Toward Robust Neural Image Compression: Adversarial Attack and Model Finetuning

Deep neural network-based image compression has been extensively studied. However, the model robustness which is crucial to practical application is largely overlooked. We propose to examine the robustness of prevailing learned image compression models by injecting negligible adversarial perturbatio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 33; no. 12; pp. 7842 - 7856
Main Authors Chen, Tong, Ma, Zhan
Format Journal Article
LanguageEnglish
Published New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.12.2023
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
DOI10.1109/TCSVT.2023.3276442

Cover

Loading…
Abstract Deep neural network-based image compression has been extensively studied. However, the model robustness which is crucial to practical application is largely overlooked. We propose to examine the robustness of prevailing learned image compression models by injecting negligible adversarial perturbation into the original source image. Severe distortion in decoded reconstruction reveals the general vulnerability in existing methods regardless of their settings (e.g., network architecture, loss function, quality scale). A variety of defense strategies including geometric self-ensemble based pre-processing, and adversarial training, are investigated against the adversarial attack to improve the model’s robustness. Later the defense efficiency is further exemplified in real-life image recompression case studies. Overall, our methodology is simple, effective, and generalizable, making it attractive for developing robust learned image compression solutions. All materials are made publicly accessible at https://njuvision.github.io/RobustNIC for reproducible research.
AbstractList Deep neural network-based image compression has been extensively studied. However, the model robustness which is crucial to practical application is largely overlooked. We propose to examine the robustness of prevailing learned image compression models by injecting negligible adversarial perturbation into the original source image. Severe distortion in decoded reconstruction reveals the general vulnerability in existing methods regardless of their settings (e.g., network architecture, loss function, quality scale). A variety of defense strategies including geometric self-ensemble based pre-processing, and adversarial training, are investigated against the adversarial attack to improve the model’s robustness. Later the defense efficiency is further exemplified in real-life image recompression case studies. Overall, our methodology is simple, effective, and generalizable, making it attractive for developing robust learned image compression solutions. All materials are made publicly accessible at https://njuvision.github.io/RobustNIC for reproducible research.
Author Ma, Zhan
Chen, Tong
Author_xml – sequence: 1
  givenname: Tong
  orcidid: 0000-0001-5020-6099
  surname: Chen
  fullname: Chen, Tong
  organization: School of Electronic Science and Engineering, Nanjing University, Nanjing, China
– sequence: 2
  givenname: Zhan
  orcidid: 0000-0003-3686-4057
  surname: Ma
  fullname: Ma, Zhan
  organization: School of Electronic Science and Engineering, Nanjing University, Nanjing, China
BookMark eNp9kEFLwzAUx4NMcJt-AU8Fz51JmraJt1GcDqYDrV7Da5OOzi6ZSar47e2cJw-e3h_e__ce_CZoZKzRCF0SPCMEi-uyeH4tZxTTZJbQPGOMnqAxSVMeU4rT0ZBxSmJOSXqGJt5vMSaMs3yM1qX9BKeiJ1v1PkSPunfQRcsdbHRU2N3eae9ba26iufrQzoNrh_U8BKjfIjAqerBKd9GiNTr0pjWbc3TaQOf1xe-copfFbVncx6v13bKYr-Ka5mmINW1yLjAQllU1ANcaJ4LmTHPADFQCuqlJw6tK5bwhjKo8ZRoIECFEnlUqmaKr4929s--99kFube_M8FJSLgTLMiHw0KLHVu2s9043cu_aHbgvSbA8iJM_4uRBnPwVN0D8D1S3AcJgIThou__Qb0EwdWY
CitedBy_id crossref_primary_10_1007_s11042_023_17494_0
crossref_primary_10_1109_TAI_2023_3340982
crossref_primary_10_1109_TCSVT_2024_3403166
crossref_primary_10_1109_TCSVT_2024_3432932
crossref_primary_10_1109_TCSVT_2024_3455799
crossref_primary_10_1109_TCSVT_2024_3487761
crossref_primary_10_1016_j_sigpro_2024_109741
crossref_primary_10_1109_JETCAS_2024_3403524
crossref_primary_10_1016_j_engappai_2024_109014
crossref_primary_10_54392_irjmt2526
crossref_primary_10_3390_bdcc9010014
Cites_doi 10.1109/CVPRW.2017.151
10.1109/ICCV.2019.00816
10.1145/3240508.3240603
10.1109/CVPRW53098.2021.00216
10.1109/CVPR.2016.282
10.1109/SPW.2018.00014
10.24963/ijcai.2019/134
10.1109/TCSVT.2020.3040367
10.1109/TCSVT.2015.2478706
10.1145/103085.103089
10.1109/CVPR42600.2020.00796
10.1109/T-C.1974.223784
10.1109/ICME.2014.6890314
10.1109/JSTSP.2011.2135332
10.1109/JPROC.2004.839613
10.1109/CVPR42600.2020.00072
10.1109/IEEECONF51394.2020.9443315
10.1109/ICCV.2019.00039
10.1109/CVPR.2018.00957
10.1109/TIP.2021.3058615
10.1145/3394171.3413680
10.1109/TCSVT.2019.2910119
10.1007/s11263-018-01144-2
10.1007/978-3-030-01249-6_14
10.1109/DCC52660.2022.00080
10.1007/978-3-030-58565-5_19
10.1109/CVPR.2018.00339
10.1145/3474085.3475213
10.1109/CVPR.2016.90
10.1109/TCSVT.2021.3101953
10.1609/aaai.v36i2.20023
10.1109/CVPR.2018.00068
10.1109/ICCV.2019.00249
10.1109/TCSVT.2005.858610
10.1609/aaai.v32i1.11828
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2023.3276442
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 7856
ExternalDocumentID 10_1109_TCSVT_2023_3276442
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYXX
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
RXW
TAE
TN5
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c275t-e2f7890a146bcaa8ee039274e8a04ad3aefc1f8bbd78f142d754ea1a199976bd3
ISSN 1051-8215
IngestDate Mon Jun 30 03:40:11 EDT 2025
Thu Apr 24 23:02:35 EDT 2025
Tue Jul 01 00:41:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c275t-e2f7890a146bcaa8ee039274e8a04ad3aefc1f8bbd78f142d754ea1a199976bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5020-6099
0000-0003-3686-4057
PQID 2899466990
PQPubID 85433
PageCount 15
ParticipantIDs proquest_journals_2899466990
crossref_primary_10_1109_TCSVT_2023_3276442
crossref_citationtrail_10_1109_TCSVT_2023_3276442
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationYear 2023
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref58
ref11
ref55
ref10
ref17
ref16
ref19
lee (ref36) 2018
bégaint (ref59) 2020
ref18
goodfellow (ref20) 2015
huang (ref52) 2015
ref50
hu (ref8) 2022; 44
helminger (ref37) 2021
ref45
ref41
ref44
ballé (ref1) 2016
ballé (ref30) 2015
madry (ref43) 2017
xu (ref49) 2017
ref7
ref9
li (ref61) 2019; 32
ref3
ref6
minnen (ref4) 2018
ref40
nair (ref31) 2010
ref35
bai (ref68) 2021
ref34
ref33
ref32
netzer (ref57) 2011
ref39
ref38
yang (ref64) 2020; 33
nguyen (ref21) 2015
kodak (ref60) 2022
mentzer (ref5) 2020
ballé (ref2) 2018
larsen (ref56) 2016; 48
ref24
ref23
ref67
ref25
dziugaite (ref47) 2016
ref63
choi (ref26) 2021
ref22
ref66
wang (ref15) 2004
carlini (ref27) 2016
kurakin (ref28) 2016
szegedy (ref42) 2013
ref29
kurakin (ref53) 2018
duy thang (ref65) 2019
xie (ref48) 2017
szegedy (ref51) 2014
tabacof (ref54) 2016
ref62
kingma (ref46) 2014
References_xml – ident: ref50
  doi: 10.1109/CVPRW.2017.151
– ident: ref44
  doi: 10.1109/ICCV.2019.00816
– ident: ref24
  doi: 10.1145/3240508.3240603
– ident: ref16
  doi: 10.1109/CVPRW53098.2021.00216
– year: 2015
  ident: ref30
  article-title: Density modeling of images using a generalized normalization transformation
  publication-title: arXiv 1511 06281
– ident: ref39
  doi: 10.1109/CVPR.2016.282
– ident: ref55
  doi: 10.1109/SPW.2018.00014
– volume: 32
  start-page: 1
  year: 2019
  ident: ref61
  article-title: Cross-modal learning with adversarial samples
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2016
  ident: ref54
  article-title: Adversarial images for variational autoencoders
  publication-title: arXiv 1612 00155
– year: 2016
  ident: ref28
  article-title: Adversarial examples in the physical world
  publication-title: arXiv 1607 02533
– start-page: 10794
  year: 2018
  ident: ref4
  article-title: Joint autoregressive and hierarchical priors for learned image compression
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2018
  ident: ref53
  publication-title: Ensemble adversarial training Attacks and defenses
– ident: ref23
  doi: 10.24963/ijcai.2019/134
– ident: ref41
  doi: 10.1109/TCSVT.2020.3040367
– ident: ref17
  doi: 10.1109/TCSVT.2015.2478706
– start-page: 1398
  year: 2004
  ident: ref15
  article-title: Multiscale structural similarity for image quality assessment
  publication-title: Proc 27th Asilomar Conf Signals Syst Comput
– ident: ref11
  doi: 10.1145/103085.103089
– ident: ref6
  doi: 10.1109/CVPR42600.2020.00796
– volume: 33
  start-page: 9098
  year: 2020
  ident: ref64
  article-title: Adversarial learning for robust deep clustering
  publication-title: Proc NeurIPS
– ident: ref32
  doi: 10.1109/T-C.1974.223784
– year: 2021
  ident: ref68
  article-title: Improving adversarial robustness via channel-wise activation suppressing
  publication-title: arXiv 2103 08307
– ident: ref35
  doi: 10.1109/ICME.2014.6890314
– ident: ref34
  doi: 10.1109/JSTSP.2011.2135332
– year: 2018
  ident: ref2
  article-title: Variational image compression with a scale hyperprior
  publication-title: arXiv 1802 01436
– start-page: 1
  year: 2011
  ident: ref57
  article-title: Reading digits in natural images with unsupervised feature learning
  publication-title: Proc NIPS Workshop Deep Learn Unsupervised Feature Learn
– ident: ref12
  doi: 10.1109/JPROC.2004.839613
– ident: ref62
  doi: 10.1109/CVPR42600.2020.00072
– ident: ref14
  doi: 10.1109/IEEECONF51394.2020.9443315
– ident: ref58
  doi: 10.1109/ICCV.2019.00039
– year: 2016
  ident: ref27
  article-title: Towards evaluating the robustness of neural networks
  publication-title: arXiv 1608 04644
– year: 2020
  ident: ref5
  article-title: High-fidelity generative image compression
  publication-title: arXiv 2006 09965
– start-page: 1
  year: 2015
  ident: ref20
  article-title: Explaining and harnessing adversarial examples
  publication-title: Proc 3rd Int Conf Learn Represent (ICLR)
– ident: ref45
  doi: 10.1109/CVPR.2018.00957
– ident: ref7
  doi: 10.1109/TIP.2021.3058615
– ident: ref18
  doi: 10.1145/3394171.3413680
– start-page: 807
  year: 2010
  ident: ref31
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc ICML
– volume: 48
  start-page: 1558
  year: 2016
  ident: ref56
  article-title: Autoencoding beyond pixels using a learned similarity metric
  publication-title: Proc 33rd Int Conf Mach Learn
– ident: ref10
  doi: 10.1109/TCSVT.2019.2910119
– year: 2016
  ident: ref1
  article-title: End-to-end optimized image compression
  publication-title: arXiv 1611 01704
– ident: ref67
  doi: 10.1007/s11263-018-01144-2
– year: 2015
  ident: ref52
  article-title: Learning with a strong adversary
  publication-title: arXiv 1511 03034
– ident: ref22
  doi: 10.1007/978-3-030-01249-6_14
– ident: ref9
  doi: 10.1109/DCC52660.2022.00080
– ident: ref19
  doi: 10.1007/978-3-030-58565-5_19
– year: 2017
  ident: ref43
  article-title: Towards deep learning models resistant to adversarial attacks
  publication-title: arXiv 1706 06083
– ident: ref3
  doi: 10.1109/CVPR.2018.00339
– year: 2021
  ident: ref26
  article-title: Deep image destruction: Vulnerability of deep image-to-image models against adversarial attacks
  publication-title: arXiv 2104 15022
– ident: ref38
  doi: 10.1145/3474085.3475213
– year: 2016
  ident: ref47
  article-title: A study of the effect of JPG compression on adversarial images
  publication-title: arXiv 1608 00853
– year: 2019
  ident: ref65
  article-title: Image transformation can make neural networks more robust against adversarial examples
  publication-title: arXiv 1901 03037
– ident: ref29
  doi: 10.1109/CVPR.2016.90
– ident: ref13
  doi: 10.1109/TCSVT.2021.3101953
– start-page: 1
  year: 2021
  ident: ref37
  article-title: Lossy image compression with normalizing flows
  publication-title: Proc Neural Compress Inf Theory Appl Workshop (ICLR)
– ident: ref63
  doi: 10.1609/aaai.v36i2.20023
– year: 2017
  ident: ref49
  article-title: Feature squeezing: Detecting adversarial examples in deep neural networks
  publication-title: arXiv 1704 01155
– ident: ref40
  doi: 10.1109/CVPR.2018.00068
– start-page: 1
  year: 2014
  ident: ref51
  article-title: Intriguing properties of neural networks
  publication-title: Proc Int Conf Learn Represent
– ident: ref25
  doi: 10.1109/ICCV.2019.00249
– volume: 44
  start-page: 4194
  year: 2022
  ident: ref8
  article-title: Learning end-to-end lossy image compression: A benchmark
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref33
  doi: 10.1109/TCSVT.2005.858610
– year: 2018
  ident: ref36
  article-title: Context-adaptive entropy model for end-to-end optimized image compression
  publication-title: arXiv 1809 10452
– ident: ref66
  doi: 10.1609/aaai.v32i1.11828
– year: 2017
  ident: ref48
  article-title: Mitigating adversarial effects through randomization
  publication-title: arXiv 1711 01991
– year: 2013
  ident: ref42
  article-title: Intriguing properties of neural networks
  publication-title: arXiv 1312 6199
– year: 2014
  ident: ref46
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– year: 2020
  ident: ref59
  article-title: CompressAI: A PyTorch library and evaluation platform for end-to-end compression research
  publication-title: arXiv 2011 03029
– start-page: 427
  year: 2015
  ident: ref21
  article-title: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– year: 2022
  ident: ref60
  publication-title: Kodak lossless true color image suite (PhotoCD PCD0992)
SSID ssj0014847
Score 2.4975412
Snippet Deep neural network-based image compression has been extensively studied. However, the model robustness which is crucial to practical application is largely...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 7842
SubjectTerms Artificial neural networks
Compressing
Image compression
Robustness
Title Toward Robust Neural Image Compression: Adversarial Attack and Model Finetuning
URI https://www.proquest.com/docview/2899466990
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoED4ikWFuQDtyoldew44baqUi1o2ZUgRb1FtuOIFdBF2-TCv-AfMx47aZaiFXCJqrRJE89nz3ge3xDyiola61QnUQLKM-JqriJt8iZqdJ4onjJQUW6j-P4sPVnxd2uxnkx-jrKWulbPzI8_1pX8j1ThHMjVVcn-g2SHm8IJ-AzyhSNIGI5_J2PMeXXZ0d22nTqeDcec8c2l4bh57lNcMXUD-y5vFbboOG5bZb74DAvXB2e6BEuz7Ta9EgumqtsGug4SfTtxjCuYiyvTuVgD-ts92zlmKrpyPrBi9xz1i1D9UV6Gu6P3G0MinwMwg8-BJb_lb5SY1znKZSiwZc9Ab1AMHXy2A63isOah5Qxv0Hs6_LoLa0OUMV_ZObNhLRYgbhaL8WLtWTN6ULLR0iszT9O1rxOQUrVcfPxUztzLzBImwQpkOw3YR_3Pzqvl6vS0Kot1eYvcZlJi5P_D22IITPEMe9YNz9vXYcX56_1_uG7rXFf1aL-U98m9sPGgxx5FD8jEbh6SuyM6ykfk3OOJejxRjyeKeKIjPL2hIzRRjyYKAqGIJrpD02OyWhbl4iQKDTciw6RoI8saVxetQHtqo1RmbQzms-Q2UzFXdaJsY-ZNpnUts2bOWS0FtzC9HZWFTHWdPCEHm8uNfUpoIsH0M3CBMJwLI7K8gamfCgUWMRdWHpJ5PzSVCWz0rinK1wp3pXFe4XBWbjirMJyHZDpc891zsdz466N-xKswZ7eVcy_AY4AJ9uzmr5-TOzvgH5GD9qqzL8D8bPVLBMQvUXuE1A
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Robust+Neural+Image+Compression%3A+Adversarial+Attack+and+Model+Finetuning&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Chen%2C+Tong&rft.au=Ma%2C+Zhan&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=33&rft.issue=12&rft.spage=7842&rft_id=info:doi/10.1109%2FTCSVT.2023.3276442&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon