Discovery of Shared Latent Nonlinear Effective Connectivity for EEG-Based Depression Detection

Granger causality (GC) effective connectivity (EC) calculated from electroencephalogram (EEG) signals has been widely used in mental disorder detection. However, the existing methods only take into account linear dynamics or nonlinear dynamics within a single sample, ignoring the nonlinear dynamics...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 36; no. 6; pp. 10663 - 10677
Main Authors Yuan, Wenjie, Zhang, Xiaowei, Zhang, Xuejuan, Wang, Shuangyan, Wang, Tianzhi, Zhang, Tong, Zhao, Qinglin, Hu, Bin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Granger causality (GC) effective connectivity (EC) calculated from electroencephalogram (EEG) signals has been widely used in mental disorder detection. However, the existing methods only take into account linear dynamics or nonlinear dynamics within a single sample, ignoring the nonlinear dynamics shared by the same class of subjects. In this article, a model combining graph neural networks (GNNs) and variational autoencoders (VAEs) is proposed to construct shared latent nonlinear EC from raw EEG signals for depression detection. Several convolution modules and fully connected layers are used in the graph encoding network to learn the embeddings of the connectivity connected by every two EEG channels. In the graph decoding network, a class-specific Gaussian mixture model (GMM) is introduced in the VAEs to model shared dynamics in EC of the same class of subjects, and the shared dynamics combine the encoded embeddings of the EC and the past time series to restore raw EEG signals. Through a node-to-edge encoding process and an edge-to-node decoding process, the shared latent nonlinear EC in EEG signals can ultimately be learned by gradually optimizing the model's loss function. The performance of the proposed method is verified on several open-accessed datasets. The excellent results prove that the proposed neural networks can learn more generalized nonlinear EC representations, and shared latent dynamics discovery can also help to identify depression better. The code is available at https://github.com/william-yuan2012/DSLNEC-tscausality .
AbstractList Granger causality (GC) effective connectivity (EC) calculated from electroencephalogram (EEG) signals has been widely used in mental disorder detection. However, the existing methods only take into account linear dynamics or nonlinear dynamics within a single sample, ignoring the nonlinear dynamics shared by the same class of subjects. In this article, a model combining graph neural networks (GNNs) and variational autoencoders (VAEs) is proposed to construct shared latent nonlinear EC from raw EEG signals for depression detection. Several convolution modules and fully connected layers are used in the graph encoding network to learn the embeddings of the connectivity connected by every two EEG channels. In the graph decoding network, a class-specific Gaussian mixture model (GMM) is introduced in the VAEs to model shared dynamics in EC of the same class of subjects, and the shared dynamics combine the encoded embeddings of the EC and the past time series to restore raw EEG signals. Through a node-to-edge encoding process and an edge-to-node decoding process, the shared latent nonlinear EC in EEG signals can ultimately be learned by gradually optimizing the model's loss function. The performance of the proposed method is verified on several open-accessed datasets. The excellent results prove that the proposed neural networks can learn more generalized nonlinear EC representations, and shared latent dynamics discovery can also help to identify depression better. The code is available at https://github.com/william-yuan2012/DSLNEC-tscausality .
Granger causality (GC) effective connectivity (EC) calculated from electroencephalogram (EEG) signals has been widely used in mental disorder detection. However, the existing methods only take into account linear dynamics or nonlinear dynamics within a single sample, ignoring the nonlinear dynamics shared by the same class of subjects. In this article, a model combining graph neural networks (GNNs) and variational autoencoders (VAEs) is proposed to construct shared latent nonlinear EC from raw EEG signals for depression detection. Several convolution modules and fully connected layers are used in the graph encoding network to learn the embeddings of the connectivity connected by every two EEG channels. In the graph decoding network, a class-specific Gaussian mixture model (GMM) is introduced in the VAEs to model shared dynamics in EC of the same class of subjects, and the shared dynamics combine the encoded embeddings of the EC and the past time series to restore raw EEG signals. Through a node-to-edge encoding process and an edge-to-node decoding process, the shared latent nonlinear EC in EEG signals can ultimately be learned by gradually optimizing the model's loss function. The performance of the proposed method is verified on several open-accessed datasets. The excellent results prove that the proposed neural networks can learn more generalized nonlinear EC representations, and shared latent dynamics discovery can also help to identify depression better. The code is available at https://github.com/william-yuan2012/DSLNEC-tscausality.Granger causality (GC) effective connectivity (EC) calculated from electroencephalogram (EEG) signals has been widely used in mental disorder detection. However, the existing methods only take into account linear dynamics or nonlinear dynamics within a single sample, ignoring the nonlinear dynamics shared by the same class of subjects. In this article, a model combining graph neural networks (GNNs) and variational autoencoders (VAEs) is proposed to construct shared latent nonlinear EC from raw EEG signals for depression detection. Several convolution modules and fully connected layers are used in the graph encoding network to learn the embeddings of the connectivity connected by every two EEG channels. In the graph decoding network, a class-specific Gaussian mixture model (GMM) is introduced in the VAEs to model shared dynamics in EC of the same class of subjects, and the shared dynamics combine the encoded embeddings of the EC and the past time series to restore raw EEG signals. Through a node-to-edge encoding process and an edge-to-node decoding process, the shared latent nonlinear EC in EEG signals can ultimately be learned by gradually optimizing the model's loss function. The performance of the proposed method is verified on several open-accessed datasets. The excellent results prove that the proposed neural networks can learn more generalized nonlinear EC representations, and shared latent dynamics discovery can also help to identify depression better. The code is available at https://github.com/william-yuan2012/DSLNEC-tscausality.
Author Wang, Shuangyan
Wang, Tianzhi
Yuan, Wenjie
Zhang, Xiaowei
Hu, Bin
Zhao, Qinglin
Zhang, Xuejuan
Zhang, Tong
Author_xml – sequence: 1
  givenname: Wenjie
  orcidid: 0009-0006-6530-0444
  surname: Yuan
  fullname: Yuan, Wenjie
  email: 120220909211@lzu.edu.cn
  organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
– sequence: 2
  givenname: Xiaowei
  orcidid: 0000-0001-8562-416X
  surname: Zhang
  fullname: Zhang, Xiaowei
  email: zhangxw@lzu.edu.cn
  organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
– sequence: 3
  givenname: Xuejuan
  surname: Zhang
  fullname: Zhang, Xuejuan
  email: zhxuejuan2023@lzu.edu.cn
  organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
– sequence: 4
  givenname: Shuangyan
  surname: Wang
  fullname: Wang, Shuangyan
  email: wshuangyan2023@lzu.edu.cn
  organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
– sequence: 5
  givenname: Tianzhi
  orcidid: 0009-0007-6418-2404
  surname: Wang
  fullname: Wang, Tianzhi
  email: wangtzh20@lzu.edu.cn
  organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
– sequence: 6
  givenname: Tong
  orcidid: 0000-0002-7025-6365
  surname: Zhang
  fullname: Zhang, Tong
  email: tony@scut.edu.cn
  organization: Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 7
  givenname: Qinglin
  orcidid: 0000-0001-5690-666X
  surname: Zhao
  fullname: Zhao, Qinglin
  email: qlzhao@lzu.edu.cn
  organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
– sequence: 8
  givenname: Bin
  orcidid: 0000-0003-3514-5413
  surname: Hu
  fullname: Hu, Bin
  email: bh@lzu.edu.cn
  organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40030718$$D View this record in MEDLINE/PubMed
BookMark eNpNkF1LwzAUhoNM3Jz7AyLSS28689U2udRtTqHMi03wypJ2J1jpkpl0g_17sw_Fc5MX8rwHznOJOsYaQOia4CEhWN4vZrN8PqSY8iFLCCeCnqEeJSmNKROi85ez9y4aeP-Fw6Q4Sbm8QF2OMcMZET30Ma59ZbfgdpHV0fxTOVhGuWrBtNHMmqY2oFw00Rqqtt5CNLLGHGLd7iJtw9dkGj8qH1pjWDvwvrYmxHYPWXOFzrVqPAxObx-9PU0Wo-c4f52-jB7yuKJZ0sbpEpKkhBIyrkspCCSUE6orljFSyoSQhOMyq6TAKhyf0rSSTCmdgZCKY12yPro77l07-70B3xarcBc0jTJgN75gJGMcc4lZQG9P6KZcwbJYu3ql3K74dRIAegQqZ713oP8Qgou9--Lgvti7L07uQ-nmWKoB4F9BYC6YZD_V5n7c
CODEN ITNNAL
Cites_doi 10.1109/TNSRE.2020.3013429
10.1109/TPAMI.2021.3065601
10.7554/eLife.60595
10.1038/nn.3690
10.1109/CVPR.2016.90
10.1103/PhysRevLett.100.144103
10.1002/9781118535561
10.1177/146642409311300216
10.1016/j.jneumeth.2013.10.018
10.1109/CVPR52688.2022.01553
10.1109/JBHI.2019.2941222
10.1038/s41398-018-0239-y
10.2307/1912791.1969
10.1103/PhysRevLett.85.461
10.1109/TAFFC.2018.2817622
10.1109/TAFFC.2024.3392904
10.1007/s11571-020-09619-0
10.24963/ijcai.2017/273
10.1016/j.neuroimage.2010.08.063
10.5555/3045118.3045167
10.1016/S0165-0270(03)00052-9
10.1109/TNNLS.2022.3159573
10.1109/TBME.2015.2481482
10.1016/j.cmpb.2017.11.023
10.1002/hbm.25683
10.1002/9780470479216.corpsy0271
10.1371/journal.pone.0171409
10.1109/TAFFC.2019.2934412
10.1016/S0140-6736(09)60879-5
10.1038/s41593-019-0510-4
10.1109/TII.2020.3020694
10.48550/arXiv.1312.6114
10.1109/EMBC44109.2020.9175956
10.1109/TAFFC.2018.2790939
10.5555/3104322.3104425
10.1109/TNNLS.2023.3236635
10.1109/ICDSP.2007.4288544
10.1109/BIBM58861.2023.10386011
10.3389/fpsyg.2020.00730
10.1016/j.neunet.2023.12.029
10.1109/TNNLS.2023.3292179
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TNNLS.2024.3514182
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 10677
ExternalDocumentID 40030718
10_1109_TNNLS_2024_3514182
10804839
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62072219; 62227807
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: lzujbky-2022-ey13; lzujbky-2024-it15
  funderid: 10.13039/501100012226
– fundername: Natural Science Foundation of Gansu Province; Natural Science Foundation of Gansu Province, China
  grantid: 22JR5RA401
  funderid: 10.13039/501100004775
– fundername: National Key Research and Development Program of China
  grantid: 2019YFA0706200
  funderid: 10.13039/501100012166
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c275t-6de55bebe74fb981e52412fc3731b9511540b7c980a110626c93aaf7e89a40fb3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 08:18:37 EDT 2025
Sat Aug 02 01:40:50 EDT 2025
Thu Jul 03 08:17:02 EDT 2025
Wed Aug 27 01:52:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-6de55bebe74fb981e52412fc3731b9511540b7c980a110626c93aaf7e89a40fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0007-6418-2404
0000-0001-8562-416X
0000-0001-5690-666X
0000-0003-3514-5413
0000-0002-7025-6365
0009-0006-6530-0444
PMID 40030718
PQID 3173404903
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_3173404903
ieee_primary_10804839
crossref_primary_10_1109_TNNLS_2024_3514182
pubmed_primary_40030718
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
Van der Maaten (ref50) 2008; 9
ref15
ref14
ref11
ref10
Kipf (ref16)
ref17
ref19
ref18
ref51
ref46
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref4
Marcinkevič s (ref36)
ref3
ref6
ref5
Kipf (ref43)
ref40
Loshchilov (ref35)
ref37
Sener (ref30)
ref31
ref33
ref32
ref2
ref1
ref39
ref38
Löwe (ref25)
ref24
ref23
ref26
Honke (ref9)
ref20
ref22
ref21
ref28
ref27
ref29
Veličković (ref45)
Kingma (ref34) 2014
References_xml – ident: ref13
  doi: 10.1109/TNSRE.2020.3013429
– ident: ref15
  doi: 10.1109/TPAMI.2021.3065601
– ident: ref33
  doi: 10.7554/eLife.60595
– ident: ref10
  doi: 10.1038/nn.3690
– year: 2014
  ident: ref34
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref27
  doi: 10.1109/CVPR.2016.90
– ident: ref23
  doi: 10.1103/PhysRevLett.100.144103
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref45
  article-title: Graph attention networks
– ident: ref24
  doi: 10.1002/9781118535561
– ident: ref1
  doi: 10.1177/146642409311300216
– start-page: 1
  volume-title: Proc. 5th Int. Conf. Learn. Represent.
  ident: ref43
  article-title: Semi-supervised classification with graph convolutional networks
– start-page: 2688
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref16
  article-title: Neural relational inference for interacting systems
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref36
  article-title: Interpretable models for Granger causality using self-explaining neural networks
– ident: ref39
  doi: 10.1016/j.jneumeth.2013.10.018
– ident: ref51
  doi: 10.1109/CVPR52688.2022.01553
– ident: ref21
  doi: 10.1109/JBHI.2019.2941222
– ident: ref6
  doi: 10.1038/s41398-018-0239-y
– ident: ref12
  doi: 10.2307/1912791.1969
– ident: ref22
  doi: 10.1103/PhysRevLett.85.461
– ident: ref44
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref49
  doi: 10.1109/TAFFC.2024.3392904
– start-page: 525
  volume-title: Proc. NIPS
  ident: ref30
  article-title: Multi-task learning as multi-objective optimization
– ident: ref14
  doi: 10.1007/s11571-020-09619-0
– ident: ref29
  doi: 10.24963/ijcai.2017/273
– ident: ref31
  doi: 10.1016/j.neuroimage.2010.08.063
– ident: ref28
  doi: 10.5555/3045118.3045167
– ident: ref40
  doi: 10.1016/S0165-0270(03)00052-9
– ident: ref5
  doi: 10.1109/TNNLS.2022.3159573
– ident: ref38
  doi: 10.1109/TBME.2015.2481482
– ident: ref7
  doi: 10.1016/j.cmpb.2017.11.023
– ident: ref11
  doi: 10.1002/hbm.25683
– ident: ref2
  doi: 10.1002/9780470479216.corpsy0271
– ident: ref32
  doi: 10.1371/journal.pone.0171409
– ident: ref4
  doi: 10.1109/TAFFC.2019.2934412
– ident: ref3
  doi: 10.1016/S0140-6736(09)60879-5
– ident: ref19
  doi: 10.1038/s41593-019-0510-4
– ident: ref18
  doi: 10.1109/TII.2020.3020694
– start-page: 509
  volume-title: Proc. Conf. Causal Learn. Reasoning
  ident: ref25
  article-title: Amortized causal discovery: Learning to infer causal graphs from time-series data
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref9
  article-title: Representation learning for improved interpretability and classification accuracy of clinical factors from EEG
– ident: ref26
  doi: 10.48550/arXiv.1312.6114
– ident: ref8
  doi: 10.1109/EMBC44109.2020.9175956
– ident: ref20
  doi: 10.1109/TAFFC.2018.2790939
– ident: ref42
  doi: 10.5555/3104322.3104425
– ident: ref47
  doi: 10.1109/TNNLS.2023.3236635
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref35
  article-title: SGDR: Stochastic gradient descent with warm restarts
– ident: ref41
  doi: 10.1109/ICDSP.2007.4288544
– volume: 9
  start-page: 2579
  issue: 86
  year: 2008
  ident: ref50
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref48
  doi: 10.1109/BIBM58861.2023.10386011
– ident: ref17
  doi: 10.3389/fpsyg.2020.00730
– ident: ref46
  doi: 10.1016/j.neunet.2023.12.029
– ident: ref37
  doi: 10.1109/TNNLS.2023.3292179
SSID ssj0000605649
Score 2.4702077
Snippet Granger causality (GC) effective connectivity (EC) calculated from electroencephalogram (EEG) signals has been widely used in mental disorder detection....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 10663
SubjectTerms Algorithms
Brain modeling
Decoding
Depression
Depression - diagnosis
Depression - physiopathology
Depression detection
Electroencephalography
Electroencephalography - methods
Encoding
Feature extraction
Graph neural networks
graph neural networks (GNNs)
Humans
Kernel
Mental disorders
Neural Networks, Computer
Nonlinear Dynamics
nonlinear effective connectivity (EC)
shared dynamics
Signal Processing, Computer-Assisted
Time series analysis
variational autoencoders (VAEs)
Title Discovery of Shared Latent Nonlinear Effective Connectivity for EEG-Based Depression Detection
URI https://ieeexplore.ieee.org/document/10804839
https://www.ncbi.nlm.nih.gov/pubmed/40030718
https://www.proquest.com/docview/3173404903
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BHhAXKIXCUoqM1FvlxWs7r2MLu0WI5gJIe2rkp1RVyqIle4Bfz9hOEKqE1JsPSZR4xplvZr6ZAfjqvFYSzQD1zDoa2p9QVfGCMl1qaZiXXoXQwK86v7qX14ts0Rerx1oY51wkn7lJWMZcvl2adQiVnQc-nESLvgmb6LmlYq3XgApDYJ5HuMunOadcFIuhSIZV53d1fXOL7iCXk8BdR1S9DVsyqniY9_HGJsUhK-_jzWh35rtQD2-c6CZ_J-tOT8zzP80c__uTPsBOj0DJ96Qye7Dh2o-wO0x3IP1h34ffl38eTSB4PpGlJ6Gxs7PkBqFp25E6NdhQK5K6H-Mvk0TKjEnDKAhCYTKb_aQ_0EhacjnQbVtcdpH81R7A_Xx2d3FF-2kM1PAi62huXZZplHkhva7KqcvQ-HNvRCGmGnEaYjGmC1OVTOGOo59kKqGUL1xZKcm8Fp9g1C5bdwSkshm6eVMvwqBga1XJrRaFzFEzNCJSNYZvgzyah9R0o4nOCquaKMgmCLLpBTmGg7Cvb65MWzqGs0GGDZ6ZkAhRrVuuHxvETEKGlKcYw2ES7uvdg04cv_PUz7DNwwjgGIg5gVG3WrsviEs6fRr18QUY09vT
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VIkEvlEeh4WkkOCGnju19HTgASUlpuhdSKSe29tqWENKmajZC5b_wV_htjO3dqELqsRI3H3atXc9nzzf25xmAN9ZpJdENUMeMpT79CVUFzyjTuZY1c9IpvzVwUqbTU_llkSy24PfmLoy1NojP7NA3w1m-WdZrv1V24PVwEj16p6E8tpc_MUJbvT8aoznfcn44mX-a0q6IAK15lrQ0NTZJNH5qJp0u8pFN0GdxV4tMjDTSC6QQTGd1kTOFnhDpfV0IpVxm80JJ5rTAfm_BbSQaCY_XwzZbOAxDgTQQbD5KOeUiW_TXclhxMC_L2VcMQLkcerU88vgduCPDpPIVRq54wVDW5XqGGzzd4S786ccoClx-DNetHta__kkf-d8O4n2413Fs8iFOigewZZuHsNvXryDdcvYIvo2_r2ovYb0kS0d86mpryAzJd9OSMqYQURck5ndGp0CCKKiO5TYIkn0ymXymH5EGGDLuBcUNNtsgb2v24PRG_vIxbDfLxu4DKUyCgezICV8K2RiVc6NFJlPEvkbOrQbwrrd_dR7TilQhHGNFFYBTeeBUHXAGsOfteOXJaMIBvO4xU-Gq4I96VGOX61WFrFBIf6grBvAkgmnzdo_Bp9f0-gruTucns2p2VB4_gx3uCx6HbafnsN1erO0LZGGtfhnmAoGzm8bNXxxPOHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+of+Shared+Latent+Nonlinear+Effective+Connectivity+for+EEG-Based+Depression+Detection&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Yuan%2C+Wenjie&rft.au=Zhang%2C+Xiaowei&rft.au=Zhang%2C+Xuejuan&rft.au=Wang%2C+Shuangyan&rft.date=2025-06-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=36&rft.issue=6&rft.spage=10663&rft.epage=10677&rft_id=info:doi/10.1109%2FTNNLS.2024.3514182&rft_id=info%3Apmid%2F40030718&rft.externalDocID=10804839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon