2023; 886 Koch (ref_26) 2022; 8 Xing (ref_28) 2017; 149 Catapano (ref_25) 2019; 245 Kumar (ref_14) 2020; 213 Qian (ref_23) 2019; 238 ref_22 Komori (ref_5) 2021; 12 Jayaprakash (ref_15) 2023; 6 Hua (ref_24) 2021; 22 ref_2 Chu (ref_18) 2020; 269 Alonso (ref_9) 2007; 11 ref_27 Seunghyup (ref_12) 2023; 37 ref_4 ref_7 |
References_xml | – volume: 100 start-page: 012069 year: 2015 ident: ref_10 article-title: Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/100/1/012069 – volume: 11 start-page: 46 year: 2007 ident: ref_9 article-title: Combining Neural Networks and Genetic Algorithms to Predict and Reduce Diesel Engine Emissions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2006.876364 – volume: 55 start-page: 119 year: 1997 ident: ref_34 article-title: A desicion-theoretic generalization of on-line learning and an application to boosting publication-title: Eur. Conf. Comput. Learn. Theory – volume: 265 start-page: 116947 year: 2020 ident: ref_1 article-title: Gasoline direct injection engines—A review of latest technologies and trends. Part 2 publication-title: Fuel doi: 10.1016/j.fuel.2019.116947 – ident: ref_4 doi: 10.3390/en13030693 – volume: 1 start-page: 95 year: 2018 ident: ref_19 article-title: Recent Progress in Automotive Gasoline Direct Injection Engine Technology publication-title: Automot. Innov. doi: 10.1007/s42154-018-0020-1 – volume: 238 start-page: 1269 year: 2019 ident: ref_23 article-title: Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.179 – volume: 37 start-page: 2023 year: 2023 ident: ref_12 article-title: Comparative research on DNN and LSTM algorithms for soot emission prediction under transient conditions in a diesel engine publication-title: J. Mech. Sci. Technol. – volume: 157 start-page: 613 year: 2003 ident: ref_3 article-title: Effects of fine and ultrafine particles on cardiorespiratory symptoms in elderly subjects with coronary heart disease: The ULTRA study publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwg021 – volume: 125 start-page: 335 year: 2017 ident: ref_16 article-title: Machine learning for nano-scale particulate matter distribution from gasoline direct injection engine publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.07.021 – ident: ref_11 doi: 10.3390/electronics10050584 – volume: 6 start-page: 2005 year: 2023 ident: ref_15 article-title: Initial Development of a Physics-Aware Machine Learning Framework for Soot Mass Prediction in Gasoline Direct Injection Engines publication-title: SAE Int. J. Adv. Curr. Pract. Mobil. – volume: 24 start-page: 123 year: 1996 ident: ref_33 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1023/A:1018054314350 – volume: 12 start-page: 9 year: 2021 ident: ref_5 article-title: Study on Estimation Logic of GPF Temperature and Amount of Residual Soot publication-title: Int. J. Automot. Eng. doi: 10.20485/jsaeijae.12.1_9 – volume: 269 start-page: 117451 year: 2020 ident: ref_18 article-title: Laminar burning velocity and pollutant emissions of the gasoline components and its surrogate fuels: A review publication-title: Fuel doi: 10.1016/j.fuel.2020.117451 – ident: ref_31 – volume: 213 start-page: 119072 year: 2020 ident: ref_14 article-title: Decanol proportional effect prediction model as additive in palm biodiesel using ANN and RSM technique for diesel engine publication-title: Energy doi: 10.1016/j.energy.2020.119072 – volume: 178 start-page: 836 year: 2023 ident: ref_20 article-title: A review of the development and application of soot modelling for modern diesel engines and the soot modelling for different fuels publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2023.08.075 – volume: 16 start-page: 2041 year: 2023 ident: ref_13 article-title: CRDI Engine Emission Prediction Models with Injection Parameters Based on ANN and SVM to Improve the SOOT-NOx Trade-Off publication-title: J. Appl. Fluid Mech. – ident: ref_27 – ident: ref_17 doi: 10.4271/2024-01-4306 – ident: ref_2 doi: 10.3390/pr10050993 – volume: 245 start-page: 253 year: 2019 ident: ref_25 article-title: Influence of ethanol blended and dual fueled with gasoline on soot formation and particulate matter emissions in a small displacement spark ignition engine publication-title: Fuel doi: 10.1016/j.fuel.2019.01.173 – volume: 149 start-page: 461 year: 2017 ident: ref_28 article-title: Individual particles emitted from gasoline engines: Impact of engine types, engine loads and fuel components publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.02.056 – volume: 14 start-page: 199 year: 2004 ident: ref_29 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 886 start-page: 161225 year: 2023 ident: ref_21 article-title: Engine, aftertreatment, fuel quality and non-tailpipe achievements to lower gasoline vehicle PM emissions: Literature review and future prospects publication-title: Appl. Energy – ident: ref_7 doi: 10.4271/2021-26-0208 – volume: 5 start-page: 241 year: 1992 ident: ref_32 article-title: Stacked generalization publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80023-1 – volume: 10 start-page: 323 year: 2009 ident: ref_6 article-title: Light scattering technique for estimating soot mass loading in diesel particulate filters publication-title: Int. J. Engine Res. doi: 10.1243/14680874JER03109 – volume: 315 start-page: 122538 year: 2022 ident: ref_8 article-title: Synergistic effect analysis on sooting tendency based on soot-specialized artificial neural network algorithm with experimental and numerical validation publication-title: Fuel doi: 10.1016/j.fuel.2021.122538 – volume: 8 start-page: 9 year: 2022 ident: ref_26 article-title: Influence of Global Operating Parameters on the Reactivity of Soot Particles from Direct Injection Gasoline Engines publication-title: Emiss. Control Sci. Technol. doi: 10.1007/s40825-022-00211-y – volume: 22 start-page: 1395 year: 2021 ident: ref_24 article-title: Effects of alcohol addition to traditional fuels on soot formation: A review publication-title: Int. J. Engine Res. doi: 10.1177/1468087420910886 – ident: ref_22 doi: 10.3390/en11061417 – volume: 35 start-page: 1798 year: 2013 ident: ref_30 article-title: Representation Learning: A Review and New Perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – volume: 10 start-page: 271 year: 1999 ident: ref_35 article-title: Issues in Stacked Generalization publication-title: J. Articial Intell. Res. |
SSID | ssj0000331333 |
Score | 2.3912346 |
Snippet | To improve the prediction accuracy of soot load in gasoline particulate filters (GPFs) and the control accuracy during GPF regeneration, this study developed a... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 3861 |
SubjectTerms | Accuracy Air pollution Air quality management Algorithms Data collection Datasets Diesel engines Energy consumption Engines Gasoline GDI engine GPF Machine learning Methods Neural networks prediction soot mass concentration |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE1dXCSh4Kpt08miPvtZdYWVBBW-hSRNvXdld_7-TtOp6EC8eCqWENszXzHxDJt8Qci4KpQITIZMcqkxop7IiCJaFXOvSOSFdUtefPKjRs7h_kS8rrb5iTVgrD9wabgCSV2CRd0tVxm5olWVesKIMpWSsYjZ6X4x5K8lU8sEAmHxBq0cKmNcPfIOxTECh-I8IlIT6f3PHKcYMt8lWRw7pZTupHbLmm12yuSIZuEfc42y2pBOkvPQ6njhsOtlbOp3HLZd0Wy0p0jp6Nx3ScYO40Fmgdzdj2r6IXmHgqimOm6RCSk87jdVXOkntpBf75Hl4-3Q9yrpGCZnLteKZ9qWwuq5jz15eVJpx60MhvMf8By-lKsGD5U6GyJC8LS1XrA6S2Twq02o4IOvNrPGHhAqHDCYAWBBaOFWXrISA3_DBgbVge-Ts03jmrdXDMJhHRBObbxP3yFW069eIqGGdHiCypkPW_IVsj1xEVExcaWhLV3UHBnCiUbPKXBYyCZvmRY_0P4Ez3RJcGMgB0B0LCUf_MZtjspHH1r-pUrdP1pfzd3-CfGRpT9Ov9wGEQ9hv priority: 102 providerName: Directory of Open Access Journals |
Title | Soot Mass Concentration Prediction at the GPF Inlet of GDI Engine Based on Machine Learning Methods |
URI | https://www.proquest.com/docview/3233219453 https://doaj.org/article/351a3b8625694978ab0e4089f9500a0b |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFLcGXLYD2qfWAZWlTdopws7zV04TZbQwqajahtSbFTs2t4S15f_n2XVhHLZDoiiJ4ug9vy9__H6EfBFGqchErCSHthLaq8pEwapYa914L6TP6Prza3V5I34s5bIMuK3LssqdT8yOuht8GiM_hRoArUtI-Hb3p0qsUWl2tVBo7JEDdMEGi6-DycX14ufjKAsDwCIMtrikgPX9aegxpgkwij-LRBmw_19uOcea6WtyWJJEerbV6hvyIvRvyau_oAPfEf9rGDZ0jqkvPU87D_sCf0sXqzT1ki_bDcX0js4WU3rVo37oEOns-xXdfohOMIB1FN-b5wWVgRas1Vs6z7TS6_fkZnrx-_yyKoQJla-14pUOjXC66xJ3LzetZtyFaEQIWAfhoVQreHTcy5gypeAaxxXromSuTgi1Gj6Q_X7ow0dChcdMJgI4EFp41TWsgYhthOjBOXAj8nknPHu3xcWwWE8kEdsnEY_IJMn18Y2EZZ1vDKtbW0zDguQtOKyspGoS313rWBAMW28kYy3Dpr4mrdhkcShL35aNA_ijCbvKnhmZAU5rMyLHO8XZYopr-9RxPv3_8RF5WSdy37wW95jsb1b34QQzjo0bkz0znY1L5xrnuh3PsyV_AGUQ1Xg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKGAJEKeoTsZ2kgNCfbAP2lSVaKXeTOzYvSVld6uKP8VvZOwkLRzg1kOkKLbsaDzjmfHj-wDei0Ipz4VPZIp1InKrksILnvgsz0trhbQRXb86UvNT8fVMnm3Ar_EuTDhWOc6JcaJuOhvWyLcxQyTrEhI_X_xIAmtU2F0dKTR6tThwP68oZVt9WuzT-H7IsumXk715MrAKJDajnD3JXSlM3jSB4DYt6pynxvlCOEfJAj1K1SL1JrXSh3DCmdKkijdecpMFGNccqd07cFcglsGiiunsek2HI1LKhz0KKpXzbdeSBxVYqPQvvxfpAf7lBKJnmz6Ch0NIynZ6HXoMG659Ag_-ACp8CvZb161ZRYE22wv3HNsBbJcdL8NGT3yt14yCSTY7nrJFS9rAOs9m-wvWN8R2yV02jOpV8fimYwOy6zmrIon16hmc3oogn8Nm27XuBTBhKW7yiAZFLqxqSl6ipz6ct2gMmgm8G4WnL3oUDk3ZSxCxvhHxBHaDXK9rBOTs-KFbnuvBEDXKtEZDeZxUZWDXqw13glPvpeS85tTVxzAqOtg3ydLWwzUF-tGAlKV3ChnhVLNiAlvjwOnB8Ff6Rk1f_r_4Ldybn1SH-nBxdPAK7meBVjieAt6CzfXy0r2mWGdt3kQFY_D9tjX6N4yoDKE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkLwgPgpCgMsAeIpqpOzneQBoXVdtzJaVcCkvXmxY-8tGW0R4l_jr-PspBs8wNseIkWJZVvns-_OPn8fwBtRKOW58IlMsUpEblVSeMETn-V5aa2QNqLrzxfq-FR8PJNnO_BrexcmpFVu18S4UNetDXvkI8wQaXYJiSPfp0UsJ9MPl9-SwCAVTlq3dBqdipy4nz8ofFu_n01orN9m2fTw68Fx0jMMJDaj-D3JXSlMXteB7DYtqpynxvlCOEeBAz1KVSL1JrXSB9fCmdKkitdecpMFSNccqd5bsJtTVMQHsDs-XCw_X-3wcEQKALHDREUs-cg1ZE8FFir9ywpGsoB_mYRo56b34V7voLL9TqMewI5rHsLdP2ALH4H90rYbNie3mx2EW49ND73Llqtw7BNfqw0j15IdLads1pBusNazo8mMdRWxMRnPmlG5eUzmdKzHeb1g80hpvX4MpzciyicwaNrGPQUmLHlRHtGgyIVVdclL9NSG8xaNQTOE11vh6csOk0NTLBNErK9FPIRxkOtViYCjHT-0qwvdT0uNMq3QUFQnVRm49irDneDUeik5rzg19S6Mig6znWRpq_7SAnU04Gbp_UJGcNWsGMLeduB0vwys9bXSPvv_71dwm7RZf5otTp7DnSxwDMeU4D0YbFbf3QtyfDbmZa9hDM5vWql_A6TtEjM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soot+Mass+Concentration+Prediction+at+the+GPF+Inlet+of+GDI+Engine+Based+on+Machine+Learning+Methods&rft.jtitle=Energies+%28Basel%29&rft.au=Hu%2C+Zhiyuan&rft.au=Liu+Zeyu&rft.au=Shen%2C+Jiayi&rft.au=Wang+Shimao&rft.date=2025-07-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=18&rft.issue=14&rft.spage=3861&rft_id=info:doi/10.3390%2Fen18143861&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |