Urban flood forecasting using a hybrid modeling approach based on a deep learning technique

Climate change is contributing to the increasing frequency and severity of flooding worldwide. Therefore, forecasting and preparing for floods while considering extreme climate conditions are essential for decision-makers to prevent and manage disasters. Although recent studies have demonstrated the...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 25; no. 2; pp. 593 - 610
Main Authors Moon, Hyeontae, Yoon, Sunkwon, Moon, Youngil
Format Journal Article
LanguageEnglish
Published IWA Publishing 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Climate change is contributing to the increasing frequency and severity of flooding worldwide. Therefore, forecasting and preparing for floods while considering extreme climate conditions are essential for decision-makers to prevent and manage disasters. Although recent studies have demonstrated the potential of long short-term memory (LSTM) models for forecasting rainfall-related runoff, there remains room for improvement due to the lack of observational data. In this study, we developed a flood forecasting model based on a hybrid modeling approach that combined a rainfall-runoff model and a deep learning model. Furthermore, we proposed a method for forecasting flooding time using several representative rainfall variables. The study focused on urban river basins, combined rainfall amounts, duration, and time distribution to create virtual rainfall scenarios. Additionally, the simulated results of the rainfall-runoff model were used as input data to forecast flooding time under extreme and other rainfall conditions. The prediction results achieved high accuracy with a correlation coefficient of >0.9 and a Nash[ndash]Sutcliffe efficiency of >0.8. These results indicated that the proposed method would enable reasonable forecasting of flood occurrences and their timing using only forecasted rainfall information.
AbstractList Climate change is contributing to the increasing frequency and severity of flooding worldwide. Therefore, forecasting and preparing for floods while considering extreme climate conditions are essential for decision-makers to prevent and manage disasters. Although recent studies have demonstrated the potential of long short-term memory (LSTM) models for forecasting rainfall-related runoff, there remains room for improvement due to the lack of observational data. In this study, we developed a flood forecasting model based on a hybrid modeling approach that combined a rainfall-runoff model and a deep learning model. Furthermore, we proposed a method for forecasting flooding time using several representative rainfall variables. The study focused on urban river basins, combined rainfall amounts, duration, and time distribution to create virtual rainfall scenarios. Additionally, the simulated results of the rainfall-runoff model were used as input data to forecast flooding time under extreme and other rainfall conditions. The prediction results achieved high accuracy with a correlation coefficient of >0.9 and a Nash[ndash]Sutcliffe efficiency of >0.8. These results indicated that the proposed method would enable reasonable forecasting of flood occurrences and their timing using only forecasted rainfall information. HIGHLIGHTS A flood forecasting model based on hybrid modeling that combines a R–R model and a LSTM model is developed, and a method for forecasting floods using representative rainfall variables is proposed.; This study combined rainfall amount, duration, and distribution to create virtual rainfall scenarios.; The simulated results of the R–R model were used as input data to forecast flooding time under various rainfall conditions.;
Climate change is contributing to the increasing frequency and severity of flooding worldwide. Therefore, forecasting and preparing for floods while considering extreme climate conditions are essential for decision-makers to prevent and manage disasters. Although recent studies have demonstrated the potential of long short-term memory (LSTM) models for forecasting rainfall-related runoff, there remains room for improvement due to the lack of observational data. In this study, we developed a flood forecasting model based on a hybrid modeling approach that combined a rainfall-runoff model and a deep learning model. Furthermore, we proposed a method for forecasting flooding time using several representative rainfall variables. The study focused on urban river basins, combined rainfall amounts, duration, and time distribution to create virtual rainfall scenarios. Additionally, the simulated results of the rainfall-runoff model were used as input data to forecast flooding time under extreme and other rainfall conditions. The prediction results achieved high accuracy with a correlation coefficient of >0.9 and a Nash[ndash]Sutcliffe efficiency of >0.8. These results indicated that the proposed method would enable reasonable forecasting of flood occurrences and their timing using only forecasted rainfall information.
Author Moon, Hyeontae
Yoon, Sunkwon
Moon, Youngil
Author_xml – sequence: 1
  givenname: Hyeontae
  orcidid: 0000-0002-3195-8751
  surname: Moon
  fullname: Moon, Hyeontae
– sequence: 2
  givenname: Sunkwon
  surname: Yoon
  fullname: Yoon, Sunkwon
– sequence: 3
  givenname: Youngil
  surname: Moon
  fullname: Moon, Youngil
BookMark eNp1kDtrw0AQhI_gQGwnber7A3J0L51UBpMXGNLEVYpj72WdkXXOSS787yPJIUUgsMwuw85XzALN2tg6hO5JvqKkKB7qs01xRXPKBmFXaE54ITIiGZ9NN88k4eQGLbpun-eUsJLM0ec2aWixb2K02MfkDHR9aHf41I0KuD7rFCw-ROuayTkeUwRTYw2dszi2w4917ogbB6kdP3pn6jZ8ndwtuvbQdO7uZy_R9vnpY_2abd5f3taPm8xQKfoMJKUlFSU13pRMeiYqaR3LdeVFWUhjytJ66Vw-KDOcGsZNPoy10lIoPFuitwvXRtirYwoHSGcVIajJiGmnIPXBNE7xigitjZBeU84MaO_ACysKUYGvQAys1YVlUuy65Pwvj-RqrFlNNaux5kHYEOB_Aib00IfY9glC81_sG8WJhsQ
CitedBy_id crossref_primary_10_1016_j_ijdrr_2024_104542
crossref_primary_10_1016_j_jhydrol_2024_131406
crossref_primary_10_1016_j_jhydrol_2024_130804
crossref_primary_10_2166_hydro_2024_240
crossref_primary_10_2166_hydro_2024_255
crossref_primary_10_1109_ACCESS_2023_3291411
crossref_primary_10_1139_er_2024_0065
crossref_primary_10_2166_wst_2023_126
crossref_primary_10_1016_j_jhydrol_2024_131998
crossref_primary_10_3390_su17062524
crossref_primary_10_1007_s12145_024_01346_y
crossref_primary_10_1111_jfr3_13000
crossref_primary_10_1016_j_jhydrol_2024_132561
crossref_primary_10_3390_w15142581
crossref_primary_10_3390_su17062587
crossref_primary_10_1016_j_jhydrol_2023_130076
crossref_primary_10_1007_s41207_024_00674_1
crossref_primary_10_2166_wcc_2023_487
crossref_primary_10_3390_rs17030524
crossref_primary_10_1080_1573062X_2024_2446528
Cites_doi 10.1038/nature14539
10.1016/0022-1694(94)90057-4
10.3390/w10111543
10.3390/w9090644
10.1029/WR003i004p01007
10.1016/j.procs.2018.03.076
10.13031/trans.58.10715
10.1061/(ASCE)HE.1943-5584.0000970
10.1007/s12205-015-0482-1
10.1016/j.jhydrol.2015.10.038
10.3390/atmos11090971
10.1061/(ASCE)1084-0699(2000)5:2(180)
10.1016/S0022-1694(98)00198-X
10.3390/w10010053
10.1002/hyp.13723
10.1162/neco.1997.9.8.1735
10.1038/s41467-018-04253-1
10.5194/hess-23-3057-2019
10.1016/0022-1694(70)90255-6
10.3390/w10111536
10.5194/hess-22-2041-2018
10.1080/02626667.2015.1083650
10.1007/s12205-011-1004-4
10.3390/w14020187
10.5194/hess-22-6005-2018
10.1016/j.jhydrol.2018.03.041
10.1016/j.jhydrol.2020.125178
10.1109/TNNLS.2016.2582924
10.3390/w11071387
10.1016/j.eswa.2007.10.005
10.1016/j.aej.2014.06.010
10.3741/JKWRA.2012.45.11.1107
10.1089/big.2013.0037
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.2166/hydro.2023.203
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1465-1734
EndPage 610
ExternalDocumentID oai_doaj_org_article_4915bbc57fb243cabfeaf5d5659af9a5
10_2166_hydro_2023_203
GroupedDBID 0R~
4.4
5GY
7XC
8CJ
8FE
8FH
AAJMC
AAJVE
AAYXX
ABFYC
ABLGR
ACGFO
AECGI
AENEX
AEUYN
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CS3
D1J
DU5
EBS
GEUZO
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HZ~
L7B
O9-
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PYCSY
R0Z
RHI
~02
PUEGO
ID FETCH-LOGICAL-c275t-a72282582cfc837f3597de30b9f5867cc88df7ee0df73c42c34c04c0dd7d2a6f3
IEDL.DBID DOA
ISSN 1464-7141
IngestDate Wed Aug 27 01:18:29 EDT 2025
Tue Jul 01 04:10:35 EDT 2025
Thu Apr 24 23:07:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-a72282582cfc837f3597de30b9f5867cc88df7ee0df73c42c34c04c0dd7d2a6f3
ORCID 0000-0002-3195-8751
OpenAccessLink https://doaj.org/article/4915bbc57fb243cabfeaf5d5659af9a5
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_4915bbc57fb243cabfeaf5d5659af9a5
crossref_primary_10_2166_hydro_2023_203
crossref_citationtrail_10_2166_hydro_2023_203
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of hydroinformatics
PublicationYear 2023
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References (2023072413224121800_HYDRO-D-22-00203C17) 2013; 1
(2023072413224121800_HYDRO-D-22-00203C6) 2013
(2023072413224121800_HYDRO-D-22-00203C45) 2007; 43
Ghahramani (2023072413224121800_HYDRO-D-22-00203C43) 2014
(2023072413224121800_HYDRO-D-22-00203C26) 2018; 10
(2023072413224121800_HYDRO-D-22-00203C34) 2005; 41
(2023072413224121800_HYDRO-D-22-00203C11) 1997; 9
(2023072413224121800_HYDRO-D-22-00203C12) 2009
(2023072413224121800_HYDRO-D-22-00203C21) 2011; 15
National Weather Service (2023072413224121800_HYDRO-D-22-00203C33) 1997
(2023072413224121800_HYDRO-D-22-00203C9) 2018; 22
(2023072413224121800_HYDRO-D-22-00203C36) 2009; 36
(2023072413224121800_HYDRO-D-22-00203C39) 2020; 589
2023072413224121800_HYDRO-D-22-00203C29
(2023072413224121800_HYDRO-D-22-00203C40) 1996; 29
(2023072413224121800_HYDRO-D-22-00203C44) 2000; 5
(2023072413224121800_HYDRO-D-22-00203C46) 2019; 23
(2023072413224121800_HYDRO-D-22-00203C48) 2011; 17
(2023072413224121800_HYDRO-D-22-00203C50) 2022; 14
(2023072413224121800_HYDRO-D-22-00203C52) 2015; 530
(2023072413224121800_HYDRO-D-22-00203C10) 2014; 19
(2023072413224121800_HYDRO-D-22-00203C18) 2003
(2023072413224121800_HYDRO-D-22-00203C30) 2015; 58
(2023072413224121800_HYDRO-D-22-00203C27) 2020; 11
(2023072413224121800_HYDRO-D-22-00203C19) 2016; 61
(2023072413224121800_HYDRO-D-22-00203C37) 2018; 9
(2023072413224121800_HYDRO-D-22-00203C5) 2018; 560
(2023072413224121800_HYDRO-D-22-00203C38) 2020; 34
(2023072413224121800_HYDRO-D-22-00203C4) 2014; 53
2023072413224121800_HYDRO-D-22-00203C51
(2023072413224121800_HYDRO-D-22-00203C2) 2014
(2023072413224121800_HYDRO-D-22-00203C16) 2018; 51
(2023072413224121800_HYDRO-D-22-00203C8) 2015; 19
(2023072413224121800_HYDRO-D-22-00203C32) 1970; 10
(2023072413224121800_HYDRO-D-22-00203C47) 2005
(2023072413224121800_HYDRO-D-22-00203C13) 2018; 10
(2023072413224121800_HYDRO-D-22-00203C25) 2015; 521
(2023072413224121800_HYDRO-D-22-00203C24) 2019; 11
(2023072413224121800_HYDRO-D-22-00203C31) 2018; 10
(2023072413224121800_HYDRO-D-22-00203C22) 2018; 22
(2023072413224121800_HYDRO-D-22-00203C1) 2012; 45
(2023072413224121800_HYDRO-D-22-00203C49) 2019
(2023072413224121800_HYDRO-D-22-00203C28) 2018; 129
(2023072413224121800_HYDRO-D-22-00203C14) 1967; 3
(2023072413224121800_HYDRO-D-22-00203C53) 2009; 377
(2023072413224121800_HYDRO-D-22-00203C41) 2020; 12
(2023072413224121800_HYDRO-D-22-00203C7) 2017; 28
(2023072413224121800_HYDRO-D-22-00203C3) 1994; 158
(2023072413224121800_HYDRO-D-22-00203C35) 2017
(2023072413224121800_HYDRO-D-22-00203C42) 2017; 9
(2023072413224121800_HYDRO-D-22-00203C23) 1998; 211
(2023072413224121800_HYDRO-D-22-00203C15) 2012
(2023072413224121800_HYDRO-D-22-00203C20) 2014
References_xml – volume: 521
  start-page: 436
  year: 2015
  ident: 2023072413224121800_HYDRO-D-22-00203C25
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 1724
  year: 2014
  ident: 2023072413224121800_HYDRO-D-22-00203C2
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
– volume-title: Machine Learning Methods in the Environmental Sciences – Neural Networks and Kernels
  year: 2009
  ident: 2023072413224121800_HYDRO-D-22-00203C12
– volume: 158
  start-page: 265
  year: 1994
  ident: 2023072413224121800_HYDRO-D-22-00203C3
  article-title: Optimal use of the SCE–UA global optimization method for calibrating watershed models
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(94)90057-4
– volume: 10
  start-page: 1543
  year: 2018
  ident: 2023072413224121800_HYDRO-D-22-00203C13
  article-title: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation
  publication-title: Water
  doi: 10.3390/w10111543
– volume: 9
  start-page: 644
  year: 2017
  ident: 2023072413224121800_HYDRO-D-22-00203C42
  article-title: Hourly water level forecasting at tributary affected by main river condition
  publication-title: Water
  doi: 10.3390/w9090644
– ident: 2023072413224121800_HYDRO-D-22-00203C51
– volume: 17
  start-page: 283
  year: 2011
  ident: 2023072413224121800_HYDRO-D-22-00203C48
  article-title: Comparative case study of rainfall-runoff modeling between SWMM and fuzzy logic approach
  publication-title: J. Hydrol. Eng.
– volume: 12
  start-page: 109
  issue: 1
  year: 2020
  ident: 2023072413224121800_HYDRO-D-22-00203C41
  article-title: Flash flood forecasting based on long short-term memory networks
  publication-title: Water
– volume: 3
  start-page: 1007
  year: 1967
  ident: 2023072413224121800_HYDRO-D-22-00203C14
  article-title: Time distribution of rainfall in heavy storms
  publication-title: Water Resour. Res.
  doi: 10.1029/WR003i004p01007
– year: 2014
  ident: 2023072413224121800_HYDRO-D-22-00203C20
– start-page: 3104
  volume-title: Proceedings of the 27th International Conference on Neural Information Processing Systems, Vol. 2, Montreal, QC, Canada, 8–13 December 2014
  year: 2014
  ident: 2023072413224121800_HYDRO-D-22-00203C43
  article-title: Sequence to sequence learning with neural networks
– volume: 129
  start-page: 277
  year: 2018
  ident: 2023072413224121800_HYDRO-D-22-00203C28
  article-title: Prediction for tourism flow based on LSTM neural network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.03.076
– volume: 58
  start-page: 1763
  year: 2015
  ident: 2023072413224121800_HYDRO-D-22-00203C30
  article-title: Hydrologic and water quality models: performance measures and evaluation criteria
  publication-title: Trans. ASABE
  doi: 10.13031/trans.58.10715
– volume: 19
  start-page: 4014006
  issue: 8
  year: 2014
  ident: 2023072413224121800_HYDRO-D-22-00203C10
  article-title: Prediction of discharge in a tidal river using artificial neural networks
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000970
– volume: 43
  start-page: 1
  year: 2007
  ident: 2023072413224121800_HYDRO-D-22-00203C45
  article-title: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration
  publication-title: Water Resour. Res.
– volume: 19
  start-page: 392
  year: 2015
  ident: 2023072413224121800_HYDRO-D-22-00203C8
  article-title: Effect of threshold on the comparison of radar and rain gauge rain rate
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-015-0482-1
– start-page: 6645
  year: 2013
  ident: 2023072413224121800_HYDRO-D-22-00203C6
  article-title: Speech recognition with deep recurrent neural networks
– volume-title: Automated Local Flood Warning System Handbook Weather Service Hydrology Handbook No. 2, U.S. Department of Commerce
  year: 1997
  ident: 2023072413224121800_HYDRO-D-22-00203C33
– volume: 530
  start-page: 829
  year: 2015
  ident: 2023072413224121800_HYDRO-D-22-00203C52
  article-title: Artificial intelligence based models for stream-flow forecasting: 2000-2015
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.10.038
– volume: 377
  start-page: 80
  issue: 1–2
  year: 2009
  ident: 2023072413224121800_HYDRO-D-22-00203C53
  article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
  publication-title: J. Hydrol.
– volume: 11
  start-page: 971
  year: 2020
  ident: 2023072413224121800_HYDRO-D-22-00203C27
  article-title: Integrated flood forecasting and warning system against flash rainfall in the small-scaled urban stream
  publication-title: Atmosphere
  doi: 10.3390/atmos11090971
– volume: 5
  start-page: 180
  issue: 2
  year: 2000
  ident: 2023072413224121800_HYDRO-D-22-00203C44
  article-title: Hydrological forecasting using neural networks
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(180)
– volume: 41
  issue: 4
  year: 2005
  ident: 2023072413224121800_HYDRO-D-22-00203C34
  article-title: Short-term flood forecasting with a neuro-fuzzy model
  publication-title: Water Resour. Res.
– volume-title: Statistical Methods in the Atmospheric Sciences
  year: 2019
  ident: 2023072413224121800_HYDRO-D-22-00203C49
– volume: 211
  start-page: 69
  year: 1998
  ident: 2023072413224121800_HYDRO-D-22-00203C23
  article-title: Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the metropolis algorithm
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(98)00198-X
– volume: 10
  start-page: 53
  year: 2018
  ident: 2023072413224121800_HYDRO-D-22-00203C26
  article-title: Application of flood nomograph for flood forecasting in urban areas
  publication-title: Water
  doi: 10.3390/w10010053
– volume: 34
  start-page: 1996
  issue: 8
  year: 2020
  ident: 2023072413224121800_HYDRO-D-22-00203C38
  article-title: Anthropocene flooding: challenges for science and society
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.13723
– start-page: 1419
  year: 2017
  ident: 2023072413224121800_HYDRO-D-22-00203C35
  article-title: Stock market's price movement prediction with LSTM neural networks
– volume: 9
  start-page: 1735
  year: 1997
  ident: 2023072413224121800_HYDRO-D-22-00203C11
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume-title: Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century
  year: 2012
  ident: 2023072413224121800_HYDRO-D-22-00203C15
– volume: 29
  start-page: 207
  year: 1996
  ident: 2023072413224121800_HYDRO-D-22-00203C40
  article-title: A study on the variation of runoff and travel time in urban stream due to watershed development
  publication-title: J. Korea Water Resour. Assoc.
– volume: 9
  start-page: 1985
  year: 2018
  ident: 2023072413224121800_HYDRO-D-22-00203C37
  article-title: Trends in flood losses in Europe over the past 150 years
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04253-1
– volume: 23
  start-page: 3057
  year: 2019
  ident: 2023072413224121800_HYDRO-D-22-00203C46
  article-title: Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-23-3057-2019
– volume: 10
  start-page: 282
  year: 1970
  ident: 2023072413224121800_HYDRO-D-22-00203C32
  article-title: River flow forecasting through conceptual models. Part I – a discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 10
  start-page: 1536
  year: 2018
  ident: 2023072413224121800_HYDRO-D-22-00203C31
  article-title: Flood prediction using machine learning models: literature review
  publication-title: Water
  doi: 10.3390/w10111536
– volume: 22
  start-page: 2041
  issue: 3
  year: 2018
  ident: 2023072413224121800_HYDRO-D-22-00203C9
  article-title: Increase in flood risk resulting from climate change in a developed urban watershed – the role of storm temporal patterns
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-2041-2018
– volume: 61
  start-page: 2084
  year: 2016
  ident: 2023072413224121800_HYDRO-D-22-00203C19
  article-title: Neural network model for discharge and water-level prediction for Ramganga River catchment of Ganga basin, India
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2015.1083650
– volume: 15
  start-page: 1469
  year: 2011
  ident: 2023072413224121800_HYDRO-D-22-00203C21
  article-title: A combined generalized regression neural network wavelet model for monthly streamflow prediction
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-011-1004-4
– ident: 2023072413224121800_HYDRO-D-22-00203C29
– volume: 14
  start-page: 187
  year: 2022
  ident: 2023072413224121800_HYDRO-D-22-00203C50
  article-title: Development and application of an urban flood forecasting and warning process to reduce urban flood damage: a case study of Dorim River Basin, Seoul
  publication-title: Water
  doi: 10.3390/w14020187
– volume: 51
  start-page: 1207
  year: 2018
  ident: 2023072413224121800_HYDRO-D-22-00203C16
  article-title: Prediction of water level in a tidal river using a deep-learning based LSTM model
  publication-title: J. Korea Water Resour. Assoc.
– volume: 22
  start-page: 6005
  year: 2018
  ident: 2023072413224121800_HYDRO-D-22-00203C22
  article-title: Rainfall–runoff modelling using long short-term memory (LSTM) networks
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-6005-2018
– volume: 560
  start-page: 546
  year: 2018
  ident: 2023072413224121800_HYDRO-D-22-00203C5
  article-title: Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.03.041
– volume: 589
  start-page: 125178
  year: 2020
  ident: 2023072413224121800_HYDRO-D-22-00203C39
  article-title: Consideration of rainfall intermittency and log normality on the merging of radar and the rain gauge rain rate
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125178
– volume: 28
  start-page: 2222
  year: 2017
  ident: 2023072413224121800_HYDRO-D-22-00203C7
  article-title: LSTM: a search space odyssey
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
– volume: 11
  start-page: 1387
  year: 2019
  ident: 2023072413224121800_HYDRO-D-22-00203C24
  article-title: Application of long short-term memory (LSTM) neural network for flood forecasting
  publication-title: Water
  doi: 10.3390/w11071387
– volume: 36
  start-page: 2
  year: 2009
  ident: 2023072413224121800_HYDRO-D-22-00203C36
  article-title: Neural networks and statistical techniques: a review of applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.10.005
– volume-title: Atmospheric Modeling, Data Assimilation and Predictability
  year: 2003
  ident: 2023072413224121800_HYDRO-D-22-00203C18
– volume: 53
  start-page: 655
  year: 2014
  ident: 2023072413224121800_HYDRO-D-22-00203C4
  article-title: Artificial neural networks (ANNs) for flood forecasting at Dongola station in the River Nile, Sudan
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2014.06.010
– year: 2005
  ident: 2023072413224121800_HYDRO-D-22-00203C47
  article-title: Real-time urban runoff simulation using radar rainfall and physics-based distributed modeling for site-specific forecasts
– volume: 45
  start-page: 1107
  year: 2012
  ident: 2023072413224121800_HYDRO-D-22-00203C1
  article-title: Development and assessment of flow nomograph for the real-time flood forecasting in Cheonggye stream
  publication-title: J. Korea Water Resour. Assoc.
  doi: 10.3741/JKWRA.2012.45.11.1107
– volume: 1
  start-page: 215
  issue: 4
  year: 2013
  ident: 2023072413224121800_HYDRO-D-22-00203C17
  article-title: Predictive modeling with big data: is bigger really better?
  publication-title: Big Data
  doi: 10.1089/big.2013.0037
SSID ssj0021381
Score 2.4290226
Snippet Climate change is contributing to the increasing frequency and severity of flooding worldwide. Therefore, forecasting and preparing for floods while...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 593
SubjectTerms flood forecasting
flooding time
long short-term memory neural network
storm water management model
urban stream
Title Urban flood forecasting using a hybrid modeling approach based on a deep learning technique
URI https://doaj.org/article/4915bbc57fb243cabfeaf5d5659af9a5
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SD3oRn1gfJQfBU-huHpvs0UpLESwiFgoeljzbg2xLrYf-e5NsWupBvAjLHMKwhG-WnRmY-T4A7qwxWJWWI1tSgnz975AiTCGqCNeGWccjXdPzqBiO6dOETXakvsJMWEMP3ADXpWXOlNKMO4Up0VI5Kx0zvg4ppStlZC_1OW_TTKVWKydRntT_BsK0Ic0bukacF0V3tjbLsPWHiTfkRzraYe2P6WVwDI5SXQgfmvucgD1bn4KDJFE-W5-B9_FSyRq6MGgOfaVptfwMI8swTK5PoYSzdVi-glHaJp4ktnAYEpWB89r7GGsXMAlFTOGWv_UcjAf9t8chSsoISGPOVkhyHHZOBdZO-w7TEd8WGEsyVTomCq61EMZxazNviaZYE6oz_xjDDZaFIxegVc9rewmg1U4aJ0TpMKE2y4XzGV4RKajARGHVBmgDUKUTbXhQr_iofPsQAK0ioFUA1BvSBvdb_0VDmPGrZy_gvfUKRNfxwIe_SuGv_gr_1X-85Bochks1o2U3oLVaftlbX2usVAfs9_qjl9dO_Ly-AXMY1lc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Urban+flood+forecasting+using+a+hybrid+modeling+approach+based+on+a+deep+learning+technique&rft.jtitle=Journal+of+hydroinformatics&rft.au=Hyeontae+Moon&rft.au=Sunkwon+Yoon&rft.au=Youngil+Moon&rft.date=2023-03-01&rft.pub=IWA+Publishing&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=25&rft.issue=2&rft.spage=593&rft.epage=610&rft_id=info:doi/10.2166%2Fhydro.2023.203&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4915bbc57fb243cabfeaf5d5659af9a5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon