Ensemble physically based semi-distributed models for the rainfall-runoff process modeling in the data-scarce Katar catchment, Ethiopia
This study evaluates the performance of the soil and water assessment tool (SWAT), the hydrologiska byråns vattenbalansavdelning (HBV) and the hydrologic engineering center-hydrologic modeling system (HEC-HMS) for modeling rainfall-runoff in the data-scarce Katar catchment, Ethiopia. First, the rain...
Saved in:
Published in | Journal of hydroinformatics Vol. 25; no. 2; pp. 567 - 592 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IWA Publishing
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study evaluates the performance of the soil and water assessment tool (SWAT), the hydrologiska byråns vattenbalansavdelning (HBV) and the hydrologic engineering center-hydrologic modeling system (HEC-HMS) for modeling rainfall-runoff in the data-scarce Katar catchment, Ethiopia. First, the rainfall-runoff process was simulated using the SWAT, HBV and HEC-HMS models individually. Second, simple average ensemble (SAE), weighted average ensemble (WAE) and neural network ensemble (NNE) techniques were developed by combining the results of individual models to improve overall accuracy. Statistical performance measures and flow duration curves (FDCs) were used to compare and evaluate the performance of the models. The results showed that the SWAT model outperformed the HBV and HEC-HMS models with the coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE) of 0.857 and 0.83 for calibration and 0.85 and 0.799 for validation, respectively. The ensemble result showed that NNE outperformed the SAE and WAE techniques, with NSE and R2 values of 0.924 and 0.925 for calibration and 0.896 and 0.904 for validation, respectively. The NNE technique improved the performance of SWAT, HBV and HEC-HMS by 12.14, 22.7 and 26.8%, respectively, in the validation phase. Overall, the results showed that ensemble modeling is a promising option for accurate modeling of the rainfall-runoff process. |
---|---|
AbstractList | This study evaluates the performance of the soil and water assessment tool (SWAT), the hydrologiska byråns vattenbalansavdelning (HBV) and the hydrologic engineering center-hydrologic modeling system (HEC-HMS) for modeling rainfall-runoff in the data-scarce Katar catchment, Ethiopia. First, the rainfall-runoff process was simulated using the SWAT, HBV and HEC-HMS models individually. Second, simple average ensemble (SAE), weighted average ensemble (WAE) and neural network ensemble (NNE) techniques were developed by combining the results of individual models to improve overall accuracy. Statistical performance measures and flow duration curves (FDCs) were used to compare and evaluate the performance of the models. The results showed that the SWAT model outperformed the HBV and HEC-HMS models with the coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE) of 0.857 and 0.83 for calibration and 0.85 and 0.799 for validation, respectively. The ensemble result showed that NNE outperformed the SAE and WAE techniques, with NSE and R2 values of 0.924 and 0.925 for calibration and 0.896 and 0.904 for validation, respectively. The NNE technique improved the performance of SWAT, HBV and HEC-HMS by 12.14, 22.7 and 26.8%, respectively, in the validation phase. Overall, the results showed that ensemble modeling is a promising option for accurate modeling of the rainfall-runoff process. HIGHLIGHTS Novel ensemble approach was proposed to simulate the complex and dynamic rainfall-runoff process.; Spatial, hydrological and meteorological data were used as input for the semi-distributed models.; Three ensemble techniques were developed by combining the runoff results of the semi-distributed models to boost the overall efficiency.; The proposed ensemble technique significantly improved the modeling performance.; This study evaluates the performance of the soil and water assessment tool (SWAT), the hydrologiska byråns vattenbalansavdelning (HBV) and the hydrologic engineering center-hydrologic modeling system (HEC-HMS) for modeling rainfall-runoff in the data-scarce Katar catchment, Ethiopia. First, the rainfall-runoff process was simulated using the SWAT, HBV and HEC-HMS models individually. Second, simple average ensemble (SAE), weighted average ensemble (WAE) and neural network ensemble (NNE) techniques were developed by combining the results of individual models to improve overall accuracy. Statistical performance measures and flow duration curves (FDCs) were used to compare and evaluate the performance of the models. The results showed that the SWAT model outperformed the HBV and HEC-HMS models with the coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE) of 0.857 and 0.83 for calibration and 0.85 and 0.799 for validation, respectively. The ensemble result showed that NNE outperformed the SAE and WAE techniques, with NSE and R2 values of 0.924 and 0.925 for calibration and 0.896 and 0.904 for validation, respectively. The NNE technique improved the performance of SWAT, HBV and HEC-HMS by 12.14, 22.7 and 26.8%, respectively, in the validation phase. Overall, the results showed that ensemble modeling is a promising option for accurate modeling of the rainfall-runoff process. |
Author | Gelete, Gebre Gichamo, Tagesse Gokcekus, Huseyin Nourani, Vahid |
Author_xml | – sequence: 1 givenname: Gebre orcidid: 0000-0001-5045-1094 surname: Gelete fullname: Gelete, Gebre – sequence: 2 givenname: Vahid surname: Nourani fullname: Nourani, Vahid – sequence: 3 givenname: Huseyin surname: Gokcekus fullname: Gokcekus, Huseyin – sequence: 4 givenname: Tagesse surname: Gichamo fullname: Gichamo, Tagesse |
BookMark | eNp1kc1uHCEQhFFkS_HfNWceILMeGBh2jpG1_lFWyiU-owYaD9YsrAAf9gny2sG78cVSTt0qVX1qdV2Ss5giEvKN9SvOxvF2PricVrznw4pN6gu5YGKUHVODODvuolNMsK_kspTXvudsWLML8mcTC-7MgnQ_H0qwsCwHaqCgo00PnQul5mDeahN2yeFSqE-Z1hlphhB983f5LSbv6T4ni6WcbCG-0BCPPgcVumIhW6Q_256phWrnHcb6nW7qHNI-wDU5b6yCN__mFXm-3_y-e-y2vx6e7n5sO8uVrN2IgFIKZ9zARS-NH42ZRuPNCFYw5yawjHmYjBqcAFgjV467nqNx0xphGq7I04nrErzqfQ47yAedIOijkPKLhlyDXVBLqUaGapDAhFgbnLwVjimPwltu5NBY4sSyOZWS0WsbKtSQYm2_WTTr9Xsx-liMfi9Gt2JabPUp9nHGfwJ_AVc5mDI |
CitedBy_id | crossref_primary_10_2166_ws_2023_274 crossref_primary_10_1007_s12145_023_01192_4 crossref_primary_10_2166_wcc_2023_084 crossref_primary_10_2166_hydro_2024_066 crossref_primary_10_1016_j_jhydrol_2024_130861 crossref_primary_10_1016_j_ejrh_2024_101873 crossref_primary_10_2166_nh_2024_189 crossref_primary_10_3390_rs17060967 crossref_primary_10_2166_hydro_2024_267 crossref_primary_10_2166_hydro_2024_224 crossref_primary_10_1080_15715124_2024_2399615 crossref_primary_10_1007_s11269_024_03908_7 crossref_primary_10_2166_nh_2023_072 crossref_primary_10_2166_hydro_2023_182 crossref_primary_10_2166_wcc_2024_052 crossref_primary_10_3390_rs16132333 crossref_primary_10_1007_s11269_023_03629_3 crossref_primary_10_3389_frwa_2025_1500086 crossref_primary_10_2166_hydro_2023_187 crossref_primary_10_2166_wcc_2023_188 crossref_primary_10_1080_23311916_2024_2360007 |
Cites_doi | 10.1016/j.cageo.2012.07.001 10.2166/nh.1986.0002 10.1080/02626667.2014.967694 10.1007/s12145-021-00615-4 10.3390/w10070923 10.1016/j.advengsoft.2017.09.004 10.1007/s40899-021-00596-8 10.1016/j.envres.2019.108852 10.1016/j.jhydrol.2010.06.007 10.1057/jors.1969.103 10.1016/j.jhydrol.2019.05.052 10.1623/hysj.53.5.977 10.1016/j.jhydrol.2012.05.031 10.1016/j.wen.2021.03.001 10.2166/wst.2018.477 10.1155/2021/6633760 10.11648/j.ajset.20190402.12 10.1016/j.ecoleng.2018.11.007 10.2166/hydro.2018.151 10.3390/hydrology6010021 10.1016/S0022-1694(03)00225-7 10.3390/hydrology8020058 10.1016/j.jss.2007.05.005 10.3390/w10020192 10.1016/j.ecolmodel.2004.07.021 10.1111/j.1752-1688.1998.tb05961.x 10.1007/s40899-017-0189-1 10.1016/j.envsoft.2014.02.013 10.1002/hyp.1344 10.1016/j.envsoft.2006.06.008 10.1016/j.envsoft.2013.03.006 10.1016/j.pce.2019.05.002 10.3390/w12092440 10.2166/wcc.2021.072 10.1016/j.jhydrol.2020.125103 10.1016/j.wsj.2017.12.004 10.2166/wcc.2021.064 10.1080/02626667.2018.1538593 10.1016/j.jhydrol.2019.123962 10.1016/j.jhydrol.2019.124357 10.13031/trans.58.10715 10.1111/j.1752-1688.1998.tb05962.x 10.3390/fluids7080267 10.13031/2013.23153 10.1029/2000JD900719 10.1016/j.landusepol.2020.104682 10.4314/wsa.v32i3.5263 10.5194/hess-11-1797-2007 10.1016/j.jhydrol.2020.125206 10.3390/hydrology4010009 10.1016/j.jhydrol.2015.11.050 10.1007/s11269-013-0293-4 10.1016/j.asoc.2016.12.052 10.1080/02626667.2022.2137417 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.2166/hydro.2023.197 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1465-1734 |
EndPage | 592 |
ExternalDocumentID | oai_doaj_org_article_55761e735a1448be9fc4d17fe4fc2b53 10_2166_hydro_2023_197 |
GroupedDBID | 0R~ 4.4 5GY 7XC 8CJ 8FE 8FH AAJMC AAJVE AAYXX ABFYC ABLGR ACGFO AECGI AENEX AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION CS3 D1J DU5 EBS GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HZ~ L7B O9- OK1 P2P PATMY PCBAR PHGZM PHGZT PYCSY R0Z RHI ~02 PUEGO |
ID | FETCH-LOGICAL-c275t-6eae554dbd32405bf6bb96bfb6ac41dd9ac11fa9b73d4aa8e27d2d02ebd98ea93 |
IEDL.DBID | DOA |
ISSN | 1464-7141 |
IngestDate | Wed Aug 27 01:18:29 EDT 2025 Tue Jul 01 04:10:35 EDT 2025 Thu Apr 24 22:59:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c275t-6eae554dbd32405bf6bb96bfb6ac41dd9ac11fa9b73d4aa8e27d2d02ebd98ea93 |
ORCID | 0000-0001-5045-1094 |
OpenAccessLink | https://doaj.org/article/55761e735a1448be9fc4d17fe4fc2b53 |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_55761e735a1448be9fc4d17fe4fc2b53 crossref_citationtrail_10_2166_hydro_2023_197 crossref_primary_10_2166_hydro_2023_197 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydroinformatics |
PublicationYear | 2023 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | key-10.2166/hydro.2023.197-34 key-10.2166/hydro.2023.197-33 key-10.2166/hydro.2023.197-36 key-10.2166/hydro.2023.197-35 key-10.2166/hydro.2023.197-38 key-10.2166/hydro.2023.197-37 key-10.2166/hydro.2023.197-39 key-10.2166/hydro.2023.197-41 key-10.2166/hydro.2023.197-40 key-10.2166/hydro.2023.197-43 key-10.2166/hydro.2023.197-42 key-10.2166/hydro.2023.197-3 key-10.2166/hydro.2023.197-23 key-10.2166/hydro.2023.197-2 key-10.2166/hydro.2023.197-22 key-10.2166/hydro.2023.197-1 key-10.2166/hydro.2023.197-25 key-10.2166/hydro.2023.197-24 key-10.2166/hydro.2023.197-27 key-10.2166/hydro.2023.197-26 key-10.2166/hydro.2023.197-5 key-10.2166/hydro.2023.197-29 key-10.2166/hydro.2023.197-4 Feldman (key-10.2166/hydro.2023.197-21) 2000 key-10.2166/hydro.2023.197-28 key-10.2166/hydro.2023.197-9 key-10.2166/hydro.2023.197-8 key-10.2166/hydro.2023.197-30 DHI (key-10.2166/hydro.2023.197-17) 1999 Bergstorm (key-10.2166/hydro.2023.197-6) 1973; 4 key-10.2166/hydro.2023.197-31 key-10.2166/hydro.2023.197-12 key-10.2166/hydro.2023.197-56 key-10.2166/hydro.2023.197-11 key-10.2166/hydro.2023.197-14 key-10.2166/hydro.2023.197-58 key-10.2166/hydro.2023.197-13 key-10.2166/hydro.2023.197-57 key-10.2166/hydro.2023.197-16 key-10.2166/hydro.2023.197-15 key-10.2166/hydro.2023.197-59 key-10.2166/hydro.2023.197-18 key-10.2166/hydro.2023.197-19 USACE (key-10.2166/hydro.2023.197-55) 2010 key-10.2166/hydro.2023.197-60 key-10.2166/hydro.2023.197-20 Miraji (key-10.2166/hydro.2023.197-32) 2019; 11 key-10.2166/hydro.2023.197-45 key-10.2166/hydro.2023.197-44 key-10.2166/hydro.2023.197-47 key-10.2166/hydro.2023.197-46 key-10.2166/hydro.2023.197-49 key-10.2166/hydro.2023.197-48 Bergström (key-10.2166/hydro.2023.197-7) 1992 key-10.2166/hydro.2023.197-50 key-10.2166/hydro.2023.197-52 key-10.2166/hydro.2023.197-51 key-10.2166/hydro.2023.197-10 key-10.2166/hydro.2023.197-54 key-10.2166/hydro.2023.197-53 |
References_xml | – ident: key-10.2166/hydro.2023.197-30 doi: 10.1016/j.cageo.2012.07.001 – ident: key-10.2166/hydro.2023.197-12 doi: 10.2166/nh.1986.0002 – ident: key-10.2166/hydro.2023.197-41 doi: 10.1080/02626667.2014.967694 – ident: key-10.2166/hydro.2023.197-40 doi: 10.1007/s12145-021-00615-4 – start-page: 318 volume-title: Hydrologic Modeling System HEC-HMS User's Manual Version 3.5 year: 2010 ident: key-10.2166/hydro.2023.197-55 – ident: key-10.2166/hydro.2023.197-60 doi: 10.3390/w10070923 – ident: key-10.2166/hydro.2023.197-58 doi: 10.1016/j.advengsoft.2017.09.004 – ident: key-10.2166/hydro.2023.197-20 doi: 10.1007/s40899-021-00596-8 – ident: key-10.2166/hydro.2023.197-38 doi: 10.1016/j.envres.2019.108852 – ident: key-10.2166/hydro.2023.197-1 doi: 10.1016/j.jhydrol.2010.06.007 – ident: key-10.2166/hydro.2023.197-5 doi: 10.1057/jors.1969.103 – start-page: 1 year: 1992 ident: key-10.2166/hydro.2023.197-7 article-title: The HBV model: its structure and applications, Swedish Meteorological and Hydrological Institute (SMHI) publication-title: Hydrology, Norrköping – ident: key-10.2166/hydro.2023.197-31 doi: 10.1016/j.jhydrol.2019.05.052 – ident: key-10.2166/hydro.2023.197-45 doi: 10.1623/hysj.53.5.977 – ident: key-10.2166/hydro.2023.197-29 doi: 10.1016/j.jhydrol.2012.05.031 – ident: key-10.2166/hydro.2023.197-10 doi: 10.1016/j.wen.2021.03.001 – ident: key-10.2166/hydro.2023.197-37 doi: 10.2166/wst.2018.477 – ident: key-10.2166/hydro.2023.197-39 doi: 10.1155/2021/6633760 – ident: key-10.2166/hydro.2023.197-52 doi: 10.11648/j.ajset.20190402.12 – ident: key-10.2166/hydro.2023.197-11 doi: 10.1016/j.ecoleng.2018.11.007 – ident: key-10.2166/hydro.2023.197-47 doi: 10.2166/hydro.2018.151 – ident: key-10.2166/hydro.2023.197-50 doi: 10.3390/hydrology6010021 – ident: key-10.2166/hydro.2023.197-44 doi: 10.1016/S0022-1694(03)00225-7 – ident: key-10.2166/hydro.2023.197-25 doi: 10.3390/hydrology8020058 – volume: 11 start-page: 2 issue: 8 year: 2019 ident: key-10.2166/hydro.2023.197-32 article-title: The impacts of water demand and its implications for future surface water resource management publication-title: Water (Switzerland) – ident: key-10.2166/hydro.2023.197-28 doi: 10.1016/j.jss.2007.05.005 – ident: key-10.2166/hydro.2023.197-27 doi: 10.3390/w10020192 – ident: key-10.2166/hydro.2023.197-46 doi: 10.1016/j.ecolmodel.2004.07.021 – ident: key-10.2166/hydro.2023.197-4 doi: 10.1111/j.1752-1688.1998.tb05961.x – ident: key-10.2166/hydro.2023.197-9 doi: 10.1007/s40899-017-0189-1 – ident: key-10.2166/hydro.2023.197-26 doi: 10.1016/j.envsoft.2014.02.013 – ident: key-10.2166/hydro.2023.197-33 doi: 10.1002/hyp.1344 – ident: key-10.2166/hydro.2023.197-15 doi: 10.1016/j.envsoft.2006.06.008 – ident: key-10.2166/hydro.2023.197-24 doi: 10.1016/j.envsoft.2013.03.006 – ident: key-10.2166/hydro.2023.197-3 doi: 10.1016/j.pce.2019.05.002 – ident: key-10.2166/hydro.2023.197-42 doi: 10.3390/w12092440 – ident: key-10.2166/hydro.2023.197-48 doi: 10.2166/wcc.2021.072 – volume: 4 start-page: 17 issue: 3 year: 1973 ident: key-10.2166/hydro.2023.197-6 article-title: Development of a conceptual deterministic rainfall-runoff model publication-title: Nordic Hydrology – ident: key-10.2166/hydro.2023.197-14 doi: 10.1016/j.jhydrol.2020.125103 – ident: key-10.2166/hydro.2023.197-23 doi: 10.1016/j.wsj.2017.12.004 – ident: key-10.2166/hydro.2023.197-19 doi: 10.2166/wcc.2021.064 – volume-title: Hydrologic Modeling System HEC-HMS, Technical Reference Manual. U.S. Army Corps of Engineers year: 2000 ident: key-10.2166/hydro.2023.197-21 – ident: key-10.2166/hydro.2023.197-43 doi: 10.1080/02626667.2018.1538593 – ident: key-10.2166/hydro.2023.197-18 doi: 10.1016/j.jhydrol.2019.123962 – ident: key-10.2166/hydro.2023.197-57 doi: 10.1016/j.jhydrol.2019.124357 – ident: key-10.2166/hydro.2023.197-35 doi: 10.13031/trans.58.10715 – ident: key-10.2166/hydro.2023.197-49 doi: 10.1111/j.1752-1688.1998.tb05962.x – ident: key-10.2166/hydro.2023.197-13 doi: 10.3390/fluids7080267 – ident: key-10.2166/hydro.2023.197-34 doi: 10.13031/2013.23153 – ident: key-10.2166/hydro.2023.197-51 doi: 10.1029/2000JD900719 – ident: key-10.2166/hydro.2023.197-16 doi: 10.1016/j.landusepol.2020.104682 – ident: key-10.2166/hydro.2023.197-53 doi: 10.4314/wsa.v32i3.5263 – ident: key-10.2166/hydro.2023.197-22 doi: 10.5194/hess-11-1797-2007 – ident: key-10.2166/hydro.2023.197-56 doi: 10.1016/j.jhydrol.2020.125206 – ident: key-10.2166/hydro.2023.197-8 doi: 10.3390/hydrology4010009 – ident: key-10.2166/hydro.2023.197-36 doi: 10.1016/j.jhydrol.2015.11.050 – ident: key-10.2166/hydro.2023.197-2 doi: 10.1007/s11269-013-0293-4 – ident: key-10.2166/hydro.2023.197-59 doi: 10.1016/j.asoc.2016.12.052 – ident: key-10.2166/hydro.2023.197-54 doi: 10.1080/02626667.2022.2137417 – volume-title: MIKE SHE Water Movement: User Manual year: 1999 ident: key-10.2166/hydro.2023.197-17 |
SSID | ssj0021381 |
Score | 2.4180367 |
Snippet | This study evaluates the performance of the soil and water assessment tool (SWAT), the hydrologiska byråns vattenbalansavdelning (HBV) and the hydrologic... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 567 |
SubjectTerms | ensemble modeling katar catchment physically based modes rainfall-runoff modeling |
Title | Ensemble physically based semi-distributed models for the rainfall-runoff process modeling in the data-scarce Katar catchment, Ethiopia |
URI | https://doaj.org/article/55761e735a1448be9fc4d17fe4fc2b53 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSyQxEA2Le1gv4rorfqySg7CXzWo6H905qoyIoois4K3JR4UZGHuGmfEwv8C_vVXdrcxFvHhrQtGE10Xqpal6j7GjGJ3zBoxQNkehszKCVNVENmBVSKkCQ9PIN7f28kFfPZrHFasv6gnr5IE74I4NEmIJpTIeqX8VwOWokywz6ByLYFqdT6x5r5ep_qolVWtPiscAdRtq2ck1FtLa4-EyzWjqr1B_JUk9rZSjFdX-trxcbLKNnhfy024_39kXaLbYt96ifLj8wV4GzRyewhj4tId2vORUgxLH9ZFIpIBL5lW40NrbzDnyUY78jpMLRMZ4MXtuJjnzaTcc0IVh6eKjpo2jblExjzT9yK_xecYjHtRD-n_4h1Nj_GQ68j_Zw8Xg3_ml6F0URCxKsxAWPCBnSCGR9p4J2YbgbMjB-qhlSs5HKbN3oVRJe19BUaYinRQQkqvAO7XN1ppJAzuMQ4UIpkoiq9O69NaBRUZhVJmtM8qoXSZewaxjLzFOThfjGq8aBH7dgl8T-DWCv8t-v8VPO3GNdyPP6Nu8RZEodruAqVL3qVJ_lCp7n_GSfbZOm-ra0H6xtcXsGQ6QlyzCIft6Nri9uz9sU_E_c2bk7w |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+physically+based+semi-distributed+models+for+the+rainfall-runoff+process+modeling+in+the+data-scarce+Katar+catchment%2C+Ethiopia&rft.jtitle=Journal+of+hydroinformatics&rft.au=Gelete%2C+Gebre&rft.au=Nourani%2C+Vahid&rft.au=Gokcekus%2C+Huseyin&rft.au=Gichamo%2C+Tagesse&rft.date=2023-03-01&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=25&rft.issue=2&rft.spage=567&rft.epage=592&rft_id=info:doi/10.2166%2Fhydro.2023.197&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_hydro_2023_197 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon |