An improved suspension balance model applied to shear-induced phase segregation

When suspensions are subject to non-homogeneous shear, particles migrate towards lower-shear rate regions of the flow due to the anisotropy on the particle phase’s normal stress. This phenomenon leads to phase segregation, complicating the interpretation of rheological experimental data for characte...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of multiphase flow Vol. 184; p. 105120
Main Authors Schlatter, Lauren, da Silva Ferreira, Gabriel Gonçalves, da Cunha Lage, Paulo Laranjeira
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2025
Subjects
Online AccessGet full text
ISSN0301-9322
DOI10.1016/j.ijmultiphaseflow.2024.105120

Cover

Abstract When suspensions are subject to non-homogeneous shear, particles migrate towards lower-shear rate regions of the flow due to the anisotropy on the particle phase’s normal stress. This phenomenon leads to phase segregation, complicating the interpretation of rheological experimental data for characterising those suspensions. This work presents an improved version of the well-known Suspension Balance Model (SBM), featuring a frame-independent formulation of the particles’ normal stress with an improved momentum interpolation scheme that prevents numerical oscillations. The particle’s stress model also includes a local formulation for the microscopically generated extra stress, ensuring grid convergence. Our model, implemented in OpenFOAM-v7®, successfully simulated various shear-dominated flows. The simulated Couette rheometric data showed that the characterisation of suspensions from such data could not capture their non-Newtonian behaviour. Besides, the obtained rheological model for the suspensions depended on the geometry of the rheometer, being unable to predict the flow of the same suspension in different conditions and geometries. [Display omitted] •We developed a frame-independent Suspension Balance Model solver using OpenFOAM.•A modified stress tensor model allows the presence of velocity plateaus.•An improved momentum interpolation avoids oscillations in the phase fraction fields.•A cyclic boundary condition simulated fully developed flows up to 500 times faster.•The suspension’s apparent viscosity strongly depends on rheometer flow geometry.
AbstractList When suspensions are subject to non-homogeneous shear, particles migrate towards lower-shear rate regions of the flow due to the anisotropy on the particle phase’s normal stress. This phenomenon leads to phase segregation, complicating the interpretation of rheological experimental data for characterising those suspensions. This work presents an improved version of the well-known Suspension Balance Model (SBM), featuring a frame-independent formulation of the particles’ normal stress with an improved momentum interpolation scheme that prevents numerical oscillations. The particle’s stress model also includes a local formulation for the microscopically generated extra stress, ensuring grid convergence. Our model, implemented in OpenFOAM-v7®, successfully simulated various shear-dominated flows. The simulated Couette rheometric data showed that the characterisation of suspensions from such data could not capture their non-Newtonian behaviour. Besides, the obtained rheological model for the suspensions depended on the geometry of the rheometer, being unable to predict the flow of the same suspension in different conditions and geometries. [Display omitted] •We developed a frame-independent Suspension Balance Model solver using OpenFOAM.•A modified stress tensor model allows the presence of velocity plateaus.•An improved momentum interpolation avoids oscillations in the phase fraction fields.•A cyclic boundary condition simulated fully developed flows up to 500 times faster.•The suspension’s apparent viscosity strongly depends on rheometer flow geometry.
ArticleNumber 105120
Author Schlatter, Lauren
da Silva Ferreira, Gabriel Gonçalves
da Cunha Lage, Paulo Laranjeira
Author_xml – sequence: 1
  givenname: Lauren
  orcidid: 0000-0003-0145-5077
  surname: Schlatter
  fullname: Schlatter, Lauren
  email: laurenfernandes@peq.coppe.ufrj.br
– sequence: 2
  givenname: Gabriel Gonçalves
  orcidid: 0000-0002-1328-5426
  surname: da Silva Ferreira
  fullname: da Silva Ferreira, Gabriel Gonçalves
  email: gferreira@peq.coppe.ufrj.br
– sequence: 3
  givenname: Paulo Laranjeira
  orcidid: 0000-0002-0396-5508
  surname: da Cunha Lage
  fullname: da Cunha Lage, Paulo Laranjeira
  email: paulo@peq.coppe.ufrj.br
BookMark eNqNkDtPwzAQgD0UibbwHzyxJfgR57EgVRVQpEpdYLZc-9I6SuzITov497iUiQl5OMl3993dt0Az5x0g9EBJTgktH7vcdsOpn-x4VBHa3n_mjLAiJQVlZIbmhBOaNZyxW7SIsSOEiKrgc7RbOWyHMfgzGBxPcQQXrXd4r3rlNODBG-ixGsfepoLJ43gEFTLrzEmnj59xOMIhwEFNqfEO3bSqj3D_G5fo4-X5fb3JtrvXt_Vqm2lWiSlrWAGEl41QtKDAykrXhaqFYk1jSkp5xcW-VQ0TqqwFEEMAlKnrRhha1enxJXq6cnXwMQZo5RjsoMKXpERelMhO_lUiL0rkVUkCbK4ASFueLQQZtYV0srEB9CSNt_9FfQOq1nlO
Cites_doi 10.1017/jfm.2017.754
10.1103/PhysRevLett.107.188301
10.1017/jfm.2021.75
10.1016/j.powtec.2011.07.030
10.1016/0377-0257(94)01355-L
10.1016/j.compfluid.2008.09.007
10.1017/jfm.2018.548
10.1017/S0022112087002155
10.1103/PhysRevE.59.4445
10.1016/0017-9310(72)90054-3
10.1017/S0022112098008817
10.2514/3.8284
10.1016/j.jnnfm.2005.11.009
10.1080/02726351.2015.1051684
10.1122/1.2079227
10.1016/j.jnnfm.2013.03.006
10.1017/S0022112098002651
10.1016/j.ijmultiphaseflow.2023.104476
10.1103/PhysRevFluids.5.042301
10.1017/jfm.2019.291
10.1002/andp.19063240204
10.1016/j.seppur.2016.10.057
10.1016/j.seppur.2017.10.001
10.1017/S0022112094002326
10.1122/1.549584
10.1016/j.ijmultiphaseflow.2019.07.015
10.1016/j.ijmultiphaseflow.2020.103239
10.1017/jfm.2014.557
10.1016/j.jnnfm.2017.05.002
10.1103/PhysRevLett.114.088301
10.1016/j.ces.2009.04.033
10.1063/1.858498
10.1016/j.ijmultiphaseflow.2015.11.002
10.1017/jfm.2012.516
10.1016/j.jnnfm.2022.104904
10.1017/S0022112094000911
10.1016/j.jnnfm.2019.02.002
10.1016/S0301-9322(01)00055-6
10.1122/1.551021
10.1017/jfm.2014.606
10.1145/76909.76913
10.1021/ie00037a002
10.1063/1.168744
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijmultiphaseflow.2024.105120
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_ijmultiphaseflow_2024_105120
S0301932224003963
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PKN
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
ID FETCH-LOGICAL-c275t-924e03695a141e267c84a85a299d6113735bfa925a685e0d0eead8895d1787873
IEDL.DBID AIKHN
ISSN 0301-9322
IngestDate Wed Sep 10 05:19:30 EDT 2025
Sat Feb 15 15:52:34 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords OpenFOAM
Shear-induced migration
Non-Newtonian fluids
Suspension balance model
Suspension rheology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-924e03695a141e267c84a85a299d6113735bfa925a685e0d0eead8895d1787873
ORCID 0000-0002-1328-5426
0000-0003-0145-5077
0000-0002-0396-5508
ParticipantIDs crossref_primary_10_1016_j_ijmultiphaseflow_2024_105120
elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2024_105120
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle International journal of multiphase flow
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Weller, Tabor, Jasak, Fureby (b49) 1998; 12
Morris, Boulay (b33) 1999; 43
Mirbod (b31) 2016; 80
Kang, Mirbod (b19) 2020; 126
Municchi, Nagrani, Christov (b34) 2019
Lecampion, Garagash (b23) 2014; 759
Dbouk, Lemaire, Lobry, Moukalled (b5) 2013; 198
Miller, Morris (b28) 2006; 135
Kang, Mirbod (b21) 2023; 381
Tiwari, Antal, Podowski (b48) 2009; 38
Boggs, Donaldson, Byrd, Schnabel (b2) 1989; 15
Phan-Thien, Graham, Altobelli, Abbott, Mondy (b40) 1995; 34
Fang, Mammoli, Brady, Ingber, Mondy, Graham (b10) 2002; 28
Phillips, Armstrong, Brown, Graham, Abbott (b41) 1992; 4
Rhie, Chow (b44) 1983; 21
Mills, Snabre (b30) 1995; 5
Passalacqua, Fox (b38) 2011; 213
Guazzelli, Pouliquen (b16) 2018; 852
Boyer, Guazzelli, Pouliquen (b3) 2011; 107
Nott, Brady (b36) 1994; 275
Gadala-Maria, Acrivos (b13) 1980; 24
Koh, Hookham, Leal (b22) 1994; 266
Subia, Ingber, Mondy, Altobelli, Graham (b47) 1998; 373
Greenshields (b15) 2019
Kang, Mirbod (b20) 2021; 916
Schroën, van Dinther, Stockmann (b45) 2017; 174
Coussot, Ancey (b4) 1999; 59
Yadav, Mallela, Singh (b50) 2015; 34
Fernandes (b12) 2003
Ramesh, Bharadwaj, Alam (b43) 2019; 870
Majji, Banerjee, Morris (b27) 2018; 835
Municchi, Nagrani, Christov (b35) 2019; 120
Miller, Singh, Morris (b29) 2009; 64
Lu, Christov (b25) 2023; 165
Oh, Song, Garagash, Lecampion, Desroches (b37) 2015; 114
Moraczewski, Tang, Shapley (b32) 2005; 49
Dbouk, Lobry, Lemaire (b6) 2013; 715
Drijer, van de Laar, Vollebregt, Schroën (b8) 2018; 192
Einstein (b9) 1906; 324
Ramesh, Alam (b42) 2020; 5
Leighton, Acrivos (b24) 1987; 181
Lyon, Leal (b26) 1998; 363
Dontsov, Peirce (b7) 2014; 760
Golub, van Loan (b14) 2013
Patankar, Spalding (b39) 1972; 15
Jasak (b18) 1996
Fang, Phan-Thien (b11) 1995; 58
Badia, D’Angelo, Peters, Lobry (b1) 2022; 309
Siqueira, de Souza Mendes (b46) 2019; 265
Inkson, Papoulias, Tandon, Reddy, Lo (b17) 2017; 245
Moraczewski (10.1016/j.ijmultiphaseflow.2024.105120_b32) 2005; 49
Weller (10.1016/j.ijmultiphaseflow.2024.105120_b49) 1998; 12
Fang (10.1016/j.ijmultiphaseflow.2024.105120_b10) 2002; 28
Gadala-Maria (10.1016/j.ijmultiphaseflow.2024.105120_b13) 1980; 24
Kang (10.1016/j.ijmultiphaseflow.2024.105120_b19) 2020; 126
Oh (10.1016/j.ijmultiphaseflow.2024.105120_b37) 2015; 114
Dbouk (10.1016/j.ijmultiphaseflow.2024.105120_b5) 2013; 198
Fang (10.1016/j.ijmultiphaseflow.2024.105120_b11) 1995; 58
Greenshields (10.1016/j.ijmultiphaseflow.2024.105120_b15) 2019
Kang (10.1016/j.ijmultiphaseflow.2024.105120_b21) 2023; 381
Drijer (10.1016/j.ijmultiphaseflow.2024.105120_b8) 2018; 192
Einstein (10.1016/j.ijmultiphaseflow.2024.105120_b9) 1906; 324
Mirbod (10.1016/j.ijmultiphaseflow.2024.105120_b31) 2016; 80
Miller (10.1016/j.ijmultiphaseflow.2024.105120_b28) 2006; 135
Mills (10.1016/j.ijmultiphaseflow.2024.105120_b30) 1995; 5
Schroën (10.1016/j.ijmultiphaseflow.2024.105120_b45) 2017; 174
Boggs (10.1016/j.ijmultiphaseflow.2024.105120_b2) 1989; 15
Lu (10.1016/j.ijmultiphaseflow.2024.105120_b25) 2023; 165
Nott (10.1016/j.ijmultiphaseflow.2024.105120_b36) 1994; 275
Morris (10.1016/j.ijmultiphaseflow.2024.105120_b33) 1999; 43
Passalacqua (10.1016/j.ijmultiphaseflow.2024.105120_b38) 2011; 213
Miller (10.1016/j.ijmultiphaseflow.2024.105120_b29) 2009; 64
Ramesh (10.1016/j.ijmultiphaseflow.2024.105120_b43) 2019; 870
Rhie (10.1016/j.ijmultiphaseflow.2024.105120_b44) 1983; 21
Phan-Thien (10.1016/j.ijmultiphaseflow.2024.105120_b40) 1995; 34
Guazzelli (10.1016/j.ijmultiphaseflow.2024.105120_b16) 2018; 852
Inkson (10.1016/j.ijmultiphaseflow.2024.105120_b17) 2017; 245
Dontsov (10.1016/j.ijmultiphaseflow.2024.105120_b7) 2014; 760
Siqueira (10.1016/j.ijmultiphaseflow.2024.105120_b46) 2019; 265
Majji (10.1016/j.ijmultiphaseflow.2024.105120_b27) 2018; 835
Municchi (10.1016/j.ijmultiphaseflow.2024.105120_b34) 2019
Lecampion (10.1016/j.ijmultiphaseflow.2024.105120_b23) 2014; 759
Coussot (10.1016/j.ijmultiphaseflow.2024.105120_b4) 1999; 59
Kang (10.1016/j.ijmultiphaseflow.2024.105120_b20) 2021; 916
Dbouk (10.1016/j.ijmultiphaseflow.2024.105120_b6) 2013; 715
Patankar (10.1016/j.ijmultiphaseflow.2024.105120_b39) 1972; 15
Tiwari (10.1016/j.ijmultiphaseflow.2024.105120_b48) 2009; 38
Leighton (10.1016/j.ijmultiphaseflow.2024.105120_b24) 1987; 181
Lyon (10.1016/j.ijmultiphaseflow.2024.105120_b26) 1998; 363
Boyer (10.1016/j.ijmultiphaseflow.2024.105120_b3) 2011; 107
Koh (10.1016/j.ijmultiphaseflow.2024.105120_b22) 1994; 266
Phillips (10.1016/j.ijmultiphaseflow.2024.105120_b41) 1992; 4
Yadav (10.1016/j.ijmultiphaseflow.2024.105120_b50) 2015; 34
Golub (10.1016/j.ijmultiphaseflow.2024.105120_b14) 2013
Municchi (10.1016/j.ijmultiphaseflow.2024.105120_b35) 2019; 120
Ramesh (10.1016/j.ijmultiphaseflow.2024.105120_b42) 2020; 5
Jasak (10.1016/j.ijmultiphaseflow.2024.105120_b18) 1996
Fernandes (10.1016/j.ijmultiphaseflow.2024.105120_b12) 2003
Subia (10.1016/j.ijmultiphaseflow.2024.105120_b47) 1998; 373
Badia (10.1016/j.ijmultiphaseflow.2024.105120_b1) 2022; 309
References_xml – volume: 363
  start-page: 25
  year: 1998
  end-page: 56
  ident: b26
  article-title: An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems
  publication-title: J. Fluid Mech.
– volume: 34
  start-page: 3187
  year: 1995
  end-page: 3194
  ident: b40
  article-title: Hydrodynamic particle migration in a concentrated suspension undergoing flow between rotating eccentric cylinders
  publication-title: Ind. Eng. Chem. Res.
– volume: 126
  start-page: 103239
  year: 2020
  ident: b19
  article-title: Shear-induced particle migration of semi-dilute and concentrated Brownian suspensions in both Poiseuille and circular Couette flow
  publication-title: Int. J. Multiph. Flow
– year: 1996
  ident: b18
  article-title: Error analysis and estimation for the finite volume method with applications to fluid flows
– volume: 324
  start-page: 289
  year: 1906
  end-page: 306
  ident: b9
  article-title: Eine neue Bestimmung der Moleküldimensionen
  publication-title: Ann. Der Physik
– volume: 59
  start-page: 4445
  year: 1999
  end-page: 4457
  ident: b4
  article-title: Rheophysical classification of concentrated suspensions and granular pastes
  publication-title: Phys. Rev. E
– volume: 759
  start-page: 197
  year: 2014
  end-page: 235
  ident: b23
  article-title: Confined flow of suspensions modelled by a frictional rheology
  publication-title: J. Fluid Mech.
– volume: 49
  start-page: 1409
  year: 2005
  end-page: 1428
  ident: b32
  article-title: Flow of a concentrated suspension through an abrupt axisymmetric expansion measured by nuclear magnetic resonance imaging
  publication-title: J. Rheol.
– volume: 15
  start-page: 348
  year: 1989
  end-page: 364
  ident: b2
  article-title: Algorithm 676: ODRPACK: software for weighted orthogonal distance regression
  publication-title: ACM Trans. Math. Softw.
– volume: 760
  start-page: 567
  year: 2014
  end-page: 590
  ident: b7
  article-title: Slurry flow, gravitational settling and a proppant transport model for hydraulic fractures
  publication-title: J. Fluid Mech.
– volume: 373
  start-page: 193
  year: 1998
  end-page: 219
  ident: b47
  article-title: Modeling of concentrated solutions using a continuum constitutive equation
  publication-title: J. Fluid Mech.
– volume: 835
  start-page: 936
  year: 2018
  end-page: 969
  ident: b27
  article-title: Inertial flow transitions of a suspension in Taylor–Couette geometry
  publication-title: J. Fluid Mech.
– volume: 15
  start-page: 1787
  year: 1972
  end-page: 1806
  ident: b39
  article-title: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows
  publication-title: Int. J. Heat Mass Transfer
– volume: 852
  start-page: 748
  year: 2018
  end-page: 783
  ident: b16
  article-title: Rheology of dense granular suspensions
  publication-title: J. Fluid Mech.
– volume: 114
  start-page: 088301
  year: 2015
  ident: b37
  article-title: Pressure-driven suspension flow near jamming
  publication-title: Phys. Rev. Lett.
– volume: 80
  start-page: 79
  year: 2016
  end-page: 88
  ident: b31
  article-title: Two-dimensional computational fluid dynamical investigation of particle migration in rotating eccentric cylinders using suspension balance model
  publication-title: Int. J. Multiph. Flow
– volume: 174
  start-page: 372
  year: 2017
  end-page: 388
  ident: b45
  article-title: Particle migration in laminar shear fields: A new basis for large scale separation technology?
  publication-title: Sep. Purif. Technol.
– volume: 916
  start-page: A12
  year: 2021
  ident: b20
  article-title: Flow instability and transitions in Taylor–Couette flow of a semidilute non-colloidal suspension
  publication-title: J. Fluid Mech.
– volume: 381
  year: 2023
  ident: b21
  article-title: Transitions in Taylor-Couette flow of concentrated non-colloidal suspensions
  publication-title: Philos. Trans. Ser. A, Math., Phys., Eng. Sci.
– volume: 34
  start-page: 83
  year: 2015
  end-page: 95
  ident: b50
  article-title: Shear induced migration of concentrated suspension through Y-shaped bifurcation channels
  publication-title: Particul. Sci. Technol.
– volume: 135
  start-page: 149
  year: 2006
  end-page: 165
  ident: b28
  article-title: Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 5
  start-page: 1597
  year: 1995
  end-page: 1608
  ident: b30
  article-title: Rheology and structure of concentrated suspensions of hard spheres. Shear induced particle migration
  publication-title: J. Phys. II
– volume: 4
  start-page: 30
  year: 1992
  end-page: 40
  ident: b41
  article-title: A constitutive equation for concentrated suspensions that accounts for shear induced particle migration
  publication-title: Phys. Fluids A
– volume: 38
  start-page: 727
  year: 2009
  end-page: 737
  ident: b48
  article-title: Modeling shear-induced diffusion force in particulate flows
  publication-title: Comput. & Fluids
– volume: 192
  start-page: 99
  year: 2018
  end-page: 109
  ident: b8
  article-title: From highly specialised to generally available modelling of shear induced particle migration for flow segregation based separation technology
  publication-title: Sep. Purif. Technol.
– year: 2019
  ident: b34
  article-title: twoFluidsNBSuspensionFoam
– volume: 265
  start-page: 92
  year: 2019
  end-page: 98
  ident: b46
  article-title: On the pressure-driven flow of suspensions: Particle migration in apparent yield-stress fluids
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 12
  start-page: 620
  year: 1998
  end-page: 631
  ident: b49
  article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques
  publication-title: Comput. Phys.
– volume: 43
  start-page: 1213
  year: 1999
  end-page: 1237
  ident: b33
  article-title: Curvilinear flows of noncolloidal suspensions: The role of normal stresses
  publication-title: J. Rheol.
– volume: 5
  start-page: 042301(R)
  year: 2020
  ident: b42
  article-title: Interpenetrating spiral vortices and other coexisting states in suspension Taylor-Couette flow
  publication-title: Phys. Rev. Fluids
– volume: 309
  start-page: 104904
  year: 2022
  ident: b1
  article-title: Frame-invariant modeling for non-Brownian suspension flows
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 266
  start-page: 1
  year: 1994
  end-page: 32
  ident: b22
  article-title: An experimental investigation of concentrated suspension flows in a rectangular channel
  publication-title: J. Fluid Mech.
– year: 2003
  ident: b12
  article-title: A study of the effect of phase segregation by shear on the rheology of suspensions
– volume: 64
  start-page: 4597
  year: 2009
  end-page: 4610
  ident: b29
  article-title: Suspension flow modeling for general geometries
  publication-title: Chem. Eng. Sci.
– volume: 58
  start-page: 67
  year: 1995
  end-page: 81
  ident: b11
  article-title: Numerical simulation of particle migration in concentrated suspensions by a finite volume method
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 275
  start-page: 157
  year: 1994
  end-page: 199
  ident: b36
  article-title: Pressure-driven flow of suspensions: simulation and theory
  publication-title: J. Fluid Mech.
– volume: 24
  start-page: 799
  year: 1980
  end-page: 814
  ident: b13
  article-title: Shear-induced structure in a concentrated suspension of solid spheres
  publication-title: J. Rheol.
– volume: 181
  start-page: 415
  year: 1987
  end-page: 439
  ident: b24
  article-title: The shear-induced migration of particles in concentrated suspensions
  publication-title: J. Fluid Mech.
– volume: 28
  start-page: 137
  year: 2002
  end-page: 166
  ident: b10
  article-title: Flow-aligned tensor models for suspension flow
  publication-title: Int. J. Multiph. Flow
– volume: 245
  start-page: 38
  year: 2017
  end-page: 48
  ident: b17
  article-title: An Eulerian-Eulerian formulation of suspension rheology using the finite volume method
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 213
  start-page: 174
  year: 2011
  end-page: 187
  ident: b38
  article-title: Implementation of an iterative solution procedure for multi-fluid gas–particle flow models on unstructured grids
  publication-title: Powder Technol.
– volume: 198
  start-page: 78
  year: 2013
  end-page: 95
  ident: b5
  article-title: Shear-induced particle migration: Predictions from experimental evaluation of the particle stress tensor
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 715
  start-page: 239
  year: 2013
  end-page: 272
  ident: b6
  article-title: Normal stresses in concentrated non-Brownian suspensions
  publication-title: J. Fluid Mech.
– volume: 870
  start-page: 901
  year: 2019
  end-page: 940
  ident: b43
  article-title: Suspension Taylor–Couette flow: co-existence of stationary and travelling waves, and the characteristics of Taylor vortices and spirals
  publication-title: J. Fluid Mech.
– volume: 165
  year: 2023
  ident: b25
  article-title: Physics-informed neural networks for understanding shear migration of particles in viscous flow
  publication-title: Int. J. Multiph. Flow
– volume: 107
  start-page: 188301
  year: 2011
  ident: b3
  article-title: Unifying suspension and granular rheology
  publication-title: Phys. Rev. Lett.
– year: 2019
  ident: b15
  article-title: OpenFOAM v7 User Guide
– start-page: 597
  year: 2013
  end-page: 680
  ident: b14
  article-title: Large sparse linear system problems
  publication-title: Matrix Computations
– volume: 120
  start-page: 103079
  year: 2019
  ident: b35
  article-title: A two-fluid model for numerical simulation of shear-dominated suspension flows
  publication-title: Int. J. Multiph. Flow
– volume: 21
  start-page: 1525
  year: 1983
  end-page: 1532
  ident: b44
  article-title: Numerical study of the turbulent flow past an airfoil with trailing edge separation
  publication-title: AIAA J.
– year: 2003
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b12
– volume: 835
  start-page: 936
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b27
  article-title: Inertial flow transitions of a suspension in Taylor–Couette geometry
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.754
– volume: 107
  start-page: 188301
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b3
  article-title: Unifying suspension and granular rheology
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.188301
– volume: 916
  start-page: A12
  year: 2021
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b20
  article-title: Flow instability and transitions in Taylor–Couette flow of a semidilute non-colloidal suspension
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.75
– volume: 213
  start-page: 174
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b38
  article-title: Implementation of an iterative solution procedure for multi-fluid gas–particle flow models on unstructured grids
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2011.07.030
– volume: 58
  start-page: 67
  issue: 1
  year: 1995
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b11
  article-title: Numerical simulation of particle migration in concentrated suspensions by a finite volume method
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/0377-0257(94)01355-L
– volume: 38
  start-page: 727
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b48
  article-title: Modeling shear-induced diffusion force in particulate flows
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2008.09.007
– volume: 852
  start-page: 748
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b16
  article-title: Rheology of dense granular suspensions
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.548
– volume: 181
  start-page: 415
  year: 1987
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b24
  article-title: The shear-induced migration of particles in concentrated suspensions
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112087002155
– year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b15
– volume: 59
  start-page: 4445
  year: 1999
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b4
  article-title: Rheophysical classification of concentrated suspensions and granular pastes
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.59.4445
– volume: 15
  start-page: 1787
  year: 1972
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b39
  article-title: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(72)90054-3
– volume: 363
  start-page: 25
  year: 1998
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b26
  article-title: An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098008817
– volume: 5
  start-page: 1597
  year: 1995
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b30
  article-title: Rheology and structure of concentrated suspensions of hard spheres. Shear induced particle migration
  publication-title: J. Phys. II
– volume: 21
  start-page: 1525
  year: 1983
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b44
  article-title: Numerical study of the turbulent flow past an airfoil with trailing edge separation
  publication-title: AIAA J.
  doi: 10.2514/3.8284
– volume: 135
  start-page: 149
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b28
  article-title: Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2005.11.009
– volume: 34
  start-page: 83
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b50
  article-title: Shear induced migration of concentrated suspension through Y-shaped bifurcation channels
  publication-title: Particul. Sci. Technol.
  doi: 10.1080/02726351.2015.1051684
– volume: 49
  start-page: 1409
  issue: 6
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b32
  article-title: Flow of a concentrated suspension through an abrupt axisymmetric expansion measured by nuclear magnetic resonance imaging
  publication-title: J. Rheol.
  doi: 10.1122/1.2079227
– volume: 198
  start-page: 78
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b5
  article-title: Shear-induced particle migration: Predictions from experimental evaluation of the particle stress tensor
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2013.03.006
– volume: 373
  start-page: 193
  year: 1998
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b47
  article-title: Modeling of concentrated solutions using a continuum constitutive equation
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098002651
– volume: 165
  year: 2023
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b25
  article-title: Physics-informed neural networks for understanding shear migration of particles in viscous flow
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2023.104476
– volume: 5
  start-page: 042301(R)
  year: 2020
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b42
  article-title: Interpenetrating spiral vortices and other coexisting states in suspension Taylor-Couette flow
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.5.042301
– volume: 870
  start-page: 901
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b43
  article-title: Suspension Taylor–Couette flow: co-existence of stationary and travelling waves, and the characteristics of Taylor vortices and spirals
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.291
– volume: 324
  start-page: 289
  year: 1906
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b9
  article-title: Eine neue Bestimmung der Moleküldimensionen
  publication-title: Ann. Der Physik
  doi: 10.1002/andp.19063240204
– volume: 174
  start-page: 372
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b45
  article-title: Particle migration in laminar shear fields: A new basis for large scale separation technology?
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.10.057
– volume: 192
  start-page: 99
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b8
  article-title: From highly specialised to generally available modelling of shear induced particle migration for flow segregation based separation technology
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.10.001
– volume: 275
  start-page: 157
  year: 1994
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b36
  article-title: Pressure-driven flow of suspensions: simulation and theory
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094002326
– year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b34
– volume: 24
  start-page: 799
  year: 1980
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b13
  article-title: Shear-induced structure in a concentrated suspension of solid spheres
  publication-title: J. Rheol.
  doi: 10.1122/1.549584
– volume: 120
  start-page: 103079
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b35
  article-title: A two-fluid model for numerical simulation of shear-dominated suspension flows
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2019.07.015
– volume: 126
  start-page: 103239
  year: 2020
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b19
  article-title: Shear-induced particle migration of semi-dilute and concentrated Brownian suspensions in both Poiseuille and circular Couette flow
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2020.103239
– volume: 759
  start-page: 197
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b23
  article-title: Confined flow of suspensions modelled by a frictional rheology
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.557
– volume: 245
  start-page: 38
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b17
  article-title: An Eulerian-Eulerian formulation of suspension rheology using the finite volume method
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2017.05.002
– volume: 114
  start-page: 088301
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b37
  article-title: Pressure-driven suspension flow near jamming
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.088301
– volume: 64
  start-page: 4597
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b29
  article-title: Suspension flow modeling for general geometries
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.04.033
– volume: 4
  start-page: 30
  year: 1992
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b41
  article-title: A constitutive equation for concentrated suspensions that accounts for shear induced particle migration
  publication-title: Phys. Fluids A
  doi: 10.1063/1.858498
– volume: 80
  start-page: 79
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b31
  article-title: Two-dimensional computational fluid dynamical investigation of particle migration in rotating eccentric cylinders using suspension balance model
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2015.11.002
– volume: 715
  start-page: 239
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b6
  article-title: Normal stresses in concentrated non-Brownian suspensions
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.516
– start-page: 597
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b14
  article-title: Large sparse linear system problems
– volume: 309
  start-page: 104904
  year: 2022
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b1
  article-title: Frame-invariant modeling for non-Brownian suspension flows
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2022.104904
– volume: 266
  start-page: 1
  year: 1994
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b22
  article-title: An experimental investigation of concentrated suspension flows in a rectangular channel
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094000911
– year: 1996
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b18
– volume: 265
  start-page: 92
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b46
  article-title: On the pressure-driven flow of suspensions: Particle migration in apparent yield-stress fluids
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2019.02.002
– volume: 28
  start-page: 137
  year: 2002
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b10
  article-title: Flow-aligned tensor models for suspension flow
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/S0301-9322(01)00055-6
– volume: 43
  start-page: 1213
  year: 1999
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b33
  article-title: Curvilinear flows of noncolloidal suspensions: The role of normal stresses
  publication-title: J. Rheol.
  doi: 10.1122/1.551021
– volume: 760
  start-page: 567
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b7
  article-title: Slurry flow, gravitational settling and a proppant transport model for hydraulic fractures
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.606
– volume: 15
  start-page: 348
  issue: 4
  year: 1989
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b2
  article-title: Algorithm 676: ODRPACK: software for weighted orthogonal distance regression
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/76909.76913
– volume: 34
  start-page: 3187
  issue: 10
  year: 1995
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b40
  article-title: Hydrodynamic particle migration in a concentrated suspension undergoing flow between rotating eccentric cylinders
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00037a002
– volume: 12
  start-page: 620
  year: 1998
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b49
  article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques
  publication-title: Comput. Phys.
  doi: 10.1063/1.168744
– volume: 381
  year: 2023
  ident: 10.1016/j.ijmultiphaseflow.2024.105120_b21
  article-title: Transitions in Taylor-Couette flow of concentrated non-colloidal suspensions
  publication-title: Philos. Trans. Ser. A, Math., Phys., Eng. Sci.
SSID ssj0005743
Score 2.4360933
Snippet When suspensions are subject to non-homogeneous shear, particles migrate towards lower-shear rate regions of the flow due to the anisotropy on the particle...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105120
SubjectTerms Non-Newtonian fluids
OpenFOAM
Shear-induced migration
Suspension balance model
Suspension rheology
Title An improved suspension balance model applied to shear-induced phase segregation
URI https://dx.doi.org/10.1016/j.ijmultiphaseflow.2024.105120
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFH7sB4oeRKfi_DFyEG91TZu06bEMx1ScBx3sVtI00w1ph93w5t_uS9uxKR48eCqUNoT3kve-l3zJB3DJ_ARRtT0xE0laTDFpyUC7WKrEjAplJ1SZBf2HoTcYsbsxH9egtzoLY2iVVewvY3oRras33cqa3fl02n0yYD4wGwXMHDD13Do0HXzyBjTD2_vBcM30KHn25nvL_LANV2ua13RWMvdeMWlM3rIPLBkdZtRvqZEA_y1XbeSf_j7sVcCRhGXfDqCm0xbsblwn2IKtgs6p8kN4DFMyLZYLdELyZT43NPUsJbEhMipNCv0bIksEShYZyY2wtYX1OXo6IUU3Sa6xFn8pPHcEo_7Nc29gVdIJlnJ8vrCwqtKYmwIuKaPa8XwlmBRcYvJJPEpd3-XxRAYOl57g2k5sjSNKiIAnFGew8N1jaKRZqk-AaMkQ49ieEq5iiS-CGBGXp5iKfR0IKdrgr4wUzcsbMqIVdWwW_TRvZMwbleZtQ7iyafTN5xGG8z-2cfoPbZzBjmNUfQtm2Tk0Fu9LfYFQYxF3oH79STvVgPoCSbPVZQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2VVmwHBAVEWX1A3KJmsRPnGFVULV040Eq9RY7jQiuUVqQVv884i1oQBw5co8Synu2Z95xnD8A99WJk1eZULyRhUEmFIXzloFSJqMWlGVtSb-gPhm5nTJ8mbFKBVnkWRtsqi9ifx_QsWhdPmgWazeVs1nzRZN7XPwqoPmDqOjtQowzVXhVqQbfXGW6cHrnPXr9v6A_24GFj85rNc-feGyaN6fviEyWjTXX1W0uXAP8tV23ln_YxHBXEkQR5306gopI6HG5dJ1iH3czOKdNTeA4SMsu2C1RM0nW61Db1RUIibWSUimT1b4jIGShZLUiqC1sbqM9xpGOSdZOkCrX4azZyZzBuP45aHaMonWBI22MrA1WVwtzkM2FRS9muJzkVnAlMPrFrWY7nsGgqfJsJlzNlxqbCGcW5z2ILVzD3nHOoJotEXQBRgiLHMV3JHUljj_sRMi5XUhl5yueCN8ArQQqX-Q0ZYWkdm4c_4Q01vGEObwOCEtPw25iHGM7_2MblP7RxB_ud0aAf9rvD3hUc2LrCb-Yyu4bq6mOtbpB2rKLbYlp9AWp311Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+suspension+balance+model+applied+to+shear-induced+phase+segregation&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Schlatter%2C+Lauren&rft.au=da+Silva+Ferreira%2C+Gabriel+Gon%C3%A7alves&rft.au=da+Cunha+Lage%2C+Paulo+Laranjeira&rft.date=2025-03-01&rft.issn=0301-9322&rft.volume=184&rft.spage=105120&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2024.105120&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijmultiphaseflow_2024_105120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon