Ensemble physically based semi-distributed models for the rainfall-runoff process modeling in the data-scarce Katar catchment, Ethiopia

This study evaluates the performance of the soil and water assessment tool (SWAT), the hydrologiska byråns vattenbalansavdelning (HBV) and the hydrologic engineering center-hydrologic modeling system (HEC-HMS) for modeling rainfall-runoff in the data-scarce Katar catchment, Ethiopia. First, the rain...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 25; no. 2; pp. 567 - 592
Main Authors Gelete, Gebre, Nourani, Vahid, Gokcekus, Huseyin, Gichamo, Tagesse
Format Journal Article
LanguageEnglish
Published IWA Publishing 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study evaluates the performance of the soil and water assessment tool (SWAT), the hydrologiska byråns vattenbalansavdelning (HBV) and the hydrologic engineering center-hydrologic modeling system (HEC-HMS) for modeling rainfall-runoff in the data-scarce Katar catchment, Ethiopia. First, the rainfall-runoff process was simulated using the SWAT, HBV and HEC-HMS models individually. Second, simple average ensemble (SAE), weighted average ensemble (WAE) and neural network ensemble (NNE) techniques were developed by combining the results of individual models to improve overall accuracy. Statistical performance measures and flow duration curves (FDCs) were used to compare and evaluate the performance of the models. The results showed that the SWAT model outperformed the HBV and HEC-HMS models with the coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE) of 0.857 and 0.83 for calibration and 0.85 and 0.799 for validation, respectively. The ensemble result showed that NNE outperformed the SAE and WAE techniques, with NSE and R2 values of 0.924 and 0.925 for calibration and 0.896 and 0.904 for validation, respectively. The NNE technique improved the performance of SWAT, HBV and HEC-HMS by 12.14, 22.7 and 26.8%, respectively, in the validation phase. Overall, the results showed that ensemble modeling is a promising option for accurate modeling of the rainfall-runoff process.
AbstractList This study evaluates the performance of the soil and water assessment tool (SWAT), the hydrologiska byråns vattenbalansavdelning (HBV) and the hydrologic engineering center-hydrologic modeling system (HEC-HMS) for modeling rainfall-runoff in the data-scarce Katar catchment, Ethiopia. First, the rainfall-runoff process was simulated using the SWAT, HBV and HEC-HMS models individually. Second, simple average ensemble (SAE), weighted average ensemble (WAE) and neural network ensemble (NNE) techniques were developed by combining the results of individual models to improve overall accuracy. Statistical performance measures and flow duration curves (FDCs) were used to compare and evaluate the performance of the models. The results showed that the SWAT model outperformed the HBV and HEC-HMS models with the coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE) of 0.857 and 0.83 for calibration and 0.85 and 0.799 for validation, respectively. The ensemble result showed that NNE outperformed the SAE and WAE techniques, with NSE and R2 values of 0.924 and 0.925 for calibration and 0.896 and 0.904 for validation, respectively. The NNE technique improved the performance of SWAT, HBV and HEC-HMS by 12.14, 22.7 and 26.8%, respectively, in the validation phase. Overall, the results showed that ensemble modeling is a promising option for accurate modeling of the rainfall-runoff process. HIGHLIGHTS Novel ensemble approach was proposed to simulate the complex and dynamic rainfall-runoff process.; Spatial, hydrological and meteorological data were used as input for the semi-distributed models.; Three ensemble techniques were developed by combining the runoff results of the semi-distributed models to boost the overall efficiency.; The proposed ensemble technique significantly improved the modeling performance.;
This study evaluates the performance of the soil and water assessment tool (SWAT), the hydrologiska byråns vattenbalansavdelning (HBV) and the hydrologic engineering center-hydrologic modeling system (HEC-HMS) for modeling rainfall-runoff in the data-scarce Katar catchment, Ethiopia. First, the rainfall-runoff process was simulated using the SWAT, HBV and HEC-HMS models individually. Second, simple average ensemble (SAE), weighted average ensemble (WAE) and neural network ensemble (NNE) techniques were developed by combining the results of individual models to improve overall accuracy. Statistical performance measures and flow duration curves (FDCs) were used to compare and evaluate the performance of the models. The results showed that the SWAT model outperformed the HBV and HEC-HMS models with the coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE) of 0.857 and 0.83 for calibration and 0.85 and 0.799 for validation, respectively. The ensemble result showed that NNE outperformed the SAE and WAE techniques, with NSE and R2 values of 0.924 and 0.925 for calibration and 0.896 and 0.904 for validation, respectively. The NNE technique improved the performance of SWAT, HBV and HEC-HMS by 12.14, 22.7 and 26.8%, respectively, in the validation phase. Overall, the results showed that ensemble modeling is a promising option for accurate modeling of the rainfall-runoff process.
Author Gelete, Gebre
Gichamo, Tagesse
Gokcekus, Huseyin
Nourani, Vahid
Author_xml – sequence: 1
  givenname: Gebre
  orcidid: 0000-0001-5045-1094
  surname: Gelete
  fullname: Gelete, Gebre
– sequence: 2
  givenname: Vahid
  surname: Nourani
  fullname: Nourani, Vahid
– sequence: 3
  givenname: Huseyin
  surname: Gokcekus
  fullname: Gokcekus, Huseyin
– sequence: 4
  givenname: Tagesse
  surname: Gichamo
  fullname: Gichamo, Tagesse
BookMark eNp1kc1uHCEQhFFkS_HfNWceILMeGBh2jpG1_lFWyiU-owYaD9YsrAAf9gny2sG78cVSTt0qVX1qdV2Ss5giEvKN9SvOxvF2PricVrznw4pN6gu5YGKUHVODODvuolNMsK_kspTXvudsWLML8mcTC-7MgnQ_H0qwsCwHaqCgo00PnQul5mDeahN2yeFSqE-Z1hlphhB983f5LSbv6T4ni6WcbCG-0BCPPgcVumIhW6Q_256phWrnHcb6nW7qHNI-wDU5b6yCN__mFXm-3_y-e-y2vx6e7n5sO8uVrN2IgFIKZ9zARS-NH42ZRuPNCFYw5yawjHmYjBqcAFgjV467nqNx0xphGq7I04nrErzqfQ47yAedIOijkPKLhlyDXVBLqUaGapDAhFgbnLwVjimPwltu5NBY4sSyOZWS0WsbKtSQYm2_WTTr9Xsx-liMfi9Gt2JabPUp9nHGfwJ_AVc5mDI
CitedBy_id crossref_primary_10_2166_ws_2023_274
crossref_primary_10_1007_s12145_023_01192_4
crossref_primary_10_2166_wcc_2023_084
crossref_primary_10_2166_hydro_2024_066
crossref_primary_10_1016_j_jhydrol_2024_130861
crossref_primary_10_1016_j_ejrh_2024_101873
crossref_primary_10_2166_nh_2024_189
crossref_primary_10_3390_rs17060967
crossref_primary_10_2166_hydro_2024_267
crossref_primary_10_2166_hydro_2024_224
crossref_primary_10_1080_15715124_2024_2399615
crossref_primary_10_1007_s11269_024_03908_7
crossref_primary_10_2166_nh_2023_072
crossref_primary_10_2166_hydro_2023_182
crossref_primary_10_2166_wcc_2024_052
crossref_primary_10_3390_rs16132333
crossref_primary_10_1007_s11269_023_03629_3
crossref_primary_10_3389_frwa_2025_1500086
crossref_primary_10_2166_hydro_2023_187
crossref_primary_10_2166_wcc_2023_188
crossref_primary_10_1080_23311916_2024_2360007
Cites_doi 10.1016/j.cageo.2012.07.001
10.2166/nh.1986.0002
10.1080/02626667.2014.967694
10.1007/s12145-021-00615-4
10.3390/w10070923
10.1016/j.advengsoft.2017.09.004
10.1007/s40899-021-00596-8
10.1016/j.envres.2019.108852
10.1016/j.jhydrol.2010.06.007
10.1057/jors.1969.103
10.1016/j.jhydrol.2019.05.052
10.1623/hysj.53.5.977
10.1016/j.jhydrol.2012.05.031
10.1016/j.wen.2021.03.001
10.2166/wst.2018.477
10.1155/2021/6633760
10.11648/j.ajset.20190402.12
10.1016/j.ecoleng.2018.11.007
10.2166/hydro.2018.151
10.3390/hydrology6010021
10.1016/S0022-1694(03)00225-7
10.3390/hydrology8020058
10.1016/j.jss.2007.05.005
10.3390/w10020192
10.1016/j.ecolmodel.2004.07.021
10.1111/j.1752-1688.1998.tb05961.x
10.1007/s40899-017-0189-1
10.1016/j.envsoft.2014.02.013
10.1002/hyp.1344
10.1016/j.envsoft.2006.06.008
10.1016/j.envsoft.2013.03.006
10.1016/j.pce.2019.05.002
10.3390/w12092440
10.2166/wcc.2021.072
10.1016/j.jhydrol.2020.125103
10.1016/j.wsj.2017.12.004
10.2166/wcc.2021.064
10.1080/02626667.2018.1538593
10.1016/j.jhydrol.2019.123962
10.1016/j.jhydrol.2019.124357
10.13031/trans.58.10715
10.1111/j.1752-1688.1998.tb05962.x
10.3390/fluids7080267
10.13031/2013.23153
10.1029/2000JD900719
10.1016/j.landusepol.2020.104682
10.4314/wsa.v32i3.5263
10.5194/hess-11-1797-2007
10.1016/j.jhydrol.2020.125206
10.3390/hydrology4010009
10.1016/j.jhydrol.2015.11.050
10.1007/s11269-013-0293-4
10.1016/j.asoc.2016.12.052
10.1080/02626667.2022.2137417
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.2166/hydro.2023.197
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1465-1734
EndPage 592
ExternalDocumentID oai_doaj_org_article_55761e735a1448be9fc4d17fe4fc2b53
10_2166_hydro_2023_197
GroupedDBID 0R~
4.4
5GY
7XC
8CJ
8FE
8FH
AAJMC
AAJVE
AAYXX
ABFYC
ABLGR
ACGFO
AECGI
AENEX
AEUYN
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CS3
D1J
DU5
EBS
GEUZO
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HZ~
L7B
O9-
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PYCSY
R0Z
RHI
~02
PUEGO
ID FETCH-LOGICAL-c275t-6eae554dbd32405bf6bb96bfb6ac41dd9ac11fa9b73d4aa8e27d2d02ebd98ea93
IEDL.DBID DOA
ISSN 1464-7141
IngestDate Wed Aug 27 01:18:29 EDT 2025
Tue Jul 01 04:10:35 EDT 2025
Thu Apr 24 22:59:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-6eae554dbd32405bf6bb96bfb6ac41dd9ac11fa9b73d4aa8e27d2d02ebd98ea93
ORCID 0000-0001-5045-1094
OpenAccessLink https://doaj.org/article/55761e735a1448be9fc4d17fe4fc2b53
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_55761e735a1448be9fc4d17fe4fc2b53
crossref_citationtrail_10_2166_hydro_2023_197
crossref_primary_10_2166_hydro_2023_197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of hydroinformatics
PublicationYear 2023
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References key-10.2166/hydro.2023.197-34
key-10.2166/hydro.2023.197-33
key-10.2166/hydro.2023.197-36
key-10.2166/hydro.2023.197-35
key-10.2166/hydro.2023.197-38
key-10.2166/hydro.2023.197-37
key-10.2166/hydro.2023.197-39
key-10.2166/hydro.2023.197-41
key-10.2166/hydro.2023.197-40
key-10.2166/hydro.2023.197-43
key-10.2166/hydro.2023.197-42
key-10.2166/hydro.2023.197-3
key-10.2166/hydro.2023.197-23
key-10.2166/hydro.2023.197-2
key-10.2166/hydro.2023.197-22
key-10.2166/hydro.2023.197-1
key-10.2166/hydro.2023.197-25
key-10.2166/hydro.2023.197-24
key-10.2166/hydro.2023.197-27
key-10.2166/hydro.2023.197-26
key-10.2166/hydro.2023.197-5
key-10.2166/hydro.2023.197-29
key-10.2166/hydro.2023.197-4
Feldman (key-10.2166/hydro.2023.197-21) 2000
key-10.2166/hydro.2023.197-28
key-10.2166/hydro.2023.197-9
key-10.2166/hydro.2023.197-8
key-10.2166/hydro.2023.197-30
DHI (key-10.2166/hydro.2023.197-17) 1999
Bergstorm (key-10.2166/hydro.2023.197-6) 1973; 4
key-10.2166/hydro.2023.197-31
key-10.2166/hydro.2023.197-12
key-10.2166/hydro.2023.197-56
key-10.2166/hydro.2023.197-11
key-10.2166/hydro.2023.197-14
key-10.2166/hydro.2023.197-58
key-10.2166/hydro.2023.197-13
key-10.2166/hydro.2023.197-57
key-10.2166/hydro.2023.197-16
key-10.2166/hydro.2023.197-15
key-10.2166/hydro.2023.197-59
key-10.2166/hydro.2023.197-18
key-10.2166/hydro.2023.197-19
USACE (key-10.2166/hydro.2023.197-55) 2010
key-10.2166/hydro.2023.197-60
key-10.2166/hydro.2023.197-20
Miraji (key-10.2166/hydro.2023.197-32) 2019; 11
key-10.2166/hydro.2023.197-45
key-10.2166/hydro.2023.197-44
key-10.2166/hydro.2023.197-47
key-10.2166/hydro.2023.197-46
key-10.2166/hydro.2023.197-49
key-10.2166/hydro.2023.197-48
Bergström (key-10.2166/hydro.2023.197-7) 1992
key-10.2166/hydro.2023.197-50
key-10.2166/hydro.2023.197-52
key-10.2166/hydro.2023.197-51
key-10.2166/hydro.2023.197-10
key-10.2166/hydro.2023.197-54
key-10.2166/hydro.2023.197-53
References_xml – ident: key-10.2166/hydro.2023.197-30
  doi: 10.1016/j.cageo.2012.07.001
– ident: key-10.2166/hydro.2023.197-12
  doi: 10.2166/nh.1986.0002
– ident: key-10.2166/hydro.2023.197-41
  doi: 10.1080/02626667.2014.967694
– ident: key-10.2166/hydro.2023.197-40
  doi: 10.1007/s12145-021-00615-4
– start-page: 318
  volume-title: Hydrologic Modeling System HEC-HMS User's Manual Version 3.5
  year: 2010
  ident: key-10.2166/hydro.2023.197-55
– ident: key-10.2166/hydro.2023.197-60
  doi: 10.3390/w10070923
– ident: key-10.2166/hydro.2023.197-58
  doi: 10.1016/j.advengsoft.2017.09.004
– ident: key-10.2166/hydro.2023.197-20
  doi: 10.1007/s40899-021-00596-8
– ident: key-10.2166/hydro.2023.197-38
  doi: 10.1016/j.envres.2019.108852
– ident: key-10.2166/hydro.2023.197-1
  doi: 10.1016/j.jhydrol.2010.06.007
– ident: key-10.2166/hydro.2023.197-5
  doi: 10.1057/jors.1969.103
– start-page: 1
  year: 1992
  ident: key-10.2166/hydro.2023.197-7
  article-title: The HBV model: its structure and applications, Swedish Meteorological and Hydrological Institute (SMHI)
  publication-title: Hydrology, Norrköping
– ident: key-10.2166/hydro.2023.197-31
  doi: 10.1016/j.jhydrol.2019.05.052
– ident: key-10.2166/hydro.2023.197-45
  doi: 10.1623/hysj.53.5.977
– ident: key-10.2166/hydro.2023.197-29
  doi: 10.1016/j.jhydrol.2012.05.031
– ident: key-10.2166/hydro.2023.197-10
  doi: 10.1016/j.wen.2021.03.001
– ident: key-10.2166/hydro.2023.197-37
  doi: 10.2166/wst.2018.477
– ident: key-10.2166/hydro.2023.197-39
  doi: 10.1155/2021/6633760
– ident: key-10.2166/hydro.2023.197-52
  doi: 10.11648/j.ajset.20190402.12
– ident: key-10.2166/hydro.2023.197-11
  doi: 10.1016/j.ecoleng.2018.11.007
– ident: key-10.2166/hydro.2023.197-47
  doi: 10.2166/hydro.2018.151
– ident: key-10.2166/hydro.2023.197-50
  doi: 10.3390/hydrology6010021
– ident: key-10.2166/hydro.2023.197-44
  doi: 10.1016/S0022-1694(03)00225-7
– ident: key-10.2166/hydro.2023.197-25
  doi: 10.3390/hydrology8020058
– volume: 11
  start-page: 2
  issue: 8
  year: 2019
  ident: key-10.2166/hydro.2023.197-32
  article-title: The impacts of water demand and its implications for future surface water resource management
  publication-title: Water (Switzerland)
– ident: key-10.2166/hydro.2023.197-28
  doi: 10.1016/j.jss.2007.05.005
– ident: key-10.2166/hydro.2023.197-27
  doi: 10.3390/w10020192
– ident: key-10.2166/hydro.2023.197-46
  doi: 10.1016/j.ecolmodel.2004.07.021
– ident: key-10.2166/hydro.2023.197-4
  doi: 10.1111/j.1752-1688.1998.tb05961.x
– ident: key-10.2166/hydro.2023.197-9
  doi: 10.1007/s40899-017-0189-1
– ident: key-10.2166/hydro.2023.197-26
  doi: 10.1016/j.envsoft.2014.02.013
– ident: key-10.2166/hydro.2023.197-33
  doi: 10.1002/hyp.1344
– ident: key-10.2166/hydro.2023.197-15
  doi: 10.1016/j.envsoft.2006.06.008
– ident: key-10.2166/hydro.2023.197-24
  doi: 10.1016/j.envsoft.2013.03.006
– ident: key-10.2166/hydro.2023.197-3
  doi: 10.1016/j.pce.2019.05.002
– ident: key-10.2166/hydro.2023.197-42
  doi: 10.3390/w12092440
– ident: key-10.2166/hydro.2023.197-48
  doi: 10.2166/wcc.2021.072
– volume: 4
  start-page: 17
  issue: 3
  year: 1973
  ident: key-10.2166/hydro.2023.197-6
  article-title: Development of a conceptual deterministic rainfall-runoff model
  publication-title: Nordic Hydrology
– ident: key-10.2166/hydro.2023.197-14
  doi: 10.1016/j.jhydrol.2020.125103
– ident: key-10.2166/hydro.2023.197-23
  doi: 10.1016/j.wsj.2017.12.004
– ident: key-10.2166/hydro.2023.197-19
  doi: 10.2166/wcc.2021.064
– volume-title: Hydrologic Modeling System HEC-HMS, Technical Reference Manual. U.S. Army Corps of Engineers
  year: 2000
  ident: key-10.2166/hydro.2023.197-21
– ident: key-10.2166/hydro.2023.197-43
  doi: 10.1080/02626667.2018.1538593
– ident: key-10.2166/hydro.2023.197-18
  doi: 10.1016/j.jhydrol.2019.123962
– ident: key-10.2166/hydro.2023.197-57
  doi: 10.1016/j.jhydrol.2019.124357
– ident: key-10.2166/hydro.2023.197-35
  doi: 10.13031/trans.58.10715
– ident: key-10.2166/hydro.2023.197-49
  doi: 10.1111/j.1752-1688.1998.tb05962.x
– ident: key-10.2166/hydro.2023.197-13
  doi: 10.3390/fluids7080267
– ident: key-10.2166/hydro.2023.197-34
  doi: 10.13031/2013.23153
– ident: key-10.2166/hydro.2023.197-51
  doi: 10.1029/2000JD900719
– ident: key-10.2166/hydro.2023.197-16
  doi: 10.1016/j.landusepol.2020.104682
– ident: key-10.2166/hydro.2023.197-53
  doi: 10.4314/wsa.v32i3.5263
– ident: key-10.2166/hydro.2023.197-22
  doi: 10.5194/hess-11-1797-2007
– ident: key-10.2166/hydro.2023.197-56
  doi: 10.1016/j.jhydrol.2020.125206
– ident: key-10.2166/hydro.2023.197-8
  doi: 10.3390/hydrology4010009
– ident: key-10.2166/hydro.2023.197-36
  doi: 10.1016/j.jhydrol.2015.11.050
– ident: key-10.2166/hydro.2023.197-2
  doi: 10.1007/s11269-013-0293-4
– ident: key-10.2166/hydro.2023.197-59
  doi: 10.1016/j.asoc.2016.12.052
– ident: key-10.2166/hydro.2023.197-54
  doi: 10.1080/02626667.2022.2137417
– volume-title: MIKE SHE Water Movement: User Manual
  year: 1999
  ident: key-10.2166/hydro.2023.197-17
SSID ssj0021381
Score 2.4180367
Snippet This study evaluates the performance of the soil and water assessment tool (SWAT), the hydrologiska byråns vattenbalansavdelning (HBV) and the hydrologic...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 567
SubjectTerms ensemble modeling
katar catchment
physically based modes
rainfall-runoff modeling
Title Ensemble physically based semi-distributed models for the rainfall-runoff process modeling in the data-scarce Katar catchment, Ethiopia
URI https://doaj.org/article/55761e735a1448be9fc4d17fe4fc2b53
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSyQxEA2Le1gv4rorfqySg7CXzWo6H905qoyIoois4K3JR4UZGHuGmfEwv8C_vVXdrcxFvHhrQtGE10Xqpal6j7GjGJ3zBoxQNkehszKCVNVENmBVSKkCQ9PIN7f28kFfPZrHFasv6gnr5IE74I4NEmIJpTIeqX8VwOWokywz6ByLYFqdT6x5r5ep_qolVWtPiscAdRtq2ck1FtLa4-EyzWjqr1B_JUk9rZSjFdX-trxcbLKNnhfy024_39kXaLbYt96ifLj8wV4GzRyewhj4tId2vORUgxLH9ZFIpIBL5lW40NrbzDnyUY78jpMLRMZ4MXtuJjnzaTcc0IVh6eKjpo2jblExjzT9yK_xecYjHtRD-n_4h1Nj_GQ68j_Zw8Xg3_ml6F0URCxKsxAWPCBnSCGR9p4J2YbgbMjB-qhlSs5HKbN3oVRJe19BUaYinRQQkqvAO7XN1ppJAzuMQ4UIpkoiq9O69NaBRUZhVJmtM8qoXSZewaxjLzFOThfjGq8aBH7dgl8T-DWCv8t-v8VPO3GNdyPP6Nu8RZEodruAqVL3qVJ_lCp7n_GSfbZOm-ra0H6xtcXsGQ6QlyzCIft6Nri9uz9sU_E_c2bk7w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+physically+based+semi-distributed+models+for+the+rainfall-runoff+process+modeling+in+the+data-scarce+Katar+catchment%2C+Ethiopia&rft.jtitle=Journal+of+hydroinformatics&rft.au=Gelete%2C+Gebre&rft.au=Nourani%2C+Vahid&rft.au=Gokcekus%2C+Huseyin&rft.au=Gichamo%2C+Tagesse&rft.date=2023-03-01&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=25&rft.issue=2&rft.spage=567&rft.epage=592&rft_id=info:doi/10.2166%2Fhydro.2023.197&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_hydro_2023_197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon