Discovery of Shared Latent Nonlinear Effective Connectivity for EEG-Based Depression Detection
Granger causality (GC) effective connectivity (EC) calculated from electroencephalogram (EEG) signals has been widely used in mental disorder detection. However, the existing methods only take into account linear dynamics or nonlinear dynamics within a single sample, ignoring the nonlinear dynamics...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 36; no. 6; pp. 10663 - 10677 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Granger causality (GC) effective connectivity (EC) calculated from electroencephalogram (EEG) signals has been widely used in mental disorder detection. However, the existing methods only take into account linear dynamics or nonlinear dynamics within a single sample, ignoring the nonlinear dynamics shared by the same class of subjects. In this article, a model combining graph neural networks (GNNs) and variational autoencoders (VAEs) is proposed to construct shared latent nonlinear EC from raw EEG signals for depression detection. Several convolution modules and fully connected layers are used in the graph encoding network to learn the embeddings of the connectivity connected by every two EEG channels. In the graph decoding network, a class-specific Gaussian mixture model (GMM) is introduced in the VAEs to model shared dynamics in EC of the same class of subjects, and the shared dynamics combine the encoded embeddings of the EC and the past time series to restore raw EEG signals. Through a node-to-edge encoding process and an edge-to-node decoding process, the shared latent nonlinear EC in EEG signals can ultimately be learned by gradually optimizing the model's loss function. The performance of the proposed method is verified on several open-accessed datasets. The excellent results prove that the proposed neural networks can learn more generalized nonlinear EC representations, and shared latent dynamics discovery can also help to identify depression better. The code is available at https://github.com/william-yuan2012/DSLNEC-tscausality . |
---|---|
AbstractList | Granger causality (GC) effective connectivity (EC) calculated from electroencephalogram (EEG) signals has been widely used in mental disorder detection. However, the existing methods only take into account linear dynamics or nonlinear dynamics within a single sample, ignoring the nonlinear dynamics shared by the same class of subjects. In this article, a model combining graph neural networks (GNNs) and variational autoencoders (VAEs) is proposed to construct shared latent nonlinear EC from raw EEG signals for depression detection. Several convolution modules and fully connected layers are used in the graph encoding network to learn the embeddings of the connectivity connected by every two EEG channels. In the graph decoding network, a class-specific Gaussian mixture model (GMM) is introduced in the VAEs to model shared dynamics in EC of the same class of subjects, and the shared dynamics combine the encoded embeddings of the EC and the past time series to restore raw EEG signals. Through a node-to-edge encoding process and an edge-to-node decoding process, the shared latent nonlinear EC in EEG signals can ultimately be learned by gradually optimizing the model's loss function. The performance of the proposed method is verified on several open-accessed datasets. The excellent results prove that the proposed neural networks can learn more generalized nonlinear EC representations, and shared latent dynamics discovery can also help to identify depression better. The code is available at https://github.com/william-yuan2012/DSLNEC-tscausality . Granger causality (GC) effective connectivity (EC) calculated from electroencephalogram (EEG) signals has been widely used in mental disorder detection. However, the existing methods only take into account linear dynamics or nonlinear dynamics within a single sample, ignoring the nonlinear dynamics shared by the same class of subjects. In this article, a model combining graph neural networks (GNNs) and variational autoencoders (VAEs) is proposed to construct shared latent nonlinear EC from raw EEG signals for depression detection. Several convolution modules and fully connected layers are used in the graph encoding network to learn the embeddings of the connectivity connected by every two EEG channels. In the graph decoding network, a class-specific Gaussian mixture model (GMM) is introduced in the VAEs to model shared dynamics in EC of the same class of subjects, and the shared dynamics combine the encoded embeddings of the EC and the past time series to restore raw EEG signals. Through a node-to-edge encoding process and an edge-to-node decoding process, the shared latent nonlinear EC in EEG signals can ultimately be learned by gradually optimizing the model's loss function. The performance of the proposed method is verified on several open-accessed datasets. The excellent results prove that the proposed neural networks can learn more generalized nonlinear EC representations, and shared latent dynamics discovery can also help to identify depression better. The code is available at https://github.com/william-yuan2012/DSLNEC-tscausality.Granger causality (GC) effective connectivity (EC) calculated from electroencephalogram (EEG) signals has been widely used in mental disorder detection. However, the existing methods only take into account linear dynamics or nonlinear dynamics within a single sample, ignoring the nonlinear dynamics shared by the same class of subjects. In this article, a model combining graph neural networks (GNNs) and variational autoencoders (VAEs) is proposed to construct shared latent nonlinear EC from raw EEG signals for depression detection. Several convolution modules and fully connected layers are used in the graph encoding network to learn the embeddings of the connectivity connected by every two EEG channels. In the graph decoding network, a class-specific Gaussian mixture model (GMM) is introduced in the VAEs to model shared dynamics in EC of the same class of subjects, and the shared dynamics combine the encoded embeddings of the EC and the past time series to restore raw EEG signals. Through a node-to-edge encoding process and an edge-to-node decoding process, the shared latent nonlinear EC in EEG signals can ultimately be learned by gradually optimizing the model's loss function. The performance of the proposed method is verified on several open-accessed datasets. The excellent results prove that the proposed neural networks can learn more generalized nonlinear EC representations, and shared latent dynamics discovery can also help to identify depression better. The code is available at https://github.com/william-yuan2012/DSLNEC-tscausality. |
Author | Wang, Shuangyan Wang, Tianzhi Yuan, Wenjie Zhang, Xiaowei Hu, Bin Zhao, Qinglin Zhang, Xuejuan Zhang, Tong |
Author_xml | – sequence: 1 givenname: Wenjie orcidid: 0009-0006-6530-0444 surname: Yuan fullname: Yuan, Wenjie email: 120220909211@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 2 givenname: Xiaowei orcidid: 0000-0001-8562-416X surname: Zhang fullname: Zhang, Xiaowei email: zhangxw@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 3 givenname: Xuejuan surname: Zhang fullname: Zhang, Xuejuan email: zhxuejuan2023@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 4 givenname: Shuangyan surname: Wang fullname: Wang, Shuangyan email: wshuangyan2023@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 5 givenname: Tianzhi orcidid: 0009-0007-6418-2404 surname: Wang fullname: Wang, Tianzhi email: wangtzh20@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 6 givenname: Tong orcidid: 0000-0002-7025-6365 surname: Zhang fullname: Zhang, Tong email: tony@scut.edu.cn organization: Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 7 givenname: Qinglin orcidid: 0000-0001-5690-666X surname: Zhao fullname: Zhao, Qinglin email: qlzhao@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 8 givenname: Bin orcidid: 0000-0003-3514-5413 surname: Hu fullname: Hu, Bin email: bh@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40030718$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkF1LwzAUhoNM3Jz7AyLSS28689U2udRtTqHMi03wypJ2J1jpkpl0g_17sw_Fc5MX8rwHznOJOsYaQOia4CEhWN4vZrN8PqSY8iFLCCeCnqEeJSmNKROi85ez9y4aeP-Fw6Q4Sbm8QF2OMcMZET30Ma59ZbfgdpHV0fxTOVhGuWrBtNHMmqY2oFw00Rqqtt5CNLLGHGLd7iJtw9dkGj8qH1pjWDvwvrYmxHYPWXOFzrVqPAxObx-9PU0Wo-c4f52-jB7yuKJZ0sbpEpKkhBIyrkspCCSUE6orljFSyoSQhOMyq6TAKhyf0rSSTCmdgZCKY12yPro77l07-70B3xarcBc0jTJgN75gJGMcc4lZQG9P6KZcwbJYu3ql3K74dRIAegQqZ713oP8Qgou9--Lgvti7L07uQ-nmWKoB4F9BYC6YZD_V5n7c |
CODEN | ITNNAL |
Cites_doi | 10.1109/TNSRE.2020.3013429 10.1109/TPAMI.2021.3065601 10.7554/eLife.60595 10.1038/nn.3690 10.1109/CVPR.2016.90 10.1103/PhysRevLett.100.144103 10.1002/9781118535561 10.1177/146642409311300216 10.1016/j.jneumeth.2013.10.018 10.1109/CVPR52688.2022.01553 10.1109/JBHI.2019.2941222 10.1038/s41398-018-0239-y 10.2307/1912791.1969 10.1103/PhysRevLett.85.461 10.1109/TAFFC.2018.2817622 10.1109/TAFFC.2024.3392904 10.1007/s11571-020-09619-0 10.24963/ijcai.2017/273 10.1016/j.neuroimage.2010.08.063 10.5555/3045118.3045167 10.1016/S0165-0270(03)00052-9 10.1109/TNNLS.2022.3159573 10.1109/TBME.2015.2481482 10.1016/j.cmpb.2017.11.023 10.1002/hbm.25683 10.1002/9780470479216.corpsy0271 10.1371/journal.pone.0171409 10.1109/TAFFC.2019.2934412 10.1016/S0140-6736(09)60879-5 10.1038/s41593-019-0510-4 10.1109/TII.2020.3020694 10.48550/arXiv.1312.6114 10.1109/EMBC44109.2020.9175956 10.1109/TAFFC.2018.2790939 10.5555/3104322.3104425 10.1109/TNNLS.2023.3236635 10.1109/ICDSP.2007.4288544 10.1109/BIBM58861.2023.10386011 10.3389/fpsyg.2020.00730 10.1016/j.neunet.2023.12.029 10.1109/TNNLS.2023.3292179 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/TNNLS.2024.3514182 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 10677 |
ExternalDocumentID | 40030718 10_1109_TNNLS_2024_3514182 10804839 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62072219; 62227807 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: lzujbky-2022-ey13; lzujbky-2024-it15 funderid: 10.13039/501100012226 – fundername: Natural Science Foundation of Gansu Province; Natural Science Foundation of Gansu Province, China grantid: 22JR5RA401 funderid: 10.13039/501100004775 – fundername: National Key Research and Development Program of China grantid: 2019YFA0706200 funderid: 10.13039/501100012166 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c275t-6de55bebe74fb981e52412fc3731b9511540b7c980a110626c93aaf7e89a40fb3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 08:18:37 EDT 2025 Sat Aug 02 01:40:50 EDT 2025 Thu Jul 03 08:17:02 EDT 2025 Wed Aug 27 01:52:21 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c275t-6de55bebe74fb981e52412fc3731b9511540b7c980a110626c93aaf7e89a40fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0007-6418-2404 0000-0001-8562-416X 0000-0001-5690-666X 0000-0003-3514-5413 0000-0002-7025-6365 0009-0006-6530-0444 |
PMID | 40030718 |
PQID | 3173404903 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3173404903 ieee_primary_10804839 crossref_primary_10_1109_TNNLS_2024_3514182 pubmed_primary_40030718 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 Van der Maaten (ref50) 2008; 9 ref15 ref14 ref11 ref10 Kipf (ref16) ref17 ref19 ref18 ref51 ref46 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref7 ref4 Marcinkevič s (ref36) ref3 ref6 ref5 Kipf (ref43) ref40 Loshchilov (ref35) ref37 Sener (ref30) ref31 ref33 ref32 ref2 ref1 ref39 ref38 Löwe (ref25) ref24 ref23 ref26 Honke (ref9) ref20 ref22 ref21 ref28 ref27 ref29 Veličković (ref45) Kingma (ref34) 2014 |
References_xml | – ident: ref13 doi: 10.1109/TNSRE.2020.3013429 – ident: ref15 doi: 10.1109/TPAMI.2021.3065601 – ident: ref33 doi: 10.7554/eLife.60595 – ident: ref10 doi: 10.1038/nn.3690 – year: 2014 ident: ref34 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref27 doi: 10.1109/CVPR.2016.90 – ident: ref23 doi: 10.1103/PhysRevLett.100.144103 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref45 article-title: Graph attention networks – ident: ref24 doi: 10.1002/9781118535561 – ident: ref1 doi: 10.1177/146642409311300216 – start-page: 1 volume-title: Proc. 5th Int. Conf. Learn. Represent. ident: ref43 article-title: Semi-supervised classification with graph convolutional networks – start-page: 2688 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref16 article-title: Neural relational inference for interacting systems – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref36 article-title: Interpretable models for Granger causality using self-explaining neural networks – ident: ref39 doi: 10.1016/j.jneumeth.2013.10.018 – ident: ref51 doi: 10.1109/CVPR52688.2022.01553 – ident: ref21 doi: 10.1109/JBHI.2019.2941222 – ident: ref6 doi: 10.1038/s41398-018-0239-y – ident: ref12 doi: 10.2307/1912791.1969 – ident: ref22 doi: 10.1103/PhysRevLett.85.461 – ident: ref44 doi: 10.1109/TAFFC.2018.2817622 – ident: ref49 doi: 10.1109/TAFFC.2024.3392904 – start-page: 525 volume-title: Proc. NIPS ident: ref30 article-title: Multi-task learning as multi-objective optimization – ident: ref14 doi: 10.1007/s11571-020-09619-0 – ident: ref29 doi: 10.24963/ijcai.2017/273 – ident: ref31 doi: 10.1016/j.neuroimage.2010.08.063 – ident: ref28 doi: 10.5555/3045118.3045167 – ident: ref40 doi: 10.1016/S0165-0270(03)00052-9 – ident: ref5 doi: 10.1109/TNNLS.2022.3159573 – ident: ref38 doi: 10.1109/TBME.2015.2481482 – ident: ref7 doi: 10.1016/j.cmpb.2017.11.023 – ident: ref11 doi: 10.1002/hbm.25683 – ident: ref2 doi: 10.1002/9780470479216.corpsy0271 – ident: ref32 doi: 10.1371/journal.pone.0171409 – ident: ref4 doi: 10.1109/TAFFC.2019.2934412 – ident: ref3 doi: 10.1016/S0140-6736(09)60879-5 – ident: ref19 doi: 10.1038/s41593-019-0510-4 – ident: ref18 doi: 10.1109/TII.2020.3020694 – start-page: 509 volume-title: Proc. Conf. Causal Learn. Reasoning ident: ref25 article-title: Amortized causal discovery: Learning to infer causal graphs from time-series data – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref9 article-title: Representation learning for improved interpretability and classification accuracy of clinical factors from EEG – ident: ref26 doi: 10.48550/arXiv.1312.6114 – ident: ref8 doi: 10.1109/EMBC44109.2020.9175956 – ident: ref20 doi: 10.1109/TAFFC.2018.2790939 – ident: ref42 doi: 10.5555/3104322.3104425 – ident: ref47 doi: 10.1109/TNNLS.2023.3236635 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref35 article-title: SGDR: Stochastic gradient descent with warm restarts – ident: ref41 doi: 10.1109/ICDSP.2007.4288544 – volume: 9 start-page: 2579 issue: 86 year: 2008 ident: ref50 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref48 doi: 10.1109/BIBM58861.2023.10386011 – ident: ref17 doi: 10.3389/fpsyg.2020.00730 – ident: ref46 doi: 10.1016/j.neunet.2023.12.029 – ident: ref37 doi: 10.1109/TNNLS.2023.3292179 |
SSID | ssj0000605649 |
Score | 2.4702077 |
Snippet | Granger causality (GC) effective connectivity (EC) calculated from electroencephalogram (EEG) signals has been widely used in mental disorder detection.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 10663 |
SubjectTerms | Algorithms Brain modeling Decoding Depression Depression - diagnosis Depression - physiopathology Depression detection Electroencephalography Electroencephalography - methods Encoding Feature extraction Graph neural networks graph neural networks (GNNs) Humans Kernel Mental disorders Neural Networks, Computer Nonlinear Dynamics nonlinear effective connectivity (EC) shared dynamics Signal Processing, Computer-Assisted Time series analysis variational autoencoders (VAEs) |
Title | Discovery of Shared Latent Nonlinear Effective Connectivity for EEG-Based Depression Detection |
URI | https://ieeexplore.ieee.org/document/10804839 https://www.ncbi.nlm.nih.gov/pubmed/40030718 https://www.proquest.com/docview/3173404903 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BHhAXKIXCUoqM1FvlxWs7r2MLu0WI5gJIe2rkp1RVyqIle4Bfz9hOEKqE1JsPSZR4xplvZr6ZAfjqvFYSzQD1zDoa2p9QVfGCMl1qaZiXXoXQwK86v7qX14ts0Rerx1oY51wkn7lJWMZcvl2adQiVnQc-nESLvgmb6LmlYq3XgApDYJ5HuMunOadcFIuhSIZV53d1fXOL7iCXk8BdR1S9DVsyqniY9_HGJsUhK-_jzWh35rtQD2-c6CZ_J-tOT8zzP80c__uTPsBOj0DJ96Qye7Dh2o-wO0x3IP1h34ffl38eTSB4PpGlJ6Gxs7PkBqFp25E6NdhQK5K6H-Mvk0TKjEnDKAhCYTKb_aQ_0EhacjnQbVtcdpH81R7A_Xx2d3FF-2kM1PAi62huXZZplHkhva7KqcvQ-HNvRCGmGnEaYjGmC1OVTOGOo59kKqGUL1xZKcm8Fp9g1C5bdwSkshm6eVMvwqBga1XJrRaFzFEzNCJSNYZvgzyah9R0o4nOCquaKMgmCLLpBTmGg7Cvb65MWzqGs0GGDZ6ZkAhRrVuuHxvETEKGlKcYw2ES7uvdg04cv_PUz7DNwwjgGIg5gVG3WrsviEs6fRr18QUY09vT |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VIkEvlEeh4WkkOCGnju19HTgASUlpuhdSKSe29tqWENKmajZC5b_wV_htjO3dqELqsRI3H3atXc9nzzf25xmAN9ZpJdENUMeMpT79CVUFzyjTuZY1c9IpvzVwUqbTU_llkSy24PfmLoy1NojP7NA3w1m-WdZrv1V24PVwEj16p6E8tpc_MUJbvT8aoznfcn44mX-a0q6IAK15lrQ0NTZJNH5qJp0u8pFN0GdxV4tMjDTSC6QQTGd1kTOFnhDpfV0IpVxm80JJ5rTAfm_BbSQaCY_XwzZbOAxDgTQQbD5KOeUiW_TXclhxMC_L2VcMQLkcerU88vgduCPDpPIVRq54wVDW5XqGGzzd4S786ccoClx-DNetHta__kkf-d8O4n2413Fs8iFOigewZZuHsNvXryDdcvYIvo2_r2ovYb0kS0d86mpryAzJd9OSMqYQURck5ndGp0CCKKiO5TYIkn0ymXymH5EGGDLuBcUNNtsgb2v24PRG_vIxbDfLxu4DKUyCgezICV8K2RiVc6NFJlPEvkbOrQbwrrd_dR7TilQhHGNFFYBTeeBUHXAGsOfteOXJaMIBvO4xU-Gq4I96VGOX61WFrFBIf6grBvAkgmnzdo_Bp9f0-gruTucns2p2VB4_gx3uCx6HbafnsN1erO0LZGGtfhnmAoGzm8bNXxxPOHQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+of+Shared+Latent+Nonlinear+Effective+Connectivity+for+EEG-Based+Depression+Detection&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Yuan%2C+Wenjie&rft.au=Zhang%2C+Xiaowei&rft.au=Zhang%2C+Xuejuan&rft.au=Wang%2C+Shuangyan&rft.date=2025-06-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=36&rft.issue=6&rft.spage=10663&rft.epage=10677&rft_id=info:doi/10.1109%2FTNNLS.2024.3514182&rft_id=info%3Apmid%2F40030718&rft.externalDocID=10804839 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |