Generating Authentic Grounded Synthetic Maintenance Work Orders

Large language models (LLMs) are promising for generating synthetic technical data, particularly for industrial maintenance where real datasets are often limited and unbalanced. This study generates synthetic maintenance work orders (MWOs) that are grounded to accurately represent engineering knowle...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 145888 - 145904
Main Authors Lau, Allison, Feng, Jadeyn, Hodkiewicz, Melinda, Woods, Caitlin, Stewart, Michael, Polpo, Adriano
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3598751

Cover

Abstract Large language models (LLMs) are promising for generating synthetic technical data, particularly for industrial maintenance where real datasets are often limited and unbalanced. This study generates synthetic maintenance work orders (MWOs) that are grounded to accurately represent engineering knowledge and authentic-reflecting technician language, jargon, and abbreviations. First, we extracted valid engineering paths from a knowledge graph constructed using the MaintIE gold-annotated industrial MWO dataset. Each path encodes engineering knowledge as a triple. These paths are used to constrain the output of an LLM ( GPT-4o mini ) to generate grounded synthetic MWOs using few-shot prompting. The synthetic MWOs are made authentic by incorporating human-like elements, such as contractions, abbreviations, and typos. Evaluation results show that the synthetic data is 86% as natural and 95% as correct as real MWOs. Turing test experiments reveal that subject matter experts could distinguish real from synthetic data only 51% of the time while exhibiting near-zero agreement, indicating random guessing. Statistical hypothesis testing confirms the results from the Turing Test. This research offers a generic approach to extracting legitimate paths from a knowledge graph to ensure that synthetic data generated are grounded in engineering knowledge while reflecting the style and language of the technicians who write them. To enable replication and reuse, code, data and documentation are at https://github.com/nlp-tlp/LLM-KG-Synthetic-MWO
AbstractList Large language models (LLMs) are promising for generating synthetic technical data, particularly for industrial maintenance where real datasets are often limited and unbalanced. This study generates synthetic maintenance work orders (MWOs) that are grounded to accurately represent engineering knowledge and authentic-reflecting technician language, jargon, and abbreviations. First, we extracted valid engineering paths from a knowledge graph constructed using the MaintIE gold-annotated industrial MWO dataset. Each path encodes engineering knowledge as a triple. These paths are used to constrain the output of an LLM ( GPT-4o mini ) to generate grounded synthetic MWOs using few-shot prompting. The synthetic MWOs are made authentic by incorporating human-like elements, such as contractions, abbreviations, and typos. Evaluation results show that the synthetic data is 86% as natural and 95% as correct as real MWOs. Turing test experiments reveal that subject matter experts could distinguish real from synthetic data only 51% of the time while exhibiting near-zero agreement, indicating random guessing. Statistical hypothesis testing confirms the results from the Turing Test. This research offers a generic approach to extracting legitimate paths from a knowledge graph to ensure that synthetic data generated are grounded in engineering knowledge while reflecting the style and language of the technicians who write them. To enable replication and reuse, code, data and documentation are at https://github.com/nlp-tlp/LLM-KG-Synthetic-MWO
Author Polpo, Adriano
Woods, Caitlin
Lau, Allison
Stewart, Michael
Feng, Jadeyn
Hodkiewicz, Melinda
Author_xml – sequence: 1
  givenname: Allison
  orcidid: 0009-0007-0817-8099
  surname: Lau
  fullname: Lau, Allison
  organization: Department of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia
– sequence: 2
  givenname: Jadeyn
  orcidid: 0009-0007-5591-153X
  surname: Feng
  fullname: Feng, Jadeyn
  organization: Department of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia
– sequence: 3
  givenname: Melinda
  orcidid: 0000-0002-7336-3932
  surname: Hodkiewicz
  fullname: Hodkiewicz, Melinda
  email: melinda.hodkiewicz@uwa.edu.au
  organization: School of Engineering, The University of Western Australia, Perth, WA, Australia
– sequence: 4
  givenname: Caitlin
  surname: Woods
  fullname: Woods, Caitlin
  organization: Department of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia
– sequence: 5
  givenname: Michael
  surname: Stewart
  fullname: Stewart, Michael
  organization: Department of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia
– sequence: 6
  givenname: Adriano
  orcidid: 0000-0002-5959-1808
  surname: Polpo
  fullname: Polpo, Adriano
  organization: Department of Mathematics and Statistics, The University of Western Australia, Perth, WA, Australia
BookMark eNpNUMtOwzAQtFCRKKVfAIdInFP8jJ0TqqJSKoF6KIij5cSbklLs4qSH_j0uqYC97Go0MzuaSzRw3gFC1wRPCMH53bQoZqvVhGIqJkzkSgpyhoaUZHnKBMsG_-4LNG7bDY6jIiTkEN3PwUEwXePWyXTfvYPrmiqZB793FmyyOriIHaFn07gOnHEVJG8-fCTLYCG0V-i8NtsWxqc9Qq8Ps5fiMX1azhfF9CmtqMxImlmuJC9xHYfgWoHMcYlVhSkYpTIuFDF5DGhrKlRluJEcamqtYsRgYTEboUXva73Z6F1oPk04aG8a_QP4sNYmxJxb0AQIcM6JNWXJJbBSVLXMaSZFqYRVR6_b3msX_Nce2k5v_D64GF8zyiXHAgsZWaxnVcG3bYD69yvB-li87ovXx-L1qfiouulVDQD8KQihnGLMvgHgM39u
CODEN IAECCG
Cites_doi 10.1109/PHM2022-London52454.2022.00067
10.36001/phmconf.2019.v11i1.836
10.1108/JQME-04-2015-0013
10.1145/3701716.3715240
10.1609/aaai.v36i11.21538
10.1002/ail2.33
10.1016/j.procs.2024.02.029
10.1109/ACCESS.2019.2899751
10.18653/v1/2020.coling-demos.2
10.1115/1.4045686
10.1145/3649506
10.58940/2329-258x.2052
10.1093/jamiaopen/ooae114
10.1126/sciadv.adt3813
10.1162/tacl_a_00492
10.1016/j.cirp.2024.04.012
10.18653/v1/2024.findings-emnlp.432
10.1145/3571730
10.1016/j.ress.2020.107103
10.1007/978-3-031-25448-2_5
10.18653/v1/2021.nlpmc-1.9
10.1115/DETC2019-98429
10.1016/j.ress.2011.06.003
10.18653/v1/2023.findings-emnlp.474
10.18653/v1/2023.emnlp-main.647
10.1016/j.mfglet.2020.11.001
10.3390/s23052818
10.1007/s10845-024-02323-4
10.1109/IIT59782.2023.10366424
10.1080/17517575.2020.1790043
10.18653/v1/2020.aacl-demo.5
10.18653/v1/2021.acl-long.312
10.1145/3383455.3422554
10.1007/978-3-031-22695-3_23
10.1016/j.ress.2009.05.008
10.1080/10447318.2024.2430510
10.18653/v1/2024.kallm-1.8
10.36001/phmconf.2017.v9i1.2449
10.18653/v1/2023.ijcnlp-main.45
10.1371/journal.pone.0199102
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3598751
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digtal Library (IEEE/IET Electronic Library-IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 145904
ExternalDocumentID oai_doaj_org_article_1e1e4441dabb47e3b5cf792675b85d80
10_1109_ACCESS_2025_3598751
11124200
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2761-6d4874b0ffff10f8e790b08c02ea8864581a9536df258ca4a74ef2dd831a05d03
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Mon Sep 01 19:37:07 EDT 2025
Sat Sep 06 14:26:53 EDT 2025
Wed Aug 27 16:41:03 EDT 2025
Wed Sep 03 07:09:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2761-6d4874b0ffff10f8e790b08c02ea8864581a9536df258ca4a74ef2dd831a05d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-0817-8099
0009-0007-5591-153X
0000-0002-7336-3932
0000-0002-5959-1808
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11124200
PQID 3247405057
PQPubID 4845423
PageCount 17
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3598751
proquest_journals_3247405057
doaj_primary_oai_doaj_org_article_1e1e4441dabb47e3b5cf792675b85d80
ieee_primary_11124200
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
Bikaun (ref37)
ref56
ref14
ref52
ref11
ref10
ref54
Bubeck (ref19) 2023
ref17
ref16
Mitra (ref15) 2024
Akhbardeh (ref30)
Stewart (ref13) 2023
ref51
ref50
(ref27) 2023
ref46
ref47
ref42
Alafnan (ref53) 2023
ref41
ref44
Yang (ref35) 2022
ref43
Krippendorff (ref55) 2007
ref49
ref8
ref7
ref4
ref3
ref5
ref40
ref34
ref36
ref31
ref33
ref32
Tang (ref2) 2023
ref1
Yu (ref18); 36
ref39
(ref45) 2024
ref38
Bikaun (ref9)
Atil (ref48) 2024
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref29
(ref26) 2024
Møller (ref6) 2023
References_xml – ident: ref31
  doi: 10.1109/PHM2022-London52454.2022.00067
– ident: ref14
  doi: 10.36001/phmconf.2019.v11i1.836
– ident: ref39
  doi: 10.1108/JQME-04-2015-0013
– ident: ref4
  doi: 10.1145/3701716.3715240
– ident: ref32
  doi: 10.1609/aaai.v36i11.21538
– year: 2023
  ident: ref19
  article-title: Sparks of artificial general intelligence: Early experiments with GPT-4
  publication-title: arXiv:2303.12712
– ident: ref7
  doi: 10.1002/ail2.33
– start-page: 68
  volume-title: Proc. 9th Workshop Noisy User-Generated Text (W-NUT)
  ident: ref9
  article-title: MaintNorm: A corpus and benchmark model for lexical normalisation and masking of industrial maintenance short text
– volume-title: WSSC Completed Service Alert Work Orders
  year: 2023
  ident: ref27
– ident: ref10
  doi: 10.1016/j.procs.2024.02.029
– ident: ref50
  doi: 10.1109/ACCESS.2019.2899751
– ident: ref11
  doi: 10.18653/v1/2020.coling-demos.2
– year: 2023
  ident: ref13
  article-title: Large language models for failure mode classification: An investigation
  publication-title: arXiv:2309.08181
– ident: ref43
  doi: 10.1115/1.4045686
– year: 2022
  ident: ref35
  article-title: A large-scale annotated multivariate time series aviation maintenance dataset from the NGAFID
  publication-title: arXiv:2210.07317
– ident: ref23
  doi: 10.1145/3649506
– ident: ref36
  doi: 10.58940/2329-258x.2052
– ident: ref1
  doi: 10.1093/jamiaopen/ooae114
– ident: ref54
  doi: 10.1126/sciadv.adt3813
– ident: ref22
  doi: 10.1162/tacl_a_00492
– ident: ref34
  doi: 10.1016/j.cirp.2024.04.012
– volume-title: Computing Krippendorff’s Alpha Reliability
  year: 2007
  ident: ref55
– ident: ref47
  doi: 10.18653/v1/2024.findings-emnlp.432
– ident: ref20
  doi: 10.1145/3571730
– start-page: 4235
  volume-title: Proc. 13th Lang. Resour. Eval. Conf.
  ident: ref30
  article-title: Transfer learning methods for domain adaptation in technical logbook datasets
– ident: ref40
  doi: 10.1016/j.ress.2020.107103
– year: 2023
  ident: ref2
  article-title: Does synthetic data generation of LLMs help clinical text mining?
  publication-title: arXiv:2303.04360
– ident: ref12
  doi: 10.1007/978-3-031-25448-2_5
– volume: 36
  start-page: 55734
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref18
  article-title: Large language model as attributed training data generator: A tale of diversity and bias
– ident: ref25
  doi: 10.18653/v1/2021.nlpmc-1.9
– ident: ref44
  doi: 10.1115/DETC2019-98429
– ident: ref51
  doi: 10.1016/j.ress.2011.06.003
– ident: ref24
  doi: 10.18653/v1/2023.findings-emnlp.474
– ident: ref3
  doi: 10.18653/v1/2023.emnlp-main.647
– ident: ref8
  doi: 10.1016/j.mfglet.2020.11.001
– ident: ref41
  doi: 10.3390/s23052818
– year: 2023
  ident: ref6
  article-title: The parrot dilemma: Human-labeled vs. LLM-augmented data in classification tasks
  publication-title: arXiv:2304.13861
– ident: ref33
  doi: 10.1007/s10845-024-02323-4
– volume-title: Handyman Work Order (HWO) Charges
  year: 2024
  ident: ref26
– ident: ref46
  doi: 10.1109/IIT59782.2023.10366424
– ident: ref17
  doi: 10.1080/17517575.2020.1790043
– year: 2024
  ident: ref15
  article-title: AgentInstruct: Toward generative teaching with agentic flows
  publication-title: arXiv:2407.03502
– start-page: 10939
  volume-title: Proc. Joint Int. Conf. Comput. Linguistics, Lang. Resour. Eval. (LREC-COLING)
  ident: ref37
  article-title: MaintIE: A fine-grained annotation schema and benchmark for information extraction from maintenance short texts
– ident: ref28
  doi: 10.18653/v1/2020.aacl-demo.5
– ident: ref29
  doi: 10.18653/v1/2021.acl-long.312
– year: 2024
  ident: ref48
  article-title: Non-determinism of ’deterministic’ LLM settings
  publication-title: arXiv:2408.04667
– ident: ref5
  doi: 10.1145/3383455.3422554
– ident: ref16
  doi: 10.1007/978-3-031-22695-3_23
– ident: ref49
  doi: 10.1016/j.ress.2009.05.008
– ident: ref52
  doi: 10.1080/10447318.2024.2430510
– ident: ref38
  doi: 10.18653/v1/2024.kallm-1.8
– volume-title: Asset Management Parks System (AMPS)—Work Orders
  year: 2024
  ident: ref45
– start-page: 85
  year: 2023
  ident: ref53
  article-title: Do artificial intelligence chatbots have a writing style? An investigation into the stylistic features of ChatGPT-4
  publication-title: J. Artif. Intell. Technol.
– ident: ref42
  doi: 10.36001/phmconf.2017.v9i1.2449
– ident: ref21
  doi: 10.18653/v1/2023.ijcnlp-main.45
– ident: ref56
  doi: 10.1371/journal.pone.0199102
SSID ssj0000816957
Score 2.3332202
Snippet Large language models (LLMs) are promising for generating synthetic technical data, particularly for industrial maintenance where real datasets are often...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 145888
SubjectTerms Abbreviations
Annotations
Australia
Datasets
Engineering
Engines
GPT
grounded synthetic data
Hypothesis testing
Knowledge engineering
Knowledge graphs
Knowledge representation
Large language models
Logic
Maintenance
Maintenance work orders
Oils
Plant maintenance
Silver
Synthetic data
synthetic data generation
technical language processing
Technicians
Training data
Turing test
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQH0UECsrASKjt2D5nQqWiqpAKA1TqZsVfY0EUBv49viSFIgYWViuS43ex797l_I6QixgjjT7qImJXE-GwG6CSUFApS-4ERAl4wXl2r6ZzcbeQi41WX1gT1soDt8ANWWBBJJ_ta2sFhNJKF6HiKc61WnrdsHVa0Q0y1ZzBmqlKQiczxGg1HI3HaUWJEHJ5hap1INkPV9Qo9nctVn6dy42zmeyR3S5KzEft2-2TrbA8IDsb2oGH5LoVjMaq5RzzXFj143JMJWFOO3_8WKYxHJrVKAmBuhohx9R4_oBqm6s-mU9un8bTouuGUDgOihXKJ24hLE3oRkajDlBRS7WjPNRaKyE1q_FfrI9caleLGkSI3HtdsppKT8sj0ls-L8MxySGxlpjiLhW4F1Aq7W0E5H5SSnAWMnK5Bsa8tKIXpiELtDItjgZxNB2OGblB8L4eRcXqZiDZ0XR2NH_ZMSN9hP57vhQIirSFMzJY28J022tlUhQIAnvwwcl_zH1KtnE9bWZlQHpvr-_hLMUab_a8-aw-AX4bzNY
  priority: 102
  providerName: Directory of Open Access Journals
Title Generating Authentic Grounded Synthetic Maintenance Work Orders
URI https://ieeexplore.ieee.org/document/11124200
https://www.proquest.com/docview/3247405057
https://doaj.org/article/1e1e4441dabb47e3b5cf792675b85d80
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8EYFSZWAkwUnsnDMhqKgqJGAAJDYrfi1IBdF2gF-Pz3F5CoktshLFuTvH953vviPkyDlHnXEic9jVhGnsBlhzyCjnVakZOA5Y4Hx1XY_v2eUDf4jF6qEWxlobks9sjpfhLN886TmGyk78uvQ7CvUIfdnbWVes9RFQwQ4SDYfILFTQ5uRsOPQf4TFgyXMkqgNefNt9Akl_7Kry61cc9pfROrlezKxLK3nM5zOV67cfpI3_nvoGWYueZnrWmcYmWbKTLbL6hX9wm5x2pNOY-ZxirAwzh3SK4SiMi6e3rxM_hkNXLdJKIDeHTTG8nt4gY-d0h9yPLu6G4yx2VMh0CXWR1cbjE6ao15ArqBMWGqqo0LS0rRA146Jo8TzXuJIL3bIWmHWlMaIqWsoNrXZJb_I0sXskBY98nPfdalsaBlUtjHKA-JFzDlpBQo4XkpbPHXGGDICDNrJTjETFyKiYhJyjNj5uRdbrMOClKOMikoUtLPP-m2mVYmArxbWDpvSYRwluBE3IDkr-831R6AnpL5Qr4xKdSu9JAsM-frD_x2MHZAWn2AVc-qQ3e5nbQ--CzNQgQPdBMMB3r9LXgg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6hcAAOlEcQoQF84IjTtb3jWZ9QGhEFSNJDW6m3lfd1qZQimhzg17Njb9pShMTNWtnyembXM9_szDcAH0IIIrig8sBdTaTlboA1Ui4Qq9JKCkhc4Lxa14tz-fUCL1KxelcL473vks_8hC-7s3x3ZXccKjuK-zJaFBER-sNo-CX25Vo3IRXuIdEgJW6hQjRH09ksfkZEgSVOmKqOsPjD_nQ0_amvyl8_487CzA9gvZ9bn1hyOdltzcT-ukfb-N-TfwZPk6-ZTfvF8Rwe-M0LeHKHgfAlfOpppzn3OeNoGecO2YwDUhwZz05_buIYD61aJpZgdg6fcYA9O2HOzushnM8_n80WeeqpkNuS6iKvXUQo0oioo1CIoDw1wghlRelbpWqJqmj5RNeFEpVtZUvSh9I5VRWtQCeqVzDYXG38a8goYp8Qvbfal05SVStnAjGCRESyhkbwcS9p_b2nztAd5BCN7hWjWTE6KWYEx6yNm1uZ97obiFLUaRvpwhdeRg_OtcZI8pVBG6gpI-oxCp0SIxiy5G_fl4Q-gvFeuTpt0msdfUmS3MmP3vzjsffwaHG2Wurll_W3Q3jM0-3DL2MYbH_s_NvokGzNu24Z_gYM0Nna
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+Authentic+Grounded+Synthetic+Maintenance+Work+Orders&rft.jtitle=IEEE+access&rft.au=Lau%2C+Allison&rft.au=Feng%2C+Jadeyn&rft.au=Hodkiewicz%2C+Melinda&rft.au=Woods%2C+Caitlin&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=145888&rft.epage=145904&rft_id=info:doi/10.1109%2FACCESS.2025.3598751&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3598751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon