Urban flood forecasting using a hybrid modeling approach based on a deep learning technique
Climate change is contributing to the increasing frequency and severity of flooding worldwide. Therefore, forecasting and preparing for floods while considering extreme climate conditions are essential for decision-makers to prevent and manage disasters. Although recent studies have demonstrated the...
Saved in:
Published in | Journal of hydroinformatics Vol. 25; no. 2; pp. 593 - 610 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IWA Publishing
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Climate change is contributing to the increasing frequency and severity of flooding worldwide. Therefore, forecasting and preparing for floods while considering extreme climate conditions are essential for decision-makers to prevent and manage disasters. Although recent studies have demonstrated the potential of long short-term memory (LSTM) models for forecasting rainfall-related runoff, there remains room for improvement due to the lack of observational data. In this study, we developed a flood forecasting model based on a hybrid modeling approach that combined a rainfall-runoff model and a deep learning model. Furthermore, we proposed a method for forecasting flooding time using several representative rainfall variables. The study focused on urban river basins, combined rainfall amounts, duration, and time distribution to create virtual rainfall scenarios. Additionally, the simulated results of the rainfall-runoff model were used as input data to forecast flooding time under extreme and other rainfall conditions. The prediction results achieved high accuracy with a correlation coefficient of >0.9 and a Nash[ndash]Sutcliffe efficiency of >0.8. These results indicated that the proposed method would enable reasonable forecasting of flood occurrences and their timing using only forecasted rainfall information. |
---|---|
AbstractList | Climate change is contributing to the increasing frequency and severity of flooding worldwide. Therefore, forecasting and preparing for floods while considering extreme climate conditions are essential for decision-makers to prevent and manage disasters. Although recent studies have demonstrated the potential of long short-term memory (LSTM) models for forecasting rainfall-related runoff, there remains room for improvement due to the lack of observational data. In this study, we developed a flood forecasting model based on a hybrid modeling approach that combined a rainfall-runoff model and a deep learning model. Furthermore, we proposed a method for forecasting flooding time using several representative rainfall variables. The study focused on urban river basins, combined rainfall amounts, duration, and time distribution to create virtual rainfall scenarios. Additionally, the simulated results of the rainfall-runoff model were used as input data to forecast flooding time under extreme and other rainfall conditions. The prediction results achieved high accuracy with a correlation coefficient of >0.9 and a Nash[ndash]Sutcliffe efficiency of >0.8. These results indicated that the proposed method would enable reasonable forecasting of flood occurrences and their timing using only forecasted rainfall information. HIGHLIGHTS A flood forecasting model based on hybrid modeling that combines a R–R model and a LSTM model is developed, and a method for forecasting floods using representative rainfall variables is proposed.; This study combined rainfall amount, duration, and distribution to create virtual rainfall scenarios.; The simulated results of the R–R model were used as input data to forecast flooding time under various rainfall conditions.; Climate change is contributing to the increasing frequency and severity of flooding worldwide. Therefore, forecasting and preparing for floods while considering extreme climate conditions are essential for decision-makers to prevent and manage disasters. Although recent studies have demonstrated the potential of long short-term memory (LSTM) models for forecasting rainfall-related runoff, there remains room for improvement due to the lack of observational data. In this study, we developed a flood forecasting model based on a hybrid modeling approach that combined a rainfall-runoff model and a deep learning model. Furthermore, we proposed a method for forecasting flooding time using several representative rainfall variables. The study focused on urban river basins, combined rainfall amounts, duration, and time distribution to create virtual rainfall scenarios. Additionally, the simulated results of the rainfall-runoff model were used as input data to forecast flooding time under extreme and other rainfall conditions. The prediction results achieved high accuracy with a correlation coefficient of >0.9 and a Nash[ndash]Sutcliffe efficiency of >0.8. These results indicated that the proposed method would enable reasonable forecasting of flood occurrences and their timing using only forecasted rainfall information. |
Author | Moon, Hyeontae Yoon, Sunkwon Moon, Youngil |
Author_xml | – sequence: 1 givenname: Hyeontae orcidid: 0000-0002-3195-8751 surname: Moon fullname: Moon, Hyeontae – sequence: 2 givenname: Sunkwon surname: Yoon fullname: Yoon, Sunkwon – sequence: 3 givenname: Youngil surname: Moon fullname: Moon, Youngil |
BookMark | eNp1kDtrw0AQhI_gQGwnber7A3J0L51UBpMXGNLEVYpj72WdkXXOSS787yPJIUUgsMwuw85XzALN2tg6hO5JvqKkKB7qs01xRXPKBmFXaE54ITIiGZ9NN88k4eQGLbpun-eUsJLM0ec2aWixb2K02MfkDHR9aHf41I0KuD7rFCw-ROuayTkeUwRTYw2dszi2w4917ogbB6kdP3pn6jZ8ndwtuvbQdO7uZy_R9vnpY_2abd5f3taPm8xQKfoMJKUlFSU13pRMeiYqaR3LdeVFWUhjytJ66Vw-KDOcGsZNPoy10lIoPFuitwvXRtirYwoHSGcVIajJiGmnIPXBNE7xigitjZBeU84MaO_ACysKUYGvQAys1YVlUuy65Pwvj-RqrFlNNaux5kHYEOB_Aib00IfY9glC81_sG8WJhsQ |
CitedBy_id | crossref_primary_10_1016_j_ijdrr_2024_104542 crossref_primary_10_1016_j_jhydrol_2024_131406 crossref_primary_10_1016_j_jhydrol_2024_130804 crossref_primary_10_2166_hydro_2024_240 crossref_primary_10_2166_hydro_2024_255 crossref_primary_10_1109_ACCESS_2023_3291411 crossref_primary_10_1139_er_2024_0065 crossref_primary_10_2166_wst_2023_126 crossref_primary_10_1016_j_jhydrol_2024_131998 crossref_primary_10_3390_su17062524 crossref_primary_10_1007_s12145_024_01346_y crossref_primary_10_1111_jfr3_13000 crossref_primary_10_1016_j_jhydrol_2024_132561 crossref_primary_10_3390_w15142581 crossref_primary_10_3390_su17062587 crossref_primary_10_1016_j_jhydrol_2023_130076 crossref_primary_10_1007_s41207_024_00674_1 crossref_primary_10_2166_wcc_2023_487 crossref_primary_10_3390_rs17030524 crossref_primary_10_1080_1573062X_2024_2446528 |
Cites_doi | 10.1038/nature14539 10.1016/0022-1694(94)90057-4 10.3390/w10111543 10.3390/w9090644 10.1029/WR003i004p01007 10.1016/j.procs.2018.03.076 10.13031/trans.58.10715 10.1061/(ASCE)HE.1943-5584.0000970 10.1007/s12205-015-0482-1 10.1016/j.jhydrol.2015.10.038 10.3390/atmos11090971 10.1061/(ASCE)1084-0699(2000)5:2(180) 10.1016/S0022-1694(98)00198-X 10.3390/w10010053 10.1002/hyp.13723 10.1162/neco.1997.9.8.1735 10.1038/s41467-018-04253-1 10.5194/hess-23-3057-2019 10.1016/0022-1694(70)90255-6 10.3390/w10111536 10.5194/hess-22-2041-2018 10.1080/02626667.2015.1083650 10.1007/s12205-011-1004-4 10.3390/w14020187 10.5194/hess-22-6005-2018 10.1016/j.jhydrol.2018.03.041 10.1016/j.jhydrol.2020.125178 10.1109/TNNLS.2016.2582924 10.3390/w11071387 10.1016/j.eswa.2007.10.005 10.1016/j.aej.2014.06.010 10.3741/JKWRA.2012.45.11.1107 10.1089/big.2013.0037 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.2166/hydro.2023.203 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1465-1734 |
EndPage | 610 |
ExternalDocumentID | oai_doaj_org_article_4915bbc57fb243cabfeaf5d5659af9a5 10_2166_hydro_2023_203 |
GroupedDBID | 0R~ 4.4 5GY 7XC 8CJ 8FE 8FH AAJMC AAJVE AAYXX ABFYC ABLGR ACGFO AECGI AENEX AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION CS3 D1J DU5 EBS GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HZ~ L7B O9- OK1 P2P PATMY PCBAR PHGZM PHGZT PYCSY R0Z RHI ~02 PUEGO |
ID | FETCH-LOGICAL-c275t-a72282582cfc837f3597de30b9f5867cc88df7ee0df73c42c34c04c0dd7d2a6f3 |
IEDL.DBID | DOA |
ISSN | 1464-7141 |
IngestDate | Wed Aug 27 01:18:29 EDT 2025 Tue Jul 01 04:10:35 EDT 2025 Thu Apr 24 23:07:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c275t-a72282582cfc837f3597de30b9f5867cc88df7ee0df73c42c34c04c0dd7d2a6f3 |
ORCID | 0000-0002-3195-8751 |
OpenAccessLink | https://doaj.org/article/4915bbc57fb243cabfeaf5d5659af9a5 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4915bbc57fb243cabfeaf5d5659af9a5 crossref_primary_10_2166_hydro_2023_203 crossref_citationtrail_10_2166_hydro_2023_203 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydroinformatics |
PublicationYear | 2023 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | (2023072413224121800_HYDRO-D-22-00203C17) 2013; 1 (2023072413224121800_HYDRO-D-22-00203C6) 2013 (2023072413224121800_HYDRO-D-22-00203C45) 2007; 43 Ghahramani (2023072413224121800_HYDRO-D-22-00203C43) 2014 (2023072413224121800_HYDRO-D-22-00203C26) 2018; 10 (2023072413224121800_HYDRO-D-22-00203C34) 2005; 41 (2023072413224121800_HYDRO-D-22-00203C11) 1997; 9 (2023072413224121800_HYDRO-D-22-00203C12) 2009 (2023072413224121800_HYDRO-D-22-00203C21) 2011; 15 National Weather Service (2023072413224121800_HYDRO-D-22-00203C33) 1997 (2023072413224121800_HYDRO-D-22-00203C9) 2018; 22 (2023072413224121800_HYDRO-D-22-00203C36) 2009; 36 (2023072413224121800_HYDRO-D-22-00203C39) 2020; 589 2023072413224121800_HYDRO-D-22-00203C29 (2023072413224121800_HYDRO-D-22-00203C40) 1996; 29 (2023072413224121800_HYDRO-D-22-00203C44) 2000; 5 (2023072413224121800_HYDRO-D-22-00203C46) 2019; 23 (2023072413224121800_HYDRO-D-22-00203C48) 2011; 17 (2023072413224121800_HYDRO-D-22-00203C50) 2022; 14 (2023072413224121800_HYDRO-D-22-00203C52) 2015; 530 (2023072413224121800_HYDRO-D-22-00203C10) 2014; 19 (2023072413224121800_HYDRO-D-22-00203C18) 2003 (2023072413224121800_HYDRO-D-22-00203C30) 2015; 58 (2023072413224121800_HYDRO-D-22-00203C27) 2020; 11 (2023072413224121800_HYDRO-D-22-00203C19) 2016; 61 (2023072413224121800_HYDRO-D-22-00203C37) 2018; 9 (2023072413224121800_HYDRO-D-22-00203C5) 2018; 560 (2023072413224121800_HYDRO-D-22-00203C38) 2020; 34 (2023072413224121800_HYDRO-D-22-00203C4) 2014; 53 2023072413224121800_HYDRO-D-22-00203C51 (2023072413224121800_HYDRO-D-22-00203C2) 2014 (2023072413224121800_HYDRO-D-22-00203C16) 2018; 51 (2023072413224121800_HYDRO-D-22-00203C8) 2015; 19 (2023072413224121800_HYDRO-D-22-00203C32) 1970; 10 (2023072413224121800_HYDRO-D-22-00203C47) 2005 (2023072413224121800_HYDRO-D-22-00203C13) 2018; 10 (2023072413224121800_HYDRO-D-22-00203C25) 2015; 521 (2023072413224121800_HYDRO-D-22-00203C24) 2019; 11 (2023072413224121800_HYDRO-D-22-00203C31) 2018; 10 (2023072413224121800_HYDRO-D-22-00203C22) 2018; 22 (2023072413224121800_HYDRO-D-22-00203C1) 2012; 45 (2023072413224121800_HYDRO-D-22-00203C49) 2019 (2023072413224121800_HYDRO-D-22-00203C28) 2018; 129 (2023072413224121800_HYDRO-D-22-00203C14) 1967; 3 (2023072413224121800_HYDRO-D-22-00203C53) 2009; 377 (2023072413224121800_HYDRO-D-22-00203C41) 2020; 12 (2023072413224121800_HYDRO-D-22-00203C7) 2017; 28 (2023072413224121800_HYDRO-D-22-00203C3) 1994; 158 (2023072413224121800_HYDRO-D-22-00203C35) 2017 (2023072413224121800_HYDRO-D-22-00203C42) 2017; 9 (2023072413224121800_HYDRO-D-22-00203C23) 1998; 211 (2023072413224121800_HYDRO-D-22-00203C15) 2012 (2023072413224121800_HYDRO-D-22-00203C20) 2014 |
References_xml | – volume: 521 start-page: 436 year: 2015 ident: 2023072413224121800_HYDRO-D-22-00203C25 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 1724 year: 2014 ident: 2023072413224121800_HYDRO-D-22-00203C2 article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation – volume-title: Machine Learning Methods in the Environmental Sciences – Neural Networks and Kernels year: 2009 ident: 2023072413224121800_HYDRO-D-22-00203C12 – volume: 158 start-page: 265 year: 1994 ident: 2023072413224121800_HYDRO-D-22-00203C3 article-title: Optimal use of the SCE–UA global optimization method for calibrating watershed models publication-title: J. Hydrol. doi: 10.1016/0022-1694(94)90057-4 – volume: 10 start-page: 1543 year: 2018 ident: 2023072413224121800_HYDRO-D-22-00203C13 article-title: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation publication-title: Water doi: 10.3390/w10111543 – volume: 9 start-page: 644 year: 2017 ident: 2023072413224121800_HYDRO-D-22-00203C42 article-title: Hourly water level forecasting at tributary affected by main river condition publication-title: Water doi: 10.3390/w9090644 – ident: 2023072413224121800_HYDRO-D-22-00203C51 – volume: 17 start-page: 283 year: 2011 ident: 2023072413224121800_HYDRO-D-22-00203C48 article-title: Comparative case study of rainfall-runoff modeling between SWMM and fuzzy logic approach publication-title: J. Hydrol. Eng. – volume: 12 start-page: 109 issue: 1 year: 2020 ident: 2023072413224121800_HYDRO-D-22-00203C41 article-title: Flash flood forecasting based on long short-term memory networks publication-title: Water – volume: 3 start-page: 1007 year: 1967 ident: 2023072413224121800_HYDRO-D-22-00203C14 article-title: Time distribution of rainfall in heavy storms publication-title: Water Resour. Res. doi: 10.1029/WR003i004p01007 – year: 2014 ident: 2023072413224121800_HYDRO-D-22-00203C20 – start-page: 3104 volume-title: Proceedings of the 27th International Conference on Neural Information Processing Systems, Vol. 2, Montreal, QC, Canada, 8–13 December 2014 year: 2014 ident: 2023072413224121800_HYDRO-D-22-00203C43 article-title: Sequence to sequence learning with neural networks – volume: 129 start-page: 277 year: 2018 ident: 2023072413224121800_HYDRO-D-22-00203C28 article-title: Prediction for tourism flow based on LSTM neural network publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.03.076 – volume: 58 start-page: 1763 year: 2015 ident: 2023072413224121800_HYDRO-D-22-00203C30 article-title: Hydrologic and water quality models: performance measures and evaluation criteria publication-title: Trans. ASABE doi: 10.13031/trans.58.10715 – volume: 19 start-page: 4014006 issue: 8 year: 2014 ident: 2023072413224121800_HYDRO-D-22-00203C10 article-title: Prediction of discharge in a tidal river using artificial neural networks publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000970 – volume: 43 start-page: 1 year: 2007 ident: 2023072413224121800_HYDRO-D-22-00203C45 article-title: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration publication-title: Water Resour. Res. – volume: 19 start-page: 392 year: 2015 ident: 2023072413224121800_HYDRO-D-22-00203C8 article-title: Effect of threshold on the comparison of radar and rain gauge rain rate publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-015-0482-1 – start-page: 6645 year: 2013 ident: 2023072413224121800_HYDRO-D-22-00203C6 article-title: Speech recognition with deep recurrent neural networks – volume-title: Automated Local Flood Warning System Handbook Weather Service Hydrology Handbook No. 2, U.S. Department of Commerce year: 1997 ident: 2023072413224121800_HYDRO-D-22-00203C33 – volume: 530 start-page: 829 year: 2015 ident: 2023072413224121800_HYDRO-D-22-00203C52 article-title: Artificial intelligence based models for stream-flow forecasting: 2000-2015 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.10.038 – volume: 377 start-page: 80 issue: 1–2 year: 2009 ident: 2023072413224121800_HYDRO-D-22-00203C53 article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling publication-title: J. Hydrol. – volume: 11 start-page: 971 year: 2020 ident: 2023072413224121800_HYDRO-D-22-00203C27 article-title: Integrated flood forecasting and warning system against flash rainfall in the small-scaled urban stream publication-title: Atmosphere doi: 10.3390/atmos11090971 – volume: 5 start-page: 180 issue: 2 year: 2000 ident: 2023072413224121800_HYDRO-D-22-00203C44 article-title: Hydrological forecasting using neural networks publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2000)5:2(180) – volume: 41 issue: 4 year: 2005 ident: 2023072413224121800_HYDRO-D-22-00203C34 article-title: Short-term flood forecasting with a neuro-fuzzy model publication-title: Water Resour. Res. – volume-title: Statistical Methods in the Atmospheric Sciences year: 2019 ident: 2023072413224121800_HYDRO-D-22-00203C49 – volume: 211 start-page: 69 year: 1998 ident: 2023072413224121800_HYDRO-D-22-00203C23 article-title: Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the metropolis algorithm publication-title: J. Hydrol. doi: 10.1016/S0022-1694(98)00198-X – volume: 10 start-page: 53 year: 2018 ident: 2023072413224121800_HYDRO-D-22-00203C26 article-title: Application of flood nomograph for flood forecasting in urban areas publication-title: Water doi: 10.3390/w10010053 – volume: 34 start-page: 1996 issue: 8 year: 2020 ident: 2023072413224121800_HYDRO-D-22-00203C38 article-title: Anthropocene flooding: challenges for science and society publication-title: Hydrol. Process. doi: 10.1002/hyp.13723 – start-page: 1419 year: 2017 ident: 2023072413224121800_HYDRO-D-22-00203C35 article-title: Stock market's price movement prediction with LSTM neural networks – volume: 9 start-page: 1735 year: 1997 ident: 2023072413224121800_HYDRO-D-22-00203C11 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume-title: Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century year: 2012 ident: 2023072413224121800_HYDRO-D-22-00203C15 – volume: 29 start-page: 207 year: 1996 ident: 2023072413224121800_HYDRO-D-22-00203C40 article-title: A study on the variation of runoff and travel time in urban stream due to watershed development publication-title: J. Korea Water Resour. Assoc. – volume: 9 start-page: 1985 year: 2018 ident: 2023072413224121800_HYDRO-D-22-00203C37 article-title: Trends in flood losses in Europe over the past 150 years publication-title: Nat. Commun. doi: 10.1038/s41467-018-04253-1 – volume: 23 start-page: 3057 year: 2019 ident: 2023072413224121800_HYDRO-D-22-00203C46 article-title: Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-23-3057-2019 – volume: 10 start-page: 282 year: 1970 ident: 2023072413224121800_HYDRO-D-22-00203C32 article-title: River flow forecasting through conceptual models. Part I – a discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – volume: 10 start-page: 1536 year: 2018 ident: 2023072413224121800_HYDRO-D-22-00203C31 article-title: Flood prediction using machine learning models: literature review publication-title: Water doi: 10.3390/w10111536 – volume: 22 start-page: 2041 issue: 3 year: 2018 ident: 2023072413224121800_HYDRO-D-22-00203C9 article-title: Increase in flood risk resulting from climate change in a developed urban watershed – the role of storm temporal patterns publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-2041-2018 – volume: 61 start-page: 2084 year: 2016 ident: 2023072413224121800_HYDRO-D-22-00203C19 article-title: Neural network model for discharge and water-level prediction for Ramganga River catchment of Ganga basin, India publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2015.1083650 – volume: 15 start-page: 1469 year: 2011 ident: 2023072413224121800_HYDRO-D-22-00203C21 article-title: A combined generalized regression neural network wavelet model for monthly streamflow prediction publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-011-1004-4 – ident: 2023072413224121800_HYDRO-D-22-00203C29 – volume: 14 start-page: 187 year: 2022 ident: 2023072413224121800_HYDRO-D-22-00203C50 article-title: Development and application of an urban flood forecasting and warning process to reduce urban flood damage: a case study of Dorim River Basin, Seoul publication-title: Water doi: 10.3390/w14020187 – volume: 51 start-page: 1207 year: 2018 ident: 2023072413224121800_HYDRO-D-22-00203C16 article-title: Prediction of water level in a tidal river using a deep-learning based LSTM model publication-title: J. Korea Water Resour. Assoc. – volume: 22 start-page: 6005 year: 2018 ident: 2023072413224121800_HYDRO-D-22-00203C22 article-title: Rainfall–runoff modelling using long short-term memory (LSTM) networks publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-6005-2018 – volume: 560 start-page: 546 year: 2018 ident: 2023072413224121800_HYDRO-D-22-00203C5 article-title: Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.03.041 – volume: 589 start-page: 125178 year: 2020 ident: 2023072413224121800_HYDRO-D-22-00203C39 article-title: Consideration of rainfall intermittency and log normality on the merging of radar and the rain gauge rain rate publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125178 – volume: 28 start-page: 2222 year: 2017 ident: 2023072413224121800_HYDRO-D-22-00203C7 article-title: LSTM: a search space odyssey publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2016.2582924 – volume: 11 start-page: 1387 year: 2019 ident: 2023072413224121800_HYDRO-D-22-00203C24 article-title: Application of long short-term memory (LSTM) neural network for flood forecasting publication-title: Water doi: 10.3390/w11071387 – volume: 36 start-page: 2 year: 2009 ident: 2023072413224121800_HYDRO-D-22-00203C36 article-title: Neural networks and statistical techniques: a review of applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.10.005 – volume-title: Atmospheric Modeling, Data Assimilation and Predictability year: 2003 ident: 2023072413224121800_HYDRO-D-22-00203C18 – volume: 53 start-page: 655 year: 2014 ident: 2023072413224121800_HYDRO-D-22-00203C4 article-title: Artificial neural networks (ANNs) for flood forecasting at Dongola station in the River Nile, Sudan publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2014.06.010 – year: 2005 ident: 2023072413224121800_HYDRO-D-22-00203C47 article-title: Real-time urban runoff simulation using radar rainfall and physics-based distributed modeling for site-specific forecasts – volume: 45 start-page: 1107 year: 2012 ident: 2023072413224121800_HYDRO-D-22-00203C1 article-title: Development and assessment of flow nomograph for the real-time flood forecasting in Cheonggye stream publication-title: J. Korea Water Resour. Assoc. doi: 10.3741/JKWRA.2012.45.11.1107 – volume: 1 start-page: 215 issue: 4 year: 2013 ident: 2023072413224121800_HYDRO-D-22-00203C17 article-title: Predictive modeling with big data: is bigger really better? publication-title: Big Data doi: 10.1089/big.2013.0037 |
SSID | ssj0021381 |
Score | 2.4290226 |
Snippet | Climate change is contributing to the increasing frequency and severity of flooding worldwide. Therefore, forecasting and preparing for floods while... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 593 |
SubjectTerms | flood forecasting flooding time long short-term memory neural network storm water management model urban stream |
Title | Urban flood forecasting using a hybrid modeling approach based on a deep learning technique |
URI | https://doaj.org/article/4915bbc57fb243cabfeaf5d5659af9a5 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SD3oRn1gfJQfBU-huHpvs0UpLESwiFgoeljzbg2xLrYf-e5NsWupBvAjLHMKwhG-WnRmY-T4A7qwxWJWWI1tSgnz975AiTCGqCNeGWccjXdPzqBiO6dOETXakvsJMWEMP3ADXpWXOlNKMO4Up0VI5Kx0zvg4ppStlZC_1OW_TTKVWKydRntT_BsK0Ic0bukacF0V3tjbLsPWHiTfkRzraYe2P6WVwDI5SXQgfmvucgD1bn4KDJFE-W5-B9_FSyRq6MGgOfaVptfwMI8swTK5PoYSzdVi-glHaJp4ktnAYEpWB89r7GGsXMAlFTOGWv_UcjAf9t8chSsoISGPOVkhyHHZOBdZO-w7TEd8WGEsyVTomCq61EMZxazNviaZYE6oz_xjDDZaFIxegVc9rewmg1U4aJ0TpMKE2y4XzGV4RKajARGHVBmgDUKUTbXhQr_iofPsQAK0ioFUA1BvSBvdb_0VDmPGrZy_gvfUKRNfxwIe_SuGv_gr_1X-85Bochks1o2U3oLVaftlbX2usVAfs9_qjl9dO_Ly-AXMY1lc |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Urban+flood+forecasting+using+a+hybrid+modeling+approach+based+on+a+deep+learning+technique&rft.jtitle=Journal+of+hydroinformatics&rft.au=Hyeontae+Moon&rft.au=Sunkwon+Yoon&rft.au=Youngil+Moon&rft.date=2023-03-01&rft.pub=IWA+Publishing&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=25&rft.issue=2&rft.spage=593&rft.epage=610&rft_id=info:doi/10.2166%2Fhydro.2023.203&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4915bbc57fb243cabfeaf5d5659af9a5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon |