Nonfragile Impulsive State Estimation for Complex Networks With Markovian Switching Topologies Subject to Limited Bit Rate Constraints
In this article, we consider the impulsive estimation problem for a specific category of discrete-time complex networks (CNs) characterized by Markovian switching topologies. The measurement outputs of the underlying CNs, transmitted to the observer over wireless networks, are subject to bit rate co...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 36; no. 6; pp. 10450 - 10463 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2024.3448376 |
Cover
Loading…
Abstract | In this article, we consider the impulsive estimation problem for a specific category of discrete-time complex networks (CNs) characterized by Markovian switching topologies. The measurement outputs of the underlying CNs, transmitted to the observer over wireless networks, are subject to bit rate constraints. To effectively reduce the estimation error and enhance estimation performance, a mode-dependent impulsive observer is proposed that employs the impulse mechanism. The application of stochastic analysis techniques leads to the derivation of a sufficient condition for ensuring the mean-square boundedness of the estimation error dynamics. The upper bound of the error is then analyzed by iteratively exploring the Lyapunov relation at both impulsive and non-impulsive instants. Moreover, an optimization algorithm is presented for handling the bit rate allocation, which is coupled with the design of desired observer gains using the linear matrix inequality (LMI) approach. Within this theoretical framework, the relationship between the mean-square estimation performance and the bit rate allocation protocol is further elucidated. Finally, a simulation example is provided to demonstrate the validity and effectiveness of the proposed impulsive estimation approach. |
---|---|
AbstractList | In this article, we consider the impulsive estimation problem for a specific category of discrete-time complex networks (CNs) characterized by Markovian switching topologies. The measurement outputs of the underlying CNs, transmitted to the observer over wireless networks, are subject to bit rate constraints. To effectively reduce the estimation error and enhance estimation performance, a mode-dependent impulsive observer is proposed that employs the impulse mechanism. The application of stochastic analysis techniques leads to the derivation of a sufficient condition for ensuring the mean-square boundedness of the estimation error dynamics. The upper bound of the error is then analyzed by iteratively exploring the Lyapunov relation at both impulsive and non-impulsive instants. Moreover, an optimization algorithm is presented for handling the bit rate allocation, which is coupled with the design of desired observer gains using the linear matrix inequality (LMI) approach. Within this theoretical framework, the relationship between the mean-square estimation performance and the bit rate allocation protocol is further elucidated. Finally, a simulation example is provided to demonstrate the validity and effectiveness of the proposed impulsive estimation approach. In this article, we consider the impulsive estimation problem for a specific category of discrete-time complex networks (CNs) characterized by Markovian switching topologies. The measurement outputs of the underlying CNs, transmitted to the observer over wireless networks, are subject to bit rate constraints. To effectively reduce the estimation error and enhance estimation performance, a mode-dependent impulsive observer is proposed that employs the impulse mechanism. The application of stochastic analysis techniques leads to the derivation of a sufficient condition for ensuring the mean-square boundedness of the estimation error dynamics. The upper bound of the error is then analyzed by iteratively exploring the Lyapunov relation at both impulsive and non-impulsive instants. Moreover, an optimization algorithm is presented for handling the bit rate allocation, which is coupled with the design of desired observer gains using the linear matrix inequality (LMI) approach. Within this theoretical framework, the relationship between the mean-square estimation performance and the bit rate allocation protocol is further elucidated. Finally, a simulation example is provided to demonstrate the validity and effectiveness of the proposed impulsive estimation approach.In this article, we consider the impulsive estimation problem for a specific category of discrete-time complex networks (CNs) characterized by Markovian switching topologies. The measurement outputs of the underlying CNs, transmitted to the observer over wireless networks, are subject to bit rate constraints. To effectively reduce the estimation error and enhance estimation performance, a mode-dependent impulsive observer is proposed that employs the impulse mechanism. The application of stochastic analysis techniques leads to the derivation of a sufficient condition for ensuring the mean-square boundedness of the estimation error dynamics. The upper bound of the error is then analyzed by iteratively exploring the Lyapunov relation at both impulsive and non-impulsive instants. Moreover, an optimization algorithm is presented for handling the bit rate allocation, which is coupled with the design of desired observer gains using the linear matrix inequality (LMI) approach. Within this theoretical framework, the relationship between the mean-square estimation performance and the bit rate allocation protocol is further elucidated. Finally, a simulation example is provided to demonstrate the validity and effectiveness of the proposed impulsive estimation approach. |
Author | Xu, Yong Guo, Yuru Wang, Zidong Li, Jun-Yi |
Author_xml | – sequence: 1 givenname: Yuru orcidid: 0000-0001-6608-2190 surname: Guo fullname: Guo, Yuru email: guo_yuru0626@163.com organization: Guangdong-Hong Kong Joint Laboratory for Intelligent Decision and Cooperative Control, Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou, China – sequence: 2 givenname: Zidong orcidid: 0000-0002-9576-7401 surname: Wang fullname: Wang, Zidong email: Zidong.Wang@brunel.ac.uk organization: Department of Computer Science, Brunel University London, Uxbridge, U.K – sequence: 3 givenname: Jun-Yi orcidid: 0000-0001-7830-490X surname: Li fullname: Li, Jun-Yi email: jun-yi-li@foxmail.com organization: Guangdong-Hong Kong Joint Laboratory for Intelligent Decision and Cooperative Control, Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou, China – sequence: 4 givenname: Yong orcidid: 0000-0003-2219-7732 surname: Xu fullname: Xu, Yong email: yxu@gdut.edu.cn organization: Guangdong-Hong Kong Joint Laboratory for Intelligent Decision and Cooperative Control, Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39231058$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkc1uEzEUhS1UREvpCyCEvGST4L_xzxKiApVCkEgQ7EaO507qdsae2p4WXoDnZkJCxb2LexffOYtznqOTEAMg9JKSOaXEvN2sVsv1nBEm5lwIzZV8gs4YlWzGuNYnj7_6cYoucr4h00hSSWGeoVNuGKek0mfo9yqGNtmd7wBf9cPYZX8PeF1sAXyZi-9t8THgNia8iP3QwU-8gvIQ023G3325xp9tuo333ga8fvDFXfuww5s4xC7uPGS8Hrc34AouES997ws0-L0v-OvefxFDLsn6UPIL9LS1XYaL4z1H3z5cbhafZssvH68W75Yzx1RVZqArKnljBVO6AcXcfhUDMFooLrVyxDXQKGM0E6blLTPcbh1smaSmrRg_R28OvkOKdyPkUvc-O-g6GyCOuZ5SIYYKzvSEvj6i47aHph7SFEb6Vf_LbgLYAXAp5pygfUQoqfcd1X87qvcd1ceOJtGrg8gDwH8CKYUUgv8B3PSO4A |
CODEN | ITNNAL |
Cites_doi | 10.1016/j.nahs.2021.101027 10.1016/j.neucom.2020.08.048 10.1016/j.automatica.2022.110334 10.1109/TSP.2017.2686375 10.1016/j.automatica.2018.10.024 10.1109/TNSE.2019.2954950 10.1109/TSIPN.2022.3163929 10.1109/TSMC.2020.3034635 10.1109/LCSYS.2020.3005442 10.1109/TPWRD.2020.3019247 10.1016/j.neucom.2021.06.017 10.1109/TCYB.2019.2926115 10.1109/TAC.2020.3046126 10.1109/TAC.2009.2017087 10.1109/TSMC.2020.3041121 10.1080/00207179608921866 10.1038/35065725 10.1109/TFUZZ.2021.3134753 10.1080/00207179.2014.989410 10.1016/j.automatica.2021.109684 10.1109/JESTIE.2021.3110746 10.1016/j.ins.2020.09.046 10.1109/TNSE.2022.3196805 10.1016/j.physrep.2005.10.009 10.1109/TCYB.2021.3049461 10.1007/s11432-020-3243-7 10.1109/TCYB.2017.2789212 10.1080/00207721.2022.2063968 10.1016/j.inffus.2019.07.008 10.1109/TNNLS.2014.2322499 10.1016/j.automatica.2023.110874 10.1109/TNNLS.2020.3027467 10.1016/j.isatra.2022.03.029 10.1109/TAC.2018.2853570 10.1109/TAC.2020.2964558 10.1109/TAC.2021.3120672 10.1016/j.ins.2021.12.043 10.1109/TCYB.2020.3025862 10.53941/ijndi0101011 10.1109/TCYB.2022.3168854 10.1109/TAC.2022.3184053 10.1109/TCYB.2021.3090406 10.1049/iet-cta.2020.0534 10.1016/j.neunet.2023.03.002 10.1016/j.automatica.2022.110635 10.1109/TCNS.2020.3035766 10.1109/TCNS.2020.3035759 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TNNLS.2024.3448376 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 10463 |
ExternalDocumentID | 39231058 10_1109_TNNLS_2024_3448376 10664644 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: China Scholarship Council grantid: 202208440312 funderid: 10.13039/501100004543 – fundername: Key Area Research and Development Program of Guangdong Province of China grantid: 2021B0101410005 – fundername: National Natural Science Foundation of China grantid: U22A2044; 62206063 funderid: 10.13039/501100001809 – fundername: Local Innovative and Research Teams Project of Guangdong Special Support Program of China grantid: 2019BT02X353 – fundername: Natural Science Foundation of Guangdong Province of China grantid: 2021B0101410005; 2021A1515011634; 2021B1515420008 funderid: 10.13039/501100003453 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c275t-e85163da4278de72c2c2c72ee98473687c0cded7998249f3f293abceb2619f523 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 13:23:47 EDT 2025 Mon Jul 21 05:30:24 EDT 2025 Thu Jul 03 08:40:33 EDT 2025 Wed Aug 27 01:52:21 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c275t-e85163da4278de72c2c2c72ee98473687c0cded7998249f3f293abceb2619f523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9576-7401 0000-0001-7830-490X 0000-0003-2219-7732 0000-0001-6608-2190 |
PMID | 39231058 |
PQID | 3100914328 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_39231058 proquest_miscellaneous_3100914328 crossref_primary_10_1109_TNNLS_2024_3448376 ieee_primary_10664644 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 Li (ref22) 2020; 117 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref48 ref25 ref47 ref20 ref42 ref41 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref6 doi: 10.1016/j.nahs.2021.101027 – ident: ref19 doi: 10.1016/j.neucom.2020.08.048 – ident: ref4 doi: 10.1016/j.automatica.2022.110334 – ident: ref8 doi: 10.1109/TSP.2017.2686375 – ident: ref20 doi: 10.1016/j.automatica.2018.10.024 – ident: ref29 doi: 10.1109/TNSE.2019.2954950 – ident: ref48 doi: 10.1109/TSIPN.2022.3163929 – ident: ref32 doi: 10.1109/TSMC.2020.3034635 – ident: ref16 doi: 10.1109/LCSYS.2020.3005442 – ident: ref13 doi: 10.1109/TPWRD.2020.3019247 – ident: ref46 doi: 10.1016/j.neucom.2021.06.017 – ident: ref26 doi: 10.1109/TCYB.2019.2926115 – ident: ref31 doi: 10.1109/TAC.2020.3046126 – ident: ref17 doi: 10.1109/TAC.2009.2017087 – ident: ref9 doi: 10.1109/TSMC.2020.3041121 – ident: ref39 doi: 10.1080/00207179608921866 – ident: ref34 doi: 10.1038/35065725 – ident: ref14 doi: 10.1109/TFUZZ.2021.3134753 – ident: ref41 doi: 10.1080/00207179.2014.989410 – ident: ref23 doi: 10.1016/j.automatica.2021.109684 – ident: ref28 doi: 10.1109/JESTIE.2021.3110746 – ident: ref3 doi: 10.1016/j.ins.2020.09.046 – ident: ref35 doi: 10.1109/TNSE.2022.3196805 – ident: ref1 doi: 10.1016/j.physrep.2005.10.009 – ident: ref38 doi: 10.1109/TCYB.2021.3049461 – ident: ref15 doi: 10.1007/s11432-020-3243-7 – ident: ref42 doi: 10.1109/TCYB.2017.2789212 – ident: ref43 doi: 10.1080/00207721.2022.2063968 – ident: ref2 doi: 10.1016/j.inffus.2019.07.008 – ident: ref7 doi: 10.1109/TNNLS.2014.2322499 – ident: ref18 doi: 10.1016/j.automatica.2023.110874 – ident: ref36 doi: 10.1109/TNNLS.2020.3027467 – ident: ref47 doi: 10.1016/j.isatra.2022.03.029 – ident: ref24 doi: 10.1109/TAC.2018.2853570 – ident: ref21 doi: 10.1109/TAC.2020.2964558 – volume: 117 year: 2020 ident: ref22 article-title: Interval impulsive observer for linear systems with aperiodic discrete measurements publication-title: Automatica – ident: ref27 doi: 10.1109/TAC.2021.3120672 – ident: ref44 doi: 10.1016/j.ins.2021.12.043 – ident: ref45 doi: 10.1109/TCYB.2020.3025862 – ident: ref30 doi: 10.53941/ijndi0101011 – ident: ref10 doi: 10.1109/TCYB.2022.3168854 – ident: ref37 doi: 10.1109/TAC.2022.3184053 – ident: ref40 doi: 10.1109/TCYB.2021.3090406 – ident: ref5 doi: 10.1049/iet-cta.2020.0534 – ident: ref12 doi: 10.1016/j.neunet.2023.03.002 – ident: ref25 doi: 10.1016/j.automatica.2022.110635 – ident: ref33 doi: 10.1109/TCNS.2020.3035766 – ident: ref11 doi: 10.1109/TCNS.2020.3035759 |
SSID | ssj0000605649 |
Score | 2.4813802 |
Snippet | In this article, we consider the impulsive estimation problem for a specific category of discrete-time complex networks (CNs) characterized by Markovian... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 10450 |
SubjectTerms | Bit rate Bit rate constraint complex networks (CNs) Estimation error impulsive observer Markovian switching topology Observers Quantization (signal) Resource management state estimation Switches Topology |
Title | Nonfragile Impulsive State Estimation for Complex Networks With Markovian Switching Topologies Subject to Limited Bit Rate Constraints |
URI | https://ieeexplore.ieee.org/document/10664644 https://www.ncbi.nlm.nih.gov/pubmed/39231058 https://www.proquest.com/docview/3100914328 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJy4FCoXloxqk3qosWTvrJMcWgWgFOZRF3VuUD5uuihLEegHxA_q7O2MnCCEhoVwiJbYSz9h-z57xA_hSEOiQhZGBCo0JIiVMUCZyFCQmLOOoJKBUM1G8yNTZVfRzOp52yeouF0Zr7YLP9JBv3V5-3VYLXiqjHq5URBP4MiwTc_PJWs8LKiEBc-XgrhgpEQgZT_skmTA9mmTZ-SXRQRENZcSnqLN2kXTohtXeX8xJTmTlbbzp5p3TNcj6L_bhJn-HC1sOq6dXhzm--5fW4UOHQPGbd5kNWNLNR1jr1R2w6-yb8C9rG3NXXNOwgT_o4Q0HuqMDp3hCA4PPeUQCvciFb_QjZj6mfI6_Z_YPchpQe0_uh5cPM-tiNnHiNRmIniMNWbwGhLbFLssKv88s_uL6WUbUiVfY-RZcnZ5Mjs-CTrUhqEQ8toEmDKdkXbCGR61jUfEVC61TmgilSuIqrGpdx8TziPoZaQhwFGVFDJ-4nCFe_AlWmrbRO4DjokyKMiWMNNaREVViRKiFNKOwJqhm1AC-9nbLb_3hHLkjNWGaO4PnbPC8M_gAtrj9X7zpm34Ah72tc-pbvGFSNLpdzHPe_EgJUIpkANveCZ5L976z-0ate7AqWCrYLdjsw4q9W-gDwi-2_Oz89j8NYuuZ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9gCXlkKh20IZJG4oS9bOOskRUKtt2eZAt2JvUT5sWFElVdfbIn5AfzczdlJVSJWqXCLlQ4ln7HnPnvED-FAQ6JCFkYEKjQkiJUxQJnIUJCYs46gkoFQzUTzN1OQ8OpmP512xuquF0Vq75DM95FO3ll-31YqnyqiHKxVRAH8CGxT4o9SXa91NqYQEzZUDvGKkRCBkPO_LZML00yzLpmdECEU0lBHvo87qRdLhG9Z7vxeVnMzKw4jTRZ6jLcj6b_YJJ7-HK1sOq7__bef46J96DpsdBsXP3mm2YU03L2Cr13fArru_hNusbcxV8ZMGDjymixec6o4OnuIhDQ2-6hEJ9iI_fKH_YOazypf4Y2F_IRcCtdfkgHh2s7AuaxNnXpWBCDrSoMWzQGhb7Oqs8MvC4nd-PwuJOvkKu9yB86PD2ddJ0Ok2BJWIxzbQhOKUrAtW8ah1LCo-YqF1SqFQqiSuwqrWdUxMj8ifkYYgR1FWxPGJzRlixq9gvWkbvQs4LsqkKFNCSWMdGVElRoRaSDMKawJrRg3gY2-3_NJvz5E7WhOmuTN4zgbPO4MPYIfb_96dvukH8L63dU69i5dMika3q2XOyx8pQUqRDOC1d4K7p3vf2Xvgre_g6WR2Os2nx9m3fXgmWDjYTd-8gXV7tdJvCc3Y8sD58D-Qxu7p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonfragile+Impulsive+State+Estimation+for+Complex+Networks+With+Markovian+Switching+Topologies+Subject+to+Limited+Bit+Rate+Constraints&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Guo%2C+Yuru&rft.au=Wang%2C+Zidong&rft.au=Li%2C+Jun-Yi&rft.au=Xu%2C+Yong&rft.date=2025-06-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2024.3448376&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |