Nonfragile Impulsive State Estimation for Complex Networks With Markovian Switching Topologies Subject to Limited Bit Rate Constraints

In this article, we consider the impulsive estimation problem for a specific category of discrete-time complex networks (CNs) characterized by Markovian switching topologies. The measurement outputs of the underlying CNs, transmitted to the observer over wireless networks, are subject to bit rate co...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 36; no. 6; pp. 10450 - 10463
Main Authors Guo, Yuru, Wang, Zidong, Li, Jun-Yi, Xu, Yong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2025
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2024.3448376

Cover

Loading…
Abstract In this article, we consider the impulsive estimation problem for a specific category of discrete-time complex networks (CNs) characterized by Markovian switching topologies. The measurement outputs of the underlying CNs, transmitted to the observer over wireless networks, are subject to bit rate constraints. To effectively reduce the estimation error and enhance estimation performance, a mode-dependent impulsive observer is proposed that employs the impulse mechanism. The application of stochastic analysis techniques leads to the derivation of a sufficient condition for ensuring the mean-square boundedness of the estimation error dynamics. The upper bound of the error is then analyzed by iteratively exploring the Lyapunov relation at both impulsive and non-impulsive instants. Moreover, an optimization algorithm is presented for handling the bit rate allocation, which is coupled with the design of desired observer gains using the linear matrix inequality (LMI) approach. Within this theoretical framework, the relationship between the mean-square estimation performance and the bit rate allocation protocol is further elucidated. Finally, a simulation example is provided to demonstrate the validity and effectiveness of the proposed impulsive estimation approach.
AbstractList In this article, we consider the impulsive estimation problem for a specific category of discrete-time complex networks (CNs) characterized by Markovian switching topologies. The measurement outputs of the underlying CNs, transmitted to the observer over wireless networks, are subject to bit rate constraints. To effectively reduce the estimation error and enhance estimation performance, a mode-dependent impulsive observer is proposed that employs the impulse mechanism. The application of stochastic analysis techniques leads to the derivation of a sufficient condition for ensuring the mean-square boundedness of the estimation error dynamics. The upper bound of the error is then analyzed by iteratively exploring the Lyapunov relation at both impulsive and non-impulsive instants. Moreover, an optimization algorithm is presented for handling the bit rate allocation, which is coupled with the design of desired observer gains using the linear matrix inequality (LMI) approach. Within this theoretical framework, the relationship between the mean-square estimation performance and the bit rate allocation protocol is further elucidated. Finally, a simulation example is provided to demonstrate the validity and effectiveness of the proposed impulsive estimation approach.
In this article, we consider the impulsive estimation problem for a specific category of discrete-time complex networks (CNs) characterized by Markovian switching topologies. The measurement outputs of the underlying CNs, transmitted to the observer over wireless networks, are subject to bit rate constraints. To effectively reduce the estimation error and enhance estimation performance, a mode-dependent impulsive observer is proposed that employs the impulse mechanism. The application of stochastic analysis techniques leads to the derivation of a sufficient condition for ensuring the mean-square boundedness of the estimation error dynamics. The upper bound of the error is then analyzed by iteratively exploring the Lyapunov relation at both impulsive and non-impulsive instants. Moreover, an optimization algorithm is presented for handling the bit rate allocation, which is coupled with the design of desired observer gains using the linear matrix inequality (LMI) approach. Within this theoretical framework, the relationship between the mean-square estimation performance and the bit rate allocation protocol is further elucidated. Finally, a simulation example is provided to demonstrate the validity and effectiveness of the proposed impulsive estimation approach.In this article, we consider the impulsive estimation problem for a specific category of discrete-time complex networks (CNs) characterized by Markovian switching topologies. The measurement outputs of the underlying CNs, transmitted to the observer over wireless networks, are subject to bit rate constraints. To effectively reduce the estimation error and enhance estimation performance, a mode-dependent impulsive observer is proposed that employs the impulse mechanism. The application of stochastic analysis techniques leads to the derivation of a sufficient condition for ensuring the mean-square boundedness of the estimation error dynamics. The upper bound of the error is then analyzed by iteratively exploring the Lyapunov relation at both impulsive and non-impulsive instants. Moreover, an optimization algorithm is presented for handling the bit rate allocation, which is coupled with the design of desired observer gains using the linear matrix inequality (LMI) approach. Within this theoretical framework, the relationship between the mean-square estimation performance and the bit rate allocation protocol is further elucidated. Finally, a simulation example is provided to demonstrate the validity and effectiveness of the proposed impulsive estimation approach.
Author Xu, Yong
Guo, Yuru
Wang, Zidong
Li, Jun-Yi
Author_xml – sequence: 1
  givenname: Yuru
  orcidid: 0000-0001-6608-2190
  surname: Guo
  fullname: Guo, Yuru
  email: guo_yuru0626@163.com
  organization: Guangdong-Hong Kong Joint Laboratory for Intelligent Decision and Cooperative Control, Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  email: Zidong.Wang@brunel.ac.uk
  organization: Department of Computer Science, Brunel University London, Uxbridge, U.K
– sequence: 3
  givenname: Jun-Yi
  orcidid: 0000-0001-7830-490X
  surname: Li
  fullname: Li, Jun-Yi
  email: jun-yi-li@foxmail.com
  organization: Guangdong-Hong Kong Joint Laboratory for Intelligent Decision and Cooperative Control, Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou, China
– sequence: 4
  givenname: Yong
  orcidid: 0000-0003-2219-7732
  surname: Xu
  fullname: Xu, Yong
  email: yxu@gdut.edu.cn
  organization: Guangdong-Hong Kong Joint Laboratory for Intelligent Decision and Cooperative Control, Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39231058$$D View this record in MEDLINE/PubMed
BookMark eNpNkc1uEzEUhS1UREvpCyCEvGST4L_xzxKiApVCkEgQ7EaO507qdsae2p4WXoDnZkJCxb2LexffOYtznqOTEAMg9JKSOaXEvN2sVsv1nBEm5lwIzZV8gs4YlWzGuNYnj7_6cYoucr4h00hSSWGeoVNuGKek0mfo9yqGNtmd7wBf9cPYZX8PeF1sAXyZi-9t8THgNia8iP3QwU-8gvIQ023G3325xp9tuo333ga8fvDFXfuww5s4xC7uPGS8Hrc34AouES997ws0-L0v-OvefxFDLsn6UPIL9LS1XYaL4z1H3z5cbhafZssvH68W75Yzx1RVZqArKnljBVO6AcXcfhUDMFooLrVyxDXQKGM0E6blLTPcbh1smaSmrRg_R28OvkOKdyPkUvc-O-g6GyCOuZ5SIYYKzvSEvj6i47aHph7SFEb6Vf_LbgLYAXAp5pygfUQoqfcd1X87qvcd1ceOJtGrg8gDwH8CKYUUgv8B3PSO4A
CODEN ITNNAL
Cites_doi 10.1016/j.nahs.2021.101027
10.1016/j.neucom.2020.08.048
10.1016/j.automatica.2022.110334
10.1109/TSP.2017.2686375
10.1016/j.automatica.2018.10.024
10.1109/TNSE.2019.2954950
10.1109/TSIPN.2022.3163929
10.1109/TSMC.2020.3034635
10.1109/LCSYS.2020.3005442
10.1109/TPWRD.2020.3019247
10.1016/j.neucom.2021.06.017
10.1109/TCYB.2019.2926115
10.1109/TAC.2020.3046126
10.1109/TAC.2009.2017087
10.1109/TSMC.2020.3041121
10.1080/00207179608921866
10.1038/35065725
10.1109/TFUZZ.2021.3134753
10.1080/00207179.2014.989410
10.1016/j.automatica.2021.109684
10.1109/JESTIE.2021.3110746
10.1016/j.ins.2020.09.046
10.1109/TNSE.2022.3196805
10.1016/j.physrep.2005.10.009
10.1109/TCYB.2021.3049461
10.1007/s11432-020-3243-7
10.1109/TCYB.2017.2789212
10.1080/00207721.2022.2063968
10.1016/j.inffus.2019.07.008
10.1109/TNNLS.2014.2322499
10.1016/j.automatica.2023.110874
10.1109/TNNLS.2020.3027467
10.1016/j.isatra.2022.03.029
10.1109/TAC.2018.2853570
10.1109/TAC.2020.2964558
10.1109/TAC.2021.3120672
10.1016/j.ins.2021.12.043
10.1109/TCYB.2020.3025862
10.53941/ijndi0101011
10.1109/TCYB.2022.3168854
10.1109/TAC.2022.3184053
10.1109/TCYB.2021.3090406
10.1049/iet-cta.2020.0534
10.1016/j.neunet.2023.03.002
10.1016/j.automatica.2022.110635
10.1109/TCNS.2020.3035766
10.1109/TCNS.2020.3035759
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2024.3448376
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 10463
ExternalDocumentID 39231058
10_1109_TNNLS_2024_3448376
10664644
Genre orig-research
Journal Article
GrantInformation_xml – fundername: China Scholarship Council
  grantid: 202208440312
  funderid: 10.13039/501100004543
– fundername: Key Area Research and Development Program of Guangdong Province of China
  grantid: 2021B0101410005
– fundername: National Natural Science Foundation of China
  grantid: U22A2044; 62206063
  funderid: 10.13039/501100001809
– fundername: Local Innovative and Research Teams Project of Guangdong Special Support Program of China
  grantid: 2019BT02X353
– fundername: Natural Science Foundation of Guangdong Province of China
  grantid: 2021B0101410005; 2021A1515011634; 2021B1515420008
  funderid: 10.13039/501100003453
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c275t-e85163da4278de72c2c2c72ee98473687c0cded7998249f3f293abceb2619f523
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 13:23:47 EDT 2025
Mon Jul 21 05:30:24 EDT 2025
Thu Jul 03 08:40:33 EDT 2025
Wed Aug 27 01:52:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-e85163da4278de72c2c2c72ee98473687c0cded7998249f3f293abceb2619f523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9576-7401
0000-0001-7830-490X
0000-0003-2219-7732
0000-0001-6608-2190
PMID 39231058
PQID 3100914328
PQPubID 23479
PageCount 14
ParticipantIDs pubmed_primary_39231058
proquest_miscellaneous_3100914328
crossref_primary_10_1109_TNNLS_2024_3448376
ieee_primary_10664644
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
Li (ref22) 2020; 117
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref48
ref25
ref47
ref20
ref42
ref41
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref6
  doi: 10.1016/j.nahs.2021.101027
– ident: ref19
  doi: 10.1016/j.neucom.2020.08.048
– ident: ref4
  doi: 10.1016/j.automatica.2022.110334
– ident: ref8
  doi: 10.1109/TSP.2017.2686375
– ident: ref20
  doi: 10.1016/j.automatica.2018.10.024
– ident: ref29
  doi: 10.1109/TNSE.2019.2954950
– ident: ref48
  doi: 10.1109/TSIPN.2022.3163929
– ident: ref32
  doi: 10.1109/TSMC.2020.3034635
– ident: ref16
  doi: 10.1109/LCSYS.2020.3005442
– ident: ref13
  doi: 10.1109/TPWRD.2020.3019247
– ident: ref46
  doi: 10.1016/j.neucom.2021.06.017
– ident: ref26
  doi: 10.1109/TCYB.2019.2926115
– ident: ref31
  doi: 10.1109/TAC.2020.3046126
– ident: ref17
  doi: 10.1109/TAC.2009.2017087
– ident: ref9
  doi: 10.1109/TSMC.2020.3041121
– ident: ref39
  doi: 10.1080/00207179608921866
– ident: ref34
  doi: 10.1038/35065725
– ident: ref14
  doi: 10.1109/TFUZZ.2021.3134753
– ident: ref41
  doi: 10.1080/00207179.2014.989410
– ident: ref23
  doi: 10.1016/j.automatica.2021.109684
– ident: ref28
  doi: 10.1109/JESTIE.2021.3110746
– ident: ref3
  doi: 10.1016/j.ins.2020.09.046
– ident: ref35
  doi: 10.1109/TNSE.2022.3196805
– ident: ref1
  doi: 10.1016/j.physrep.2005.10.009
– ident: ref38
  doi: 10.1109/TCYB.2021.3049461
– ident: ref15
  doi: 10.1007/s11432-020-3243-7
– ident: ref42
  doi: 10.1109/TCYB.2017.2789212
– ident: ref43
  doi: 10.1080/00207721.2022.2063968
– ident: ref2
  doi: 10.1016/j.inffus.2019.07.008
– ident: ref7
  doi: 10.1109/TNNLS.2014.2322499
– ident: ref18
  doi: 10.1016/j.automatica.2023.110874
– ident: ref36
  doi: 10.1109/TNNLS.2020.3027467
– ident: ref47
  doi: 10.1016/j.isatra.2022.03.029
– ident: ref24
  doi: 10.1109/TAC.2018.2853570
– ident: ref21
  doi: 10.1109/TAC.2020.2964558
– volume: 117
  year: 2020
  ident: ref22
  article-title: Interval impulsive observer for linear systems with aperiodic discrete measurements
  publication-title: Automatica
– ident: ref27
  doi: 10.1109/TAC.2021.3120672
– ident: ref44
  doi: 10.1016/j.ins.2021.12.043
– ident: ref45
  doi: 10.1109/TCYB.2020.3025862
– ident: ref30
  doi: 10.53941/ijndi0101011
– ident: ref10
  doi: 10.1109/TCYB.2022.3168854
– ident: ref37
  doi: 10.1109/TAC.2022.3184053
– ident: ref40
  doi: 10.1109/TCYB.2021.3090406
– ident: ref5
  doi: 10.1049/iet-cta.2020.0534
– ident: ref12
  doi: 10.1016/j.neunet.2023.03.002
– ident: ref25
  doi: 10.1016/j.automatica.2022.110635
– ident: ref33
  doi: 10.1109/TCNS.2020.3035766
– ident: ref11
  doi: 10.1109/TCNS.2020.3035759
SSID ssj0000605649
Score 2.4813802
Snippet In this article, we consider the impulsive estimation problem for a specific category of discrete-time complex networks (CNs) characterized by Markovian...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 10450
SubjectTerms Bit rate
Bit rate constraint
complex networks (CNs)
Estimation error
impulsive observer
Markovian switching topology
Observers
Quantization (signal)
Resource management
state estimation
Switches
Topology
Title Nonfragile Impulsive State Estimation for Complex Networks With Markovian Switching Topologies Subject to Limited Bit Rate Constraints
URI https://ieeexplore.ieee.org/document/10664644
https://www.ncbi.nlm.nih.gov/pubmed/39231058
https://www.proquest.com/docview/3100914328
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJy4FCoXloxqk3qosWTvrJMcWgWgFOZRF3VuUD5uuihLEegHxA_q7O2MnCCEhoVwiJbYSz9h-z57xA_hSEOiQhZGBCo0JIiVMUCZyFCQmLOOoJKBUM1G8yNTZVfRzOp52yeouF0Zr7YLP9JBv3V5-3VYLXiqjHq5URBP4MiwTc_PJWs8LKiEBc-XgrhgpEQgZT_skmTA9mmTZ-SXRQRENZcSnqLN2kXTohtXeX8xJTmTlbbzp5p3TNcj6L_bhJn-HC1sOq6dXhzm--5fW4UOHQPGbd5kNWNLNR1jr1R2w6-yb8C9rG3NXXNOwgT_o4Q0HuqMDp3hCA4PPeUQCvciFb_QjZj6mfI6_Z_YPchpQe0_uh5cPM-tiNnHiNRmIniMNWbwGhLbFLssKv88s_uL6WUbUiVfY-RZcnZ5Mjs-CTrUhqEQ8toEmDKdkXbCGR61jUfEVC61TmgilSuIqrGpdx8TziPoZaQhwFGVFDJ-4nCFe_AlWmrbRO4DjokyKMiWMNNaREVViRKiFNKOwJqhm1AC-9nbLb_3hHLkjNWGaO4PnbPC8M_gAtrj9X7zpm34Ah72tc-pbvGFSNLpdzHPe_EgJUIpkANveCZ5L976z-0ate7AqWCrYLdjsw4q9W-gDwi-2_Oz89j8NYuuZ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9gCXlkKh20IZJG4oS9bOOskRUKtt2eZAt2JvUT5sWFElVdfbIn5AfzczdlJVSJWqXCLlQ4ln7HnPnvED-FAQ6JCFkYEKjQkiJUxQJnIUJCYs46gkoFQzUTzN1OQ8OpmP512xuquF0Vq75DM95FO3ll-31YqnyqiHKxVRAH8CGxT4o9SXa91NqYQEzZUDvGKkRCBkPO_LZML00yzLpmdECEU0lBHvo87qRdLhG9Z7vxeVnMzKw4jTRZ6jLcj6b_YJJ7-HK1sOq7__bef46J96DpsdBsXP3mm2YU03L2Cr13fArru_hNusbcxV8ZMGDjymixec6o4OnuIhDQ2-6hEJ9iI_fKH_YOazypf4Y2F_IRcCtdfkgHh2s7AuaxNnXpWBCDrSoMWzQGhb7Oqs8MvC4nd-PwuJOvkKu9yB86PD2ddJ0Ok2BJWIxzbQhOKUrAtW8ah1LCo-YqF1SqFQqiSuwqrWdUxMj8ifkYYgR1FWxPGJzRlixq9gvWkbvQs4LsqkKFNCSWMdGVElRoRaSDMKawJrRg3gY2-3_NJvz5E7WhOmuTN4zgbPO4MPYIfb_96dvukH8L63dU69i5dMika3q2XOyx8pQUqRDOC1d4K7p3vf2Xvgre_g6WR2Os2nx9m3fXgmWDjYTd-8gXV7tdJvCc3Y8sD58D-Qxu7p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonfragile+Impulsive+State+Estimation+for+Complex+Networks+With+Markovian+Switching+Topologies+Subject+to+Limited+Bit+Rate+Constraints&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Guo%2C+Yuru&rft.au=Wang%2C+Zidong&rft.au=Li%2C+Jun-Yi&rft.au=Xu%2C+Yong&rft.date=2025-06-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2024.3448376&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon