Generating Authentic Grounded Synthetic Maintenance Work Orders
Large language models (LLMs) are promising for generating synthetic technical data, particularly for industrial maintenance where real datasets are often limited and unbalanced. This study generates synthetic maintenance work orders (MWOs) that are grounded to accurately represent engineering knowle...
Saved in:
Published in | IEEE access Vol. 13; pp. 145888 - 145904 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2025.3598751 |
Cover
Abstract | Large language models (LLMs) are promising for generating synthetic technical data, particularly for industrial maintenance where real datasets are often limited and unbalanced. This study generates synthetic maintenance work orders (MWOs) that are grounded to accurately represent engineering knowledge and authentic-reflecting technician language, jargon, and abbreviations. First, we extracted valid engineering paths from a knowledge graph constructed using the MaintIE gold-annotated industrial MWO dataset. Each path encodes engineering knowledge as a triple. These paths are used to constrain the output of an LLM ( GPT-4o mini ) to generate grounded synthetic MWOs using few-shot prompting. The synthetic MWOs are made authentic by incorporating human-like elements, such as contractions, abbreviations, and typos. Evaluation results show that the synthetic data is 86% as natural and 95% as correct as real MWOs. Turing test experiments reveal that subject matter experts could distinguish real from synthetic data only 51% of the time while exhibiting near-zero agreement, indicating random guessing. Statistical hypothesis testing confirms the results from the Turing Test. This research offers a generic approach to extracting legitimate paths from a knowledge graph to ensure that synthetic data generated are grounded in engineering knowledge while reflecting the style and language of the technicians who write them. To enable replication and reuse, code, data and documentation are at https://github.com/nlp-tlp/LLM-KG-Synthetic-MWO |
---|---|
AbstractList | Large language models (LLMs) are promising for generating synthetic technical data, particularly for industrial maintenance where real datasets are often limited and unbalanced. This study generates synthetic maintenance work orders (MWOs) that are grounded to accurately represent engineering knowledge and authentic-reflecting technician language, jargon, and abbreviations. First, we extracted valid engineering paths from a knowledge graph constructed using the MaintIE gold-annotated industrial MWO dataset. Each path encodes engineering knowledge as a triple. These paths are used to constrain the output of an LLM ( GPT-4o mini ) to generate grounded synthetic MWOs using few-shot prompting. The synthetic MWOs are made authentic by incorporating human-like elements, such as contractions, abbreviations, and typos. Evaluation results show that the synthetic data is 86% as natural and 95% as correct as real MWOs. Turing test experiments reveal that subject matter experts could distinguish real from synthetic data only 51% of the time while exhibiting near-zero agreement, indicating random guessing. Statistical hypothesis testing confirms the results from the Turing Test. This research offers a generic approach to extracting legitimate paths from a knowledge graph to ensure that synthetic data generated are grounded in engineering knowledge while reflecting the style and language of the technicians who write them. To enable replication and reuse, code, data and documentation are at https://github.com/nlp-tlp/LLM-KG-Synthetic-MWO |
Author | Polpo, Adriano Woods, Caitlin Lau, Allison Stewart, Michael Feng, Jadeyn Hodkiewicz, Melinda |
Author_xml | – sequence: 1 givenname: Allison orcidid: 0009-0007-0817-8099 surname: Lau fullname: Lau, Allison organization: Department of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia – sequence: 2 givenname: Jadeyn orcidid: 0009-0007-5591-153X surname: Feng fullname: Feng, Jadeyn organization: Department of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia – sequence: 3 givenname: Melinda orcidid: 0000-0002-7336-3932 surname: Hodkiewicz fullname: Hodkiewicz, Melinda email: melinda.hodkiewicz@uwa.edu.au organization: School of Engineering, The University of Western Australia, Perth, WA, Australia – sequence: 4 givenname: Caitlin surname: Woods fullname: Woods, Caitlin organization: Department of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia – sequence: 5 givenname: Michael surname: Stewart fullname: Stewart, Michael organization: Department of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia – sequence: 6 givenname: Adriano orcidid: 0000-0002-5959-1808 surname: Polpo fullname: Polpo, Adriano organization: Department of Mathematics and Statistics, The University of Western Australia, Perth, WA, Australia |
BookMark | eNpNUMtOwzAQtFCRKKVfAIdInFP8jJ0TqqJSKoF6KIij5cSbklLs4qSH_j0uqYC97Go0MzuaSzRw3gFC1wRPCMH53bQoZqvVhGIqJkzkSgpyhoaUZHnKBMsG_-4LNG7bDY6jIiTkEN3PwUEwXePWyXTfvYPrmiqZB793FmyyOriIHaFn07gOnHEVJG8-fCTLYCG0V-i8NtsWxqc9Qq8Ps5fiMX1azhfF9CmtqMxImlmuJC9xHYfgWoHMcYlVhSkYpTIuFDF5DGhrKlRluJEcamqtYsRgYTEboUXva73Z6F1oPk04aG8a_QP4sNYmxJxb0AQIcM6JNWXJJbBSVLXMaSZFqYRVR6_b3msX_Nce2k5v_D64GF8zyiXHAgsZWaxnVcG3bYD69yvB-li87ovXx-L1qfiouulVDQD8KQihnGLMvgHgM39u |
CODEN | IAECCG |
Cites_doi | 10.1109/PHM2022-London52454.2022.00067 10.36001/phmconf.2019.v11i1.836 10.1108/JQME-04-2015-0013 10.1145/3701716.3715240 10.1609/aaai.v36i11.21538 10.1002/ail2.33 10.1016/j.procs.2024.02.029 10.1109/ACCESS.2019.2899751 10.18653/v1/2020.coling-demos.2 10.1115/1.4045686 10.1145/3649506 10.58940/2329-258x.2052 10.1093/jamiaopen/ooae114 10.1126/sciadv.adt3813 10.1162/tacl_a_00492 10.1016/j.cirp.2024.04.012 10.18653/v1/2024.findings-emnlp.432 10.1145/3571730 10.1016/j.ress.2020.107103 10.1007/978-3-031-25448-2_5 10.18653/v1/2021.nlpmc-1.9 10.1115/DETC2019-98429 10.1016/j.ress.2011.06.003 10.18653/v1/2023.findings-emnlp.474 10.18653/v1/2023.emnlp-main.647 10.1016/j.mfglet.2020.11.001 10.3390/s23052818 10.1007/s10845-024-02323-4 10.1109/IIT59782.2023.10366424 10.1080/17517575.2020.1790043 10.18653/v1/2020.aacl-demo.5 10.18653/v1/2021.acl-long.312 10.1145/3383455.3422554 10.1007/978-3-031-22695-3_23 10.1016/j.ress.2009.05.008 10.1080/10447318.2024.2430510 10.18653/v1/2024.kallm-1.8 10.36001/phmconf.2017.v9i1.2449 10.18653/v1/2023.ijcnlp-main.45 10.1371/journal.pone.0199102 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2025.3598751 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore Digtal Library (IEEE/IET Electronic Library-IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 145904 |
ExternalDocumentID | oai_doaj_org_article_1e1e4441dabb47e3b5cf792675b85d80 10_1109_ACCESS_2025_3598751 11124200 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2761-6d4874b0ffff10f8e790b08c02ea8864581a9536df258ca4a74ef2dd831a05d03 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Mon Sep 01 19:37:07 EDT 2025 Sat Sep 06 14:26:53 EDT 2025 Wed Aug 27 16:41:03 EDT 2025 Wed Sep 03 07:09:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2761-6d4874b0ffff10f8e790b08c02ea8864581a9536df258ca4a74ef2dd831a05d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0007-0817-8099 0009-0007-5591-153X 0000-0002-7336-3932 0000-0002-5959-1808 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11124200 |
PQID | 3247405057 |
PQPubID | 4845423 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3598751 proquest_journals_3247405057 doaj_primary_oai_doaj_org_article_1e1e4441dabb47e3b5cf792675b85d80 ieee_primary_11124200 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 Bikaun (ref37) ref56 ref14 ref52 ref11 ref10 ref54 Bubeck (ref19) 2023 ref17 ref16 Mitra (ref15) 2024 Akhbardeh (ref30) Stewart (ref13) 2023 ref51 ref50 (ref27) 2023 ref46 ref47 ref42 Alafnan (ref53) 2023 ref41 ref44 Yang (ref35) 2022 ref43 Krippendorff (ref55) 2007 ref49 ref8 ref7 ref4 ref3 ref5 ref40 ref34 ref36 ref31 ref33 ref32 Tang (ref2) 2023 ref1 Yu (ref18); 36 ref39 (ref45) 2024 ref38 Bikaun (ref9) Atil (ref48) 2024 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref29 (ref26) 2024 Møller (ref6) 2023 |
References_xml | – ident: ref31 doi: 10.1109/PHM2022-London52454.2022.00067 – ident: ref14 doi: 10.36001/phmconf.2019.v11i1.836 – ident: ref39 doi: 10.1108/JQME-04-2015-0013 – ident: ref4 doi: 10.1145/3701716.3715240 – ident: ref32 doi: 10.1609/aaai.v36i11.21538 – year: 2023 ident: ref19 article-title: Sparks of artificial general intelligence: Early experiments with GPT-4 publication-title: arXiv:2303.12712 – ident: ref7 doi: 10.1002/ail2.33 – start-page: 68 volume-title: Proc. 9th Workshop Noisy User-Generated Text (W-NUT) ident: ref9 article-title: MaintNorm: A corpus and benchmark model for lexical normalisation and masking of industrial maintenance short text – volume-title: WSSC Completed Service Alert Work Orders year: 2023 ident: ref27 – ident: ref10 doi: 10.1016/j.procs.2024.02.029 – ident: ref50 doi: 10.1109/ACCESS.2019.2899751 – ident: ref11 doi: 10.18653/v1/2020.coling-demos.2 – year: 2023 ident: ref13 article-title: Large language models for failure mode classification: An investigation publication-title: arXiv:2309.08181 – ident: ref43 doi: 10.1115/1.4045686 – year: 2022 ident: ref35 article-title: A large-scale annotated multivariate time series aviation maintenance dataset from the NGAFID publication-title: arXiv:2210.07317 – ident: ref23 doi: 10.1145/3649506 – ident: ref36 doi: 10.58940/2329-258x.2052 – ident: ref1 doi: 10.1093/jamiaopen/ooae114 – ident: ref54 doi: 10.1126/sciadv.adt3813 – ident: ref22 doi: 10.1162/tacl_a_00492 – ident: ref34 doi: 10.1016/j.cirp.2024.04.012 – volume-title: Computing Krippendorff’s Alpha Reliability year: 2007 ident: ref55 – ident: ref47 doi: 10.18653/v1/2024.findings-emnlp.432 – ident: ref20 doi: 10.1145/3571730 – start-page: 4235 volume-title: Proc. 13th Lang. Resour. Eval. Conf. ident: ref30 article-title: Transfer learning methods for domain adaptation in technical logbook datasets – ident: ref40 doi: 10.1016/j.ress.2020.107103 – year: 2023 ident: ref2 article-title: Does synthetic data generation of LLMs help clinical text mining? publication-title: arXiv:2303.04360 – ident: ref12 doi: 10.1007/978-3-031-25448-2_5 – volume: 36 start-page: 55734 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref18 article-title: Large language model as attributed training data generator: A tale of diversity and bias – ident: ref25 doi: 10.18653/v1/2021.nlpmc-1.9 – ident: ref44 doi: 10.1115/DETC2019-98429 – ident: ref51 doi: 10.1016/j.ress.2011.06.003 – ident: ref24 doi: 10.18653/v1/2023.findings-emnlp.474 – ident: ref3 doi: 10.18653/v1/2023.emnlp-main.647 – ident: ref8 doi: 10.1016/j.mfglet.2020.11.001 – ident: ref41 doi: 10.3390/s23052818 – year: 2023 ident: ref6 article-title: The parrot dilemma: Human-labeled vs. LLM-augmented data in classification tasks publication-title: arXiv:2304.13861 – ident: ref33 doi: 10.1007/s10845-024-02323-4 – volume-title: Handyman Work Order (HWO) Charges year: 2024 ident: ref26 – ident: ref46 doi: 10.1109/IIT59782.2023.10366424 – ident: ref17 doi: 10.1080/17517575.2020.1790043 – year: 2024 ident: ref15 article-title: AgentInstruct: Toward generative teaching with agentic flows publication-title: arXiv:2407.03502 – start-page: 10939 volume-title: Proc. Joint Int. Conf. Comput. Linguistics, Lang. Resour. Eval. (LREC-COLING) ident: ref37 article-title: MaintIE: A fine-grained annotation schema and benchmark for information extraction from maintenance short texts – ident: ref28 doi: 10.18653/v1/2020.aacl-demo.5 – ident: ref29 doi: 10.18653/v1/2021.acl-long.312 – year: 2024 ident: ref48 article-title: Non-determinism of ’deterministic’ LLM settings publication-title: arXiv:2408.04667 – ident: ref5 doi: 10.1145/3383455.3422554 – ident: ref16 doi: 10.1007/978-3-031-22695-3_23 – ident: ref49 doi: 10.1016/j.ress.2009.05.008 – ident: ref52 doi: 10.1080/10447318.2024.2430510 – ident: ref38 doi: 10.18653/v1/2024.kallm-1.8 – volume-title: Asset Management Parks System (AMPS)—Work Orders year: 2024 ident: ref45 – start-page: 85 year: 2023 ident: ref53 article-title: Do artificial intelligence chatbots have a writing style? An investigation into the stylistic features of ChatGPT-4 publication-title: J. Artif. Intell. Technol. – ident: ref42 doi: 10.36001/phmconf.2017.v9i1.2449 – ident: ref21 doi: 10.18653/v1/2023.ijcnlp-main.45 – ident: ref56 doi: 10.1371/journal.pone.0199102 |
SSID | ssj0000816957 |
Score | 2.3332202 |
Snippet | Large language models (LLMs) are promising for generating synthetic technical data, particularly for industrial maintenance where real datasets are often... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 145888 |
SubjectTerms | Abbreviations Annotations Australia Datasets Engineering Engines GPT grounded synthetic data Hypothesis testing Knowledge engineering Knowledge graphs Knowledge representation Large language models Logic Maintenance Maintenance work orders Oils Plant maintenance Silver Synthetic data synthetic data generation technical language processing Technicians Training data Turing test |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQH0UECsrASKjt2D5nQqWiqpAKA1TqZsVfY0EUBv49viSFIgYWViuS43ex797l_I6QixgjjT7qImJXE-GwG6CSUFApS-4ERAl4wXl2r6ZzcbeQi41WX1gT1soDt8ANWWBBJJ_ta2sFhNJKF6HiKc61WnrdsHVa0Q0y1ZzBmqlKQiczxGg1HI3HaUWJEHJ5hap1INkPV9Qo9nctVn6dy42zmeyR3S5KzEft2-2TrbA8IDsb2oGH5LoVjMaq5RzzXFj143JMJWFOO3_8WKYxHJrVKAmBuhohx9R4_oBqm6s-mU9un8bTouuGUDgOihXKJ24hLE3oRkajDlBRS7WjPNRaKyE1q_FfrI9caleLGkSI3HtdsppKT8sj0ls-L8MxySGxlpjiLhW4F1Aq7W0E5H5SSnAWMnK5Bsa8tKIXpiELtDItjgZxNB2OGblB8L4eRcXqZiDZ0XR2NH_ZMSN9hP57vhQIirSFMzJY28J022tlUhQIAnvwwcl_zH1KtnE9bWZlQHpvr-_hLMUab_a8-aw-AX4bzNY priority: 102 providerName: Directory of Open Access Journals |
Title | Generating Authentic Grounded Synthetic Maintenance Work Orders |
URI | https://ieeexplore.ieee.org/document/11124200 https://www.proquest.com/docview/3247405057 https://doaj.org/article/1e1e4441dabb47e3b5cf792675b85d80 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8EYFSZWAkwUnsnDMhqKgqJGAAJDYrfi1IBdF2gF-Pz3F5CoktshLFuTvH953vviPkyDlHnXEic9jVhGnsBlhzyCjnVakZOA5Y4Hx1XY_v2eUDf4jF6qEWxlobks9sjpfhLN886TmGyk78uvQ7CvUIfdnbWVes9RFQwQ4SDYfILFTQ5uRsOPQf4TFgyXMkqgNefNt9Akl_7Kry61cc9pfROrlezKxLK3nM5zOV67cfpI3_nvoGWYueZnrWmcYmWbKTLbL6hX9wm5x2pNOY-ZxirAwzh3SK4SiMi6e3rxM_hkNXLdJKIDeHTTG8nt4gY-d0h9yPLu6G4yx2VMh0CXWR1cbjE6ao15ArqBMWGqqo0LS0rRA146Jo8TzXuJIL3bIWmHWlMaIqWsoNrXZJb_I0sXskBY98nPfdalsaBlUtjHKA-JFzDlpBQo4XkpbPHXGGDICDNrJTjETFyKiYhJyjNj5uRdbrMOClKOMikoUtLPP-m2mVYmArxbWDpvSYRwluBE3IDkr-831R6AnpL5Qr4xKdSu9JAsM-frD_x2MHZAWn2AVc-qQ3e5nbQ--CzNQgQPdBMMB3r9LXgg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6hcAAOlEcQoQF84IjTtb3jWZ9QGhEFSNJDW6m3lfd1qZQimhzg17Njb9pShMTNWtnyembXM9_szDcAH0IIIrig8sBdTaTlboA1Ui4Qq9JKCkhc4Lxa14tz-fUCL1KxelcL473vks_8hC-7s3x3ZXccKjuK-zJaFBER-sNo-CX25Vo3IRXuIdEgJW6hQjRH09ksfkZEgSVOmKqOsPjD_nQ0_amvyl8_487CzA9gvZ9bn1hyOdltzcT-ukfb-N-TfwZPk6-ZTfvF8Rwe-M0LeHKHgfAlfOpppzn3OeNoGecO2YwDUhwZz05_buIYD61aJpZgdg6fcYA9O2HOzushnM8_n80WeeqpkNuS6iKvXUQo0oioo1CIoDw1wghlRelbpWqJqmj5RNeFEpVtZUvSh9I5VRWtQCeqVzDYXG38a8goYp8Qvbfal05SVStnAjGCRESyhkbwcS9p_b2nztAd5BCN7hWjWTE6KWYEx6yNm1uZ97obiFLUaRvpwhdeRg_OtcZI8pVBG6gpI-oxCp0SIxiy5G_fl4Q-gvFeuTpt0msdfUmS3MmP3vzjsffwaHG2Wurll_W3Q3jM0-3DL2MYbH_s_NvokGzNu24Z_gYM0Nna |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+Authentic+Grounded+Synthetic+Maintenance+Work+Orders&rft.jtitle=IEEE+access&rft.au=Lau%2C+Allison&rft.au=Feng%2C+Jadeyn&rft.au=Hodkiewicz%2C+Melinda&rft.au=Woods%2C+Caitlin&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=145888&rft.epage=145904&rft_id=info:doi/10.1109%2FACCESS.2025.3598751&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3598751 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |