Bottom-up uncertainty evaluation of complex measurements from correlated performance data: Determination of total Cr in yeast by ICP-MS after acid digestion

[Display omitted] •Analyte recovery assessed from spiked yeast and certified reference material analyses.•Estimated recovery correlated from quantifications based on same ICP-MS calibration.•Mean recovery uncertainty from correlated data and between yeast recovery variability.•Uncertainty models of...

Full description

Saved in:
Bibliographic Details
Published inFood chemistry Vol. 404; p. 134466
Main Authors Pluháček, Tomáš, Pechancová, Radka, Milde, David, Bettencourt da Silva, Ricardo J.N.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Analyte recovery assessed from spiked yeast and certified reference material analyses.•Estimated recovery correlated from quantifications based on same ICP-MS calibration.•Mean recovery uncertainty from correlated data and between yeast recovery variability.•Uncertainty models of measurement from replicate digestion and analysis developed.•ICP-MS method with sample digestion fully validated following strict criteria. The objective interpretation of a measurement result requires knowing the associated uncertainty. The cost-effective collection of measurement performance data on the same day produces correlated values that can affect measurement uncertainty evaluation. This work describes a novel methodology for the bottom-up evaluation of measurements based on complex sample pretreatment and the instrumental quantification of the prepared sample applicable to correlated inputs. The numerical Kragten method is used to combine the uncertainty components shared in various analyte recovery determinations. The developed methodology was applied to the determination of total chromium in yeast samples by ICP-MS after microwave-assisted acid digestion. The developed analysis of yeast samples is fit for monitoring the contamination of this product since it is associated with a relative expanded uncertainty, U’, lower than 20%, ranging from 8.4% to 10.0% in determinations of Cr between 0.125 mg/kg and 305.5 mg/kg. Duplicate analyses are adequate for reference materials production (U′ < 7%).
AbstractList [Display omitted] •Analyte recovery assessed from spiked yeast and certified reference material analyses.•Estimated recovery correlated from quantifications based on same ICP-MS calibration.•Mean recovery uncertainty from correlated data and between yeast recovery variability.•Uncertainty models of measurement from replicate digestion and analysis developed.•ICP-MS method with sample digestion fully validated following strict criteria. The objective interpretation of a measurement result requires knowing the associated uncertainty. The cost-effective collection of measurement performance data on the same day produces correlated values that can affect measurement uncertainty evaluation. This work describes a novel methodology for the bottom-up evaluation of measurements based on complex sample pretreatment and the instrumental quantification of the prepared sample applicable to correlated inputs. The numerical Kragten method is used to combine the uncertainty components shared in various analyte recovery determinations. The developed methodology was applied to the determination of total chromium in yeast samples by ICP-MS after microwave-assisted acid digestion. The developed analysis of yeast samples is fit for monitoring the contamination of this product since it is associated with a relative expanded uncertainty, U’, lower than 20%, ranging from 8.4% to 10.0% in determinations of Cr between 0.125 mg/kg and 305.5 mg/kg. Duplicate analyses are adequate for reference materials production (U′ < 7%).
ArticleNumber 134466
Author Pechancová, Radka
Milde, David
Pluháček, Tomáš
Bettencourt da Silva, Ricardo J.N.
Author_xml – sequence: 1
  givenname: Tomáš
  surname: Pluháček
  fullname: Pluháček, Tomáš
  organization: Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
– sequence: 2
  givenname: Radka
  surname: Pechancová
  fullname: Pechancová, Radka
  organization: Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
– sequence: 3
  givenname: David
  surname: Milde
  fullname: Milde, David
  organization: Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
– sequence: 4
  givenname: Ricardo J.N.
  surname: Bettencourt da Silva
  fullname: Bettencourt da Silva, Ricardo J.N.
  email: rjsilva@fc.ul.pt
  organization: Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-916 Lisboa, Portugal
BookMark eNqFkc1u1DAURi3USkwLr4C8ZJPBP0mcYQVMoa3UqkjA2rpjX4NHcRxsp2LehYfFowG2XXlxv-9c-Z4LcjbFCQl5xdmaM96_2a9djNb8wLAWTIg1l23b98_Iig9KNoopcUZWTLKhGXjbPycXOe8ZY4LxYUV-f4ilxNAsM10mg6mAn8qB4iOMCxQfJxodNTHMI_6iASEvCQNOJVOXYqiTlHCEgpbOmFxMASqFWijwll5hwRT89J9TYoGRbhP1Ez1UVqG7A73dfm7uv1BwNUzBeEut_4752HlBzh2MGV_-fS_Jt08fv25vmruH69vt-7vGCNWVRqE0AxcdU0wM3O1Y17KdErx1ABJUx3FjhbXI-abjRnFUSiqxc92wMSA3Ul6S1yfunOLPpe7WwWeD4wgTxiVroUTXtl0rhhrtT1GTYs4JnZ6TD5AOmjN91KH3-p8OfdShTzpq8d2piPUjjx6TzsZjPZb1CU3RNvqnEH8AzgebEQ
CitedBy_id crossref_primary_10_1016_j_talanta_2024_126055
crossref_primary_10_2166_wst_2023_127
crossref_primary_10_1590_s2175_97902024e23564
Cites_doi 10.1016/j.chemosphere.2020.127285
10.1016/j.talanta.2020.122044
10.1007/s00769-005-0071-y
10.1016/j.talanta.2020.121386
10.1016/j.talanta.2020.121150
10.1016/j.microc.2019.01.069
10.1039/an9941902161
10.1088/0026-1394/50/6/654
10.3390/w5031279
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.foodchem.2022.134466
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
EndPage 134466
ExternalDocumentID 10_1016_j_foodchem_2022_134466
S0308814622024281
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
AAHBH
AALCJ
AAQXK
AAXKI
AAYJJ
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AGHFR
AGRDE
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
SCB
SEW
VH1
WUQ
Y6R
7X8
ID FETCH-LOGICAL-c275t-7e3c8125070281fb0540b7214faa3a751e9d2dde11951c71e77372bf589ca3933
IEDL.DBID AIKHN
ISSN 0308-8146
IngestDate Fri Oct 25 09:27:54 EDT 2024
Thu Sep 26 17:39:51 EDT 2024
Sat Apr 13 16:38:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Correlated data
Microwave digestion
ICP-MS
Measurement uncertainty
Bottom-up evaluation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-7e3c8125070281fb0540b7214faa3a751e9d2dde11951c71e77372bf589ca3933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2725445428
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_2725445428
crossref_primary_10_1016_j_foodchem_2022_134466
elsevier_sciencedirect_doi_10_1016_j_foodchem_2022_134466
PublicationCentury 2000
PublicationDate 2023-03-15
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Food chemistry
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Silva, Santos, Camões (b0095) 2006; 10
Silva (b0100) 2013; 5
Accessed September 22, 2022.
Ellison, S, & Williams, A. (Eds) (2012). Eurachem/CITAC guide: Quantifying Uncertainty in Analytical Measurement, Third edition: Eurachem.
FDA (2018). Bionalytical Method Validation: Guidance for Industry: Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine: U.S. Department of Health and Human Services. Retrieved from
Silva, Lino, Santos, Camões (b0085) 2000; 125
Commission Regulation (2007). Commission Regulation (EC) No. 333/2007 laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs. Retrieved from
Malengo, A., Pennecchi, F., & Giogio, S. (2014). Calibration Curves Computing – CCC Software User Manual (For Release 1.3), EMRP Project “Novel Mathematical and Statistical Approaches to Uncertainty Evaluation” (EMRP NEW04).
Silva, R. B., & Williams, A. (Eds.)(2015). Eurachem/CITAC Guide: Setting and Using Target Uncertainty in Chemical Measurement: Eurachem.
Malengo, Pennecchi (b0045) 2013; 50
.
Milde, Pluháček, Kuba, Součková, Silva (b0055) 2020; 220
Morgado, Palma, Silva (b0060) 2020; 258
OIML (2004). Conventional value of the result of weighing in air, OIML D 28. Retrieved from
Commission Regulation (2014). Commission Regulation (EU) No 119/2014 of 7 February 2014 amending Directive 2002/46/EC of the European Parliament and of the Council and Regulation (EC) No 1925/2006 of the European Parliament and of the Council as regards chromium enriched yeast used for the manufacture of food supplements and chromium(III) lactate tri-hydrate added to foods. Retrieved from
Ferreira, Barros, Oliveira, Silva (b0025) 2019; 146
Morgado, Palma, Silva (b0065) 2021; 26
Pechancová R., Gallo J., Milde D., & Pluháček T. (2020). Ion-exchange HPLC-ICP-MS: A new window to chromium speciation in biological tissues. Talanta, 218, Article: 121150. https://doi.org/10.1016/j.talanta.2020.121150.
Kragten (b0040) 1994; 119
Pluháček, Milde, Součková, Silva (b0080) 2021; 225
Silva, Figueiredo, Santos, Camões (b0090) 2003; 477
JCGM. (2018). Evaluation of measurement data — Guide to the expression of uncertainty in measurement, GUM: BIPM: Retrieved from
JCGM. (2012). International Vocabulary of Metrology − Basic and General Concepts and Associated Terms (third ed.), VIM: BIPM. Retrieved from
Silva (b0110) 2016; 148
Milde (10.1016/j.foodchem.2022.134466_b0055) 2020; 220
Morgado (10.1016/j.foodchem.2022.134466_b0060) 2020; 258
Malengo (10.1016/j.foodchem.2022.134466_b0045) 2013; 50
Silva (10.1016/j.foodchem.2022.134466_b0100) 2013; 5
10.1016/j.foodchem.2022.134466_b0070
Silva (10.1016/j.foodchem.2022.134466_b0095) 2006; 10
10.1016/j.foodchem.2022.134466_b0050
Ferreira (10.1016/j.foodchem.2022.134466_b0025) 2019; 146
10.1016/j.foodchem.2022.134466_b0030
10.1016/j.foodchem.2022.134466_b0010
10.1016/j.foodchem.2022.134466_b0020
10.1016/j.foodchem.2022.134466_b0075
Silva (10.1016/j.foodchem.2022.134466_b0085) 2000; 125
10.1016/j.foodchem.2022.134466_b0035
Morgado (10.1016/j.foodchem.2022.134466_b0065) 2021; 26
10.1016/j.foodchem.2022.134466_b0005
10.1016/j.foodchem.2022.134466_b0015
10.1016/j.foodchem.2022.134466_b0105
Kragten (10.1016/j.foodchem.2022.134466_b0040) 1994; 119
Pluháček (10.1016/j.foodchem.2022.134466_b0080) 2021; 225
Silva (10.1016/j.foodchem.2022.134466_b0090) 2003; 477
Silva (10.1016/j.foodchem.2022.134466_b0110) 2016; 148
References_xml – volume: 146
  start-page: 856
  year: 2019
  end-page: 863
  ident: b0025
  article-title: Quantification of the uncertainty of the visual detection of the end-point of a titration: Determination of total hardness in water
  publication-title: Microchem. J.
  contributor:
    fullname: Silva
– volume: 220
  year: 2020
  ident: b0055
  article-title: Measurement uncertainty evaluation from correlated validation data: Determination of elemental impurities in pharmaceutical products by ICP-MS
  publication-title: Talanta
  contributor:
    fullname: Silva
– volume: 225
  year: 2021
  ident: b0080
  article-title: Tutorial and spreadsheet for the evaluation of instrumental quantification uncertainty by the linear weighted regression model: Determination of elemental impurities in a nasal spray by ICP-MS
  publication-title: Talanta
  contributor:
    fullname: Silva
– volume: 148
  start-page: 177-190
  year: 2016
  ident: b0110
  article-title: Spreadsheet for designing valid least-squares calibrations: a tutorial
  publication-title: Talanta
  contributor:
    fullname: Silva
– volume: 50
  start-page: 654-662
  year: 2013
  ident: b0045
  article-title: A weighted total least-squares algorithm for any fitting model with correlated variables
  publication-title: Metrologia
  contributor:
    fullname: Pennecchi
– volume: 258
  year: 2020
  ident: b0060
  article-title: Monte carlo bottom-up evaluation of global instrumental quantification uncertainty: Flexible and user-friendly computational tool
  publication-title: Chemosphere
  contributor:
    fullname: Silva
– volume: 119
  start-page: 2161
  year: 1994
  end-page: 2166
  ident: b0040
  article-title: Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique
  publication-title: Analyst
  contributor:
    fullname: Kragten
– volume: 125
  start-page: 1459-1464
  year: 2000
  ident: b0085
  article-title: Estimation of precision and efficiency mass transfer steps for the determination of pesticides in vegetables aiming at the expression of results with reliable uncertainty
  publication-title: Analyst
  contributor:
    fullname: Camões
– volume: 10
  start-page: 664
  year: 2006
  end-page: 671
  ident: b0095
  article-title: A new terminology for the approaches to the quantification of the measurement uncertainty
  publication-title: Accredit. Qual. Assur.
  contributor:
    fullname: Camões
– volume: 26
  year: 2021
  ident: b0065
  article-title: Monte Carlo bottom-up evaluation of the uncertainty of complex sample preparation: Elemental determination in sediments
  publication-title: Analytica Chimica Acta
  contributor:
    fullname: Silva
– volume: 477
  start-page: 169-185
  year: 2003
  ident: b0090
  article-title: Evaluation of sample processing and sub-sampling performance
  publication-title: Analytica Chimica Acta
  contributor:
    fullname: Camões
– volume: 5
  start-page: 1279-1302
  year: 2013
  ident: b0100
  article-title: Setting target measurement uncertainty in water analysis
  publication-title: Water
  contributor:
    fullname: Silva
– volume: 258
  year: 2020
  ident: 10.1016/j.foodchem.2022.134466_b0060
  article-title: Monte carlo bottom-up evaluation of global instrumental quantification uncertainty: Flexible and user-friendly computational tool
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127285
  contributor:
    fullname: Morgado
– ident: 10.1016/j.foodchem.2022.134466_b0105
– volume: 225
  year: 2021
  ident: 10.1016/j.foodchem.2022.134466_b0080
  article-title: Tutorial and spreadsheet for the evaluation of instrumental quantification uncertainty by the linear weighted regression model: Determination of elemental impurities in a nasal spray by ICP-MS
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.122044
  contributor:
    fullname: Pluháček
– ident: 10.1016/j.foodchem.2022.134466_b0020
– volume: 10
  start-page: 664
  year: 2006
  ident: 10.1016/j.foodchem.2022.134466_b0095
  article-title: A new terminology for the approaches to the quantification of the measurement uncertainty
  publication-title: Accredit. Qual. Assur.
  doi: 10.1007/s00769-005-0071-y
  contributor:
    fullname: Silva
– ident: 10.1016/j.foodchem.2022.134466_b0005
– volume: 125
  start-page: 1459-1464
  year: 2000
  ident: 10.1016/j.foodchem.2022.134466_b0085
  article-title: Estimation of precision and efficiency mass transfer steps for the determination of pesticides in vegetables aiming at the expression of results with reliable uncertainty
  publication-title: Analyst
  contributor:
    fullname: Silva
– volume: 26
  year: 2021
  ident: 10.1016/j.foodchem.2022.134466_b0065
  article-title: Monte Carlo bottom-up evaluation of the uncertainty of complex sample preparation: Elemental determination in sediments
  publication-title: Analytica Chimica Acta
  contributor:
    fullname: Morgado
– volume: 220
  year: 2020
  ident: 10.1016/j.foodchem.2022.134466_b0055
  article-title: Measurement uncertainty evaluation from correlated validation data: Determination of elemental impurities in pharmaceutical products by ICP-MS
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.121386
  contributor:
    fullname: Milde
– ident: 10.1016/j.foodchem.2022.134466_b0075
  doi: 10.1016/j.talanta.2020.121150
– volume: 146
  start-page: 856
  year: 2019
  ident: 10.1016/j.foodchem.2022.134466_b0025
  article-title: Quantification of the uncertainty of the visual detection of the end-point of a titration: Determination of total hardness in water
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2019.01.069
  contributor:
    fullname: Ferreira
– volume: 148
  start-page: 177-190
  year: 2016
  ident: 10.1016/j.foodchem.2022.134466_b0110
  article-title: Spreadsheet for designing valid least-squares calibrations: a tutorial
  publication-title: Talanta
  contributor:
    fullname: Silva
– ident: 10.1016/j.foodchem.2022.134466_b0070
– ident: 10.1016/j.foodchem.2022.134466_b0010
– ident: 10.1016/j.foodchem.2022.134466_b0035
– volume: 119
  start-page: 2161
  year: 1994
  ident: 10.1016/j.foodchem.2022.134466_b0040
  article-title: Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique
  publication-title: Analyst
  doi: 10.1039/an9941902161
  contributor:
    fullname: Kragten
– ident: 10.1016/j.foodchem.2022.134466_b0030
– volume: 50
  start-page: 654-662
  year: 2013
  ident: 10.1016/j.foodchem.2022.134466_b0045
  article-title: A weighted total least-squares algorithm for any fitting model with correlated variables
  publication-title: Metrologia
  doi: 10.1088/0026-1394/50/6/654
  contributor:
    fullname: Malengo
– ident: 10.1016/j.foodchem.2022.134466_b0015
– volume: 477
  start-page: 169-185
  year: 2003
  ident: 10.1016/j.foodchem.2022.134466_b0090
  article-title: Evaluation of sample processing and sub-sampling performance
  publication-title: Analytica Chimica Acta
  contributor:
    fullname: Silva
– ident: 10.1016/j.foodchem.2022.134466_b0050
– volume: 5
  start-page: 1279-1302
  year: 2013
  ident: 10.1016/j.foodchem.2022.134466_b0100
  article-title: Setting target measurement uncertainty in water analysis
  publication-title: Water
  doi: 10.3390/w5031279
  contributor:
    fullname: Silva
SSID ssj0002018
Score 2.4734728
Snippet [Display omitted] •Analyte recovery assessed from spiked yeast and certified reference material analyses.•Estimated recovery correlated from quantifications...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 134466
SubjectTerms Bottom-up evaluation
Correlated data
ICP-MS
Measurement uncertainty
Microwave digestion
Title Bottom-up uncertainty evaluation of complex measurements from correlated performance data: Determination of total Cr in yeast by ICP-MS after acid digestion
URI https://dx.doi.org/10.1016/j.foodchem.2022.134466
https://search.proquest.com/docview/2725445428
Volume 404
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwELXK9gAXRAuIBVoNEuKWXWInTcKtpFTbrrpClIreLDu2pVQlWe1mJfbCl_CxzCRxl1aqeuAUKYmtyGPNvHjmvWHsPUdMIVKtAm0iG5DOZKBcEgY65U6oNMq4oozu2exgchGdXsaXWyz3XBgqq-x9f-fTW2_d3xn3qzmel-X4nJRW6ACLc4ozRL_exnDE0wHbPjyZTmY3DhljXNolE9L2xOsfovDVyNW1weUhUjrno1BQfvO-GHXHW7ch6PgZe9pjRzjsPm-Hbdlqlz3Ofcu2XTY8Km0DH6AX-7yGmdfax_c8BXn5nP35XDcNOsfVHDCsdUUBzRo2yt9QO2iLze0v-Lk5RVwCsVHwyaKlwFgD8w3vAKjY9BMc-foaP09TI76HfAFlBWvqFAR6DSf51-DsHNoO5aCK0oBpM1045gW7OP7yPZ8EfZuGoOBJ3ASJFQXCBASWiFVCpwkEavyxjJxSQiVxaDPD0YuSuFxYJKFNqDWOdnGaFUpkQrxkg6qu7CsGxupIO4WYCYcLjJTG4e-Q1bESB858jIds7A0j550ah_RlalfSm1KSKWVnyiHLvP3krX0lMWQ8OPadN7hEQ1ImRVW2Xi0lT1plN9x1r_9j_jfsCTWvp4q2MH7LBs1iZfcQ4jR6nz0a_Q73-41M1-m3H9O_IvL-8w
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwELUQHOilaqFVt6VlkKrewjZ2QpLeaADtAruqBEjcLDu2pSCarHazEvsv_djOJHGXVqo4cE1iK8o4M8-eeW8Y-8wRU4hUq0CbyAakMxkol4SBTrkTKo0yriijO5kejW6i89v4doPlngtDZZW97-98euut-yvD_msOZ2U5vCKlFTrA4pziDNGvtxANZPh3bh2PL0bTPw4ZY1zaJRPS9sTrEVH47tDVtcHPQ6R0zg9DQfnN_8Wof7x1G4LOXrGXPXaE4-71XrMNW-2w7dy3bNthg5PSNvAFerHPe5h6rX18zlOQF7vs1_e6adA5LmeAYa0rCmhWsFb-htpBW2xuH-Dn-hRxAcRGwTvzlgJjDczWvAOgYtNvcOLra_w8TY34HvI5lBWsqFMQ6BWM8x_B5AraDuWgitKAaTNdOOYNuzk7vc5HQd-mISh4EjdBYkWBMAGBJWKV0GkCgRo3lpFTSqgkDm1mOHpREpcLiyS0CbXG0S5Os0KJTIi3bLOqK_uOgbE60k4hZsLhAiOlcbgdsjpW4siZr_GADb1h5KxT45C-TO1OelNKMqXsTDlgmbef_GtdSQwZT4498AaXaEjKpKjK1suF5Emr7Iar7v0z5t9n26PryaW8HE8vPrAX1MieqtvCeI9tNvOl_Yhwp9Gf-uX8G1J1_0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bottom-up+uncertainty+evaluation+of+complex+measurements+from+correlated+performance+data%3A+Determination+of+total+Cr+in+yeast+by+ICP-MS+after+acid+digestion&rft.jtitle=Food+chemistry&rft.au=Pluh%C3%A1%C4%8Dek%2C+Tom%C3%A1%C5%A1&rft.au=Pechancov%C3%A1%2C+Radka&rft.au=Milde%2C+David&rft.au=Bettencourt+da+Silva%2C+Ricardo+J+N&rft.date=2023-03-15&rft.eissn=1873-7072&rft.volume=404&rft.spage=134466&rft.epage=134466&rft_id=info:doi/10.1016%2Fj.foodchem.2022.134466&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon