Differential Neural Network Identifier for Dynamical Systems With Time-Varying State Constraints

This study presents a state nonparametric identifier based on neural networks with continuous dynamics, also known as differential neural networks (DNNs). The laws for adjusting their parameters are developed using a control barrier Lyapunov functions (BLFs). The motivation for using the BLF comes f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 36; no. 1; pp. 407 - 418
Main Authors Nachevsky, Ilya, Andrianova, Olga, Chairez, Isaac, Poznyak, Alexander
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2025
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2023.3326450

Cover

Abstract This study presents a state nonparametric identifier based on neural networks with continuous dynamics, also known as differential neural networks (DNNs). The laws for adjusting their parameters are developed using a control barrier Lyapunov functions (BLFs). The motivation for using the BLF comes from the preliminary information of the system states, which remain in a predefined time-depending set characterized by state or purely time-dependent functions. In this study, time-dependent state constraints are supposed to be known in advance continuous-time functions. The obtained learning laws require solving differential continuous-time Riccati equations and nonlinear differential equations for the learning laws that depend on the identification error and the state restrictions. The developed identifier was evaluated concerning the identifier that does not consider the state restrictions. This comparison included the numerical evaluation of the identifier for a robotic arm intended to reproduce a nonstandard flight simulator. This evaluation confirmed that the identification results were improved using the proposed learning laws and considering that the state limits were not transgressed. The quality indicators based on the mean square error were more minor by 4.2 times.
AbstractList This study presents a state nonparametric identifier based on neural networks with continuous dynamics, also known as differential neural networks (DNNs). The laws for adjusting their parameters are developed using a control barrier Lyapunov functions (BLFs). The motivation for using the BLF comes from the preliminary information of the system states, which remain in a predefined time-depending set characterized by state or purely time-dependent functions. In this study, time-dependent state constraints are supposed to be known in advance continuous-time functions. The obtained learning laws require solving differential continuous-time Riccati equations and nonlinear differential equations for the learning laws that depend on the identification error and the state restrictions. The developed identifier was evaluated concerning the identifier that does not consider the state restrictions. This comparison included the numerical evaluation of the identifier for a robotic arm intended to reproduce a nonstandard flight simulator. This evaluation confirmed that the identification results were improved using the proposed learning laws and considering that the state limits were not transgressed. The quality indicators based on the mean square error were more minor by 4.2 times.This study presents a state nonparametric identifier based on neural networks with continuous dynamics, also known as differential neural networks (DNNs). The laws for adjusting their parameters are developed using a control barrier Lyapunov functions (BLFs). The motivation for using the BLF comes from the preliminary information of the system states, which remain in a predefined time-depending set characterized by state or purely time-dependent functions. In this study, time-dependent state constraints are supposed to be known in advance continuous-time functions. The obtained learning laws require solving differential continuous-time Riccati equations and nonlinear differential equations for the learning laws that depend on the identification error and the state restrictions. The developed identifier was evaluated concerning the identifier that does not consider the state restrictions. This comparison included the numerical evaluation of the identifier for a robotic arm intended to reproduce a nonstandard flight simulator. This evaluation confirmed that the identification results were improved using the proposed learning laws and considering that the state limits were not transgressed. The quality indicators based on the mean square error were more minor by 4.2 times.
This study presents a state nonparametric identifier based on neural networks with continuous dynamics, also known as differential neural networks (DNNs). The laws for adjusting their parameters are developed using a control barrier Lyapunov functions (BLFs). The motivation for using the BLF comes from the preliminary information of the system states, which remain in a predefined time-depending set characterized by state or purely time-dependent functions. In this study, time-dependent state constraints are supposed to be known in advance continuous-time functions. The obtained learning laws require solving differential continuous-time Riccati equations and nonlinear differential equations for the learning laws that depend on the identification error and the state restrictions. The developed identifier was evaluated concerning the identifier that does not consider the state restrictions. This comparison included the numerical evaluation of the identifier for a robotic arm intended to reproduce a nonstandard flight simulator. This evaluation confirmed that the identification results were improved using the proposed learning laws and considering that the state limits were not transgressed. The quality indicators based on the mean square error were more minor by 4.2 times.
Author Nachevsky, Ilya
Andrianova, Olga
Chairez, Isaac
Poznyak, Alexander
Author_xml – sequence: 1
  givenname: Ilya
  orcidid: 0009-0000-1503-296X
  surname: Nachevsky
  fullname: Nachevsky, Ilya
  organization: V. A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences (RAS), Moscow, Russia
– sequence: 2
  givenname: Olga
  orcidid: 0000-0002-8407-1046
  surname: Andrianova
  fullname: Andrianova, Olga
  organization: V. A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences (RAS), Moscow, Russia
– sequence: 3
  givenname: Isaac
  orcidid: 0000-0002-7157-2052
  surname: Chairez
  fullname: Chairez, Isaac
  email: ichairezo@gmail.com
  organization: Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Zapopan, Jalisco, Mexico
– sequence: 4
  givenname: Alexander
  surname: Poznyak
  fullname: Poznyak, Alexander
  organization: Automatic Control Department, CINVESTAV-IPN, 2508 Av. Instituto Politécnico Nacional, Mexico City, Mexico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37903049$$D View this record in MEDLINE/PubMed
BookMark eNpNkMlOwzAQhi1UREvpCyCEcuSS4i22c0Rlq1SVQ8tyC44zAUOTgO0K9e1JFyrmMqPR949G3zHq1E0NCJ0SPCQEp5fz6XQyG1JM2ZAxKniCD1CPEkFjypTq7Gf50kUD7z9wWwIngqdHqMtkihnmaQ-9XtuyBAd1sHoRTWHpNi38NO4zGhfrfWnBRWXjoutVrStrWmC28gEqHz3b8B7NbQXxk3YrW79Fs6ADRKOm9sFpWwd_gg5LvfAw2PU-ery9mY_u48nD3Xh0NYkNlUmIJeM5M0qVhBZcU5obqUwuMCO5KlJmuEzKQuciAUkpM5hIIlKR54YTlSgOrI8utne_XPO9BB-yynoDi4WuoVn6jCrFhZStpxY936HLvIIi-3K2at_P_qy0AN0CxjXeOyj3CMHZ2n62sZ-t7Wc7-23obBuyAPAvQNNUCMJ-AcKigDg
CODEN ITNNAL
Cites_doi 10.1109/ICRA.2017.7989693
10.1109/tnnls.2022.3164948
10.3182/20130902-3-CN-3020.00122
10.1109/TAC.2012.2191174
10.1109/ACC.2006.1656440
10.1109/TFUZZ.2018.2833822
10.1007/978-1-4612-0349-0_4
10.2514/1.G004363
10.1016/j.automatica.2012.05.003
10.1109/ECC.2016.7810398
10.1090/S0002-9947-98-02083-2
10.1142/4703
10.1007/s00498-021-00277-z
10.1080/00207179.2011.631192
10.1007/978-3-030-72016-2_20
10.1016/j.actaastro.2006.11.012
10.1109/TCYB.2016.2554621
10.1109/TNN.2009.2024203
10.1007/s12555-018-0745-y
10.1109/CDC.2007.4434165
10.1016/S0005-1098(01)00051-6
10.1109/ACC.1997.612023
10.1016/j.automatica.2003.08.009
10.1515/9781400841042
10.1016/j.automatica.2008.11.017
10.1109/MED.2012.6265706
10.1007/978-3-319-10277-1
10.1109/TETCI.2022.3146332
10.1063/5.0088748
10.1016/j.automatica.2004.08.019
10.1007/978-3-642-16684-6
10.1109/MED.2008.4602041
10.1109/TAC.1981.1102785
10.1016/j.automatica.2011.08.044
10.1109/TAC.2009.2013013
10.1016/j.jde.2008.11.010
10.1016/j.automatica.2019.108740
10.1109/CDC.2008.4738704
10.23919/ACC.2019.8814758
10.1007/978-3-319-55036-7
10.1137/100799903
10.1109/TNNLS.2021.3137883
10.3182/20070822-3-za-2920.00006
10.1109/TAC.2010.2074590
10.1016/c2016-0-03865-2
10.1016/j.sysconle.2013.07.003
10.1016/j.sysconle.2009.08.004
10.1016/j.ifacol.2015.11.268
10.1177/0142331217737596
10.1109/TFUZZ.2022.3184048
10.1177/0278364917712421
10.1109/CDC.2012.6426196
10.1007/s12555-014-0018-3
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2023.3326450
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 418
ExternalDocumentID 37903049
10_1109_TNNLS_2023_3326450
10299661
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Tecnológico de Monterrey Challenge-Based Research Program
  grantid: IJXT070-22TE60001
  funderid: 10.13039/501100004961
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c275t-734b3c88f12d4a22bc78cb6031b8d93c475fdab65e7223c0171696bbc418584e3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 17:36:23 EDT 2025
Mon Jul 21 06:03:47 EDT 2025
Tue Jul 01 00:27:54 EDT 2025
Wed Aug 27 01:57:59 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-734b3c88f12d4a22bc78cb6031b8d93c475fdab65e7223c0171696bbc418584e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8407-1046
0009-0000-1503-296X
0000-0002-7157-2052
PMID 37903049
PQID 2884677450
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2884677450
ieee_primary_10299661
pubmed_primary_37903049
crossref_primary_10_1109_TNNLS_2023_3326450
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Jan.
2025-1-00
2025-Jan
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Khalil (ref49) 2002; 3
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref21
  doi: 10.1109/ICRA.2017.7989693
– ident: ref37
  doi: 10.1109/tnnls.2022.3164948
– ident: ref44
  doi: 10.3182/20130902-3-CN-3020.00122
– ident: ref9
  doi: 10.1109/TAC.2012.2191174
– ident: ref7
  doi: 10.1109/ACC.2006.1656440
– ident: ref53
  doi: 10.1109/TFUZZ.2018.2833822
– ident: ref2
  doi: 10.1007/978-1-4612-0349-0_4
– ident: ref15
  doi: 10.2514/1.G004363
– ident: ref10
  doi: 10.1016/j.automatica.2012.05.003
– ident: ref26
  doi: 10.1109/ECC.2016.7810398
– ident: ref34
  doi: 10.1090/S0002-9947-98-02083-2
– ident: ref33
  doi: 10.1142/4703
– ident: ref31
  doi: 10.1007/s00498-021-00277-z
– ident: ref43
  doi: 10.1080/00207179.2011.631192
– ident: ref5
  doi: 10.1007/978-3-030-72016-2_20
– ident: ref11
  doi: 10.1016/j.actaastro.2006.11.012
– ident: ref45
  doi: 10.1109/TCYB.2016.2554621
– ident: ref36
  doi: 10.1109/TNN.2009.2024203
– ident: ref42
  doi: 10.1007/s12555-018-0745-y
– ident: ref14
  doi: 10.1109/CDC.2007.4434165
– ident: ref6
  doi: 10.1016/S0005-1098(01)00051-6
– ident: ref23
  doi: 10.1109/ACC.1997.612023
– ident: ref13
  doi: 10.1016/j.automatica.2003.08.009
– ident: ref50
  doi: 10.1515/9781400841042
– ident: ref46
  doi: 10.1016/j.automatica.2008.11.017
– ident: ref28
  doi: 10.1109/MED.2012.6265706
– ident: ref1
  doi: 10.1007/978-3-319-10277-1
– ident: ref40
  doi: 10.1109/TETCI.2022.3146332
– ident: ref39
  doi: 10.1063/5.0088748
– ident: ref12
  doi: 10.1016/j.automatica.2004.08.019
– ident: ref3
  doi: 10.1007/978-3-642-16684-6
– ident: ref32
  doi: 10.1109/MED.2008.4602041
– ident: ref51
  doi: 10.1109/TAC.1981.1102785
– ident: ref25
  doi: 10.1016/j.automatica.2011.08.044
– ident: ref30
  doi: 10.1109/TAC.2009.2013013
– ident: ref52
  doi: 10.1016/j.jde.2008.11.010
– ident: ref54
  doi: 10.1016/j.automatica.2019.108740
– ident: ref17
  doi: 10.1109/CDC.2008.4738704
– ident: ref22
  doi: 10.23919/ACC.2019.8814758
– ident: ref27
  doi: 10.1007/978-3-319-55036-7
– ident: ref29
  doi: 10.1137/100799903
– ident: ref38
  doi: 10.1109/TNNLS.2021.3137883
– volume: 3
  volume-title: Nonlinear Systems
  year: 2002
  ident: ref49
– ident: ref16
  doi: 10.3182/20070822-3-za-2920.00006
– ident: ref18
  doi: 10.1109/TAC.2010.2074590
– ident: ref35
  doi: 10.1016/c2016-0-03865-2
– ident: ref47
  doi: 10.1016/j.sysconle.2013.07.003
– ident: ref8
  doi: 10.1016/j.sysconle.2009.08.004
– ident: ref19
  doi: 10.1016/j.ifacol.2015.11.268
– ident: ref24
  doi: 10.1177/0142331217737596
– ident: ref4
  doi: 10.1109/TFUZZ.2022.3184048
– ident: ref20
  doi: 10.1177/0278364917712421
– ident: ref41
  doi: 10.1109/CDC.2012.6426196
– ident: ref48
  doi: 10.1007/s12555-014-0018-3
SSID ssj0000605649
Score 2.4581385
Snippet This study presents a state nonparametric identifier based on neural networks with continuous dynamics, also known as differential neural networks (DNNs). The...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 407
SubjectTerms Barrier Lyapunov functions (BLFs)
differential neural networks (DNNs)
Electron tubes
Mathematical models
Neural networks
nonlinear nonparametric identification
Stability analysis
time-varying state constraints
Time-varying systems
Trajectory
Uncertainty
Title Differential Neural Network Identifier for Dynamical Systems With Time-Varying State Constraints
URI https://ieeexplore.ieee.org/document/10299661
https://www.ncbi.nlm.nih.gov/pubmed/37903049
https://www.proquest.com/docview/2884677450
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgEwufBcqXjMSGElrHjuMRUaoKQRda6BZixxEI1KI2Xfj13NlJBUiVmJIhjhLf2ffO9rtHyAWTEOO40YEQSRbwjKlAFzlMhhlkbhk3ihfIRn4YxP0RvxuLcUVWd1wYa607fGZDvHV7-fnULHCpDEY4Q3gOyc46-Jknay0XVNoAzGMHd1knZgGL5LgmybTV1XAwuH8MUSs8jACxcIEScJFUuDOofsUkJ7KyGm-6uNPbIoP6i_1xk_dwUerQfP0p5vjvX9ommxUCpdfeZXbImp3skq1a3YFWg32PvHQr7RSYAz4oFvFwF3dqnHp-bwExlQLqpV2vaw8PVBXQ6fNb-UqRXxI8ZTOkUlEHaykKhDpZinLeJKPe7fCmH1R6DIFhUpSBjLiOTJIUHZaDVZk2MjEaZap1kqvIcCmKPNOxsBJAh_GVeGKtDRbISbiN9kljMp3YQ0KNNiJTSAtimhcAimBi1kroOOYWMtq8RS5ri6SfvuxG6tKVtkqdKVM0ZVqZskWa2LM_nvSd2iLntRVTGDW4FZJN7HQxT1mCuEu6tgfevMvWtVccrXjrMdlgKALs1mFOSKOcLewpIJNSnzmP_AbPsdz4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8QgECZGD3rx_VifmHgzrbsUSjkaH1l1txdX3VstlEaj2TVu9-KvdwZaoyYmntoDkJYB5hvgm4-QIybBx3GjAyGSPOA5U4EuC1gMc4jccm4UL5GN3E_j7h2_HophTVZ3XBhrrbt8ZkN8dWf5xdhMcasMZjhDeA7Bzhw4fi48XetrS6UN0Dx2gJd1YhawSA4bmkxbnQzStHcbolp4GAFm4QJF4CKp8GxQ_fBKTmblb8TpPM_lEkmbb_YXTl7CaaVD8_ErneO_f2qZLNYYlJ76QbNCZuxolSw1-g60nu5r5PG8Vk-BVeCVYhoP93D3xqln-JbgVSngXnrule2hQJ0DnT48V08UGSbBff6OZCrqgC1FiVAnTFFN1snd5cXgrBvUigyBYVJUgYy4jkySlB1WgF2ZNjIxGoWqdVKoyHApyiLXsbASYIfxuXhirQ2myEm4jTbI7Gg8sluEGm1ErpAYxDQvARbB0qyV0HHMLcS0RYscNxbJ3nzijcwFLG2VOVNmaMqsNmWLrGPPfivpO7VFDhsrZjBv8DAkH9nxdJKxBJGXdHU3vXm_ajejYvuPVg_IfHfQ72W9q_RmhywwlAR2uzK7ZLZ6n9o9wCmV3nej8xONhOBF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Neural+Network+Identifier+for+Dynamical+Systems+With+Time-Varying+State+Constraints&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Nachevsky%2C+Ilya&rft.au=Andrianova%2C+Olga&rft.au=Chairez%2C+Isaac&rft.au=Poznyak%2C+Alexander&rft.date=2025-01-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=36&rft.issue=1&rft.spage=407&rft.epage=418&rft_id=info:doi/10.1109%2FTNNLS.2023.3326450&rft_id=info%3Apmid%2F37903049&rft.externalDocID=10299661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon