Wavelet integrated attention network with multi-resolution frequency learning for mixed-type wafer defect recognition

Wafer defect recognition has been an important measure in developing the manufacturing process. In real-life manufacturing, however, defects can be complicated, and their wafer maps are often accompanied by noise. This encourages us to build a noise-robust framework with outstanding performance and...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 121; p. 105975
Main Authors Wei, Yuxiang, Wang, Huan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2023
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2023.105975

Cover

Abstract Wafer defect recognition has been an important measure in developing the manufacturing process. In real-life manufacturing, however, defects can be complicated, and their wafer maps are often accompanied by noise. This encourages us to build a noise-robust framework with outstanding performance and sound interpretability on defect recognition. Therefore, this paper chooses discrete wavelet transform for its clear physical meaning and ability of frequency learning. Moreover, it outperforms traditional down-sampling operations in the preservation of fringe information. Based on this, we propose a multiresolution wavelet integrated attention network (MRWA-Net). Specifically, we design a learnable discrete wavelet transform layer (DWT-Layer), which expands convolutional neural network’s (CNN’s) feature learning space to the wavelet domain. This helps the framework procure hidden information from different frequency components and their location information. Furthermore, we utilize different levels of wavelet transform to interpret the images with different resolutions, thus learning features from different perspectives. Additionally, we insert a frequency-location attention module (FLA) to select the useful frequency-location information captured by DWT-Layer. The proposed approach is evaluated on a dataset with 38015 subjects and 38 types of defects and reaches 98.84% accuracy. To demonstrate the noise-robustness of our framework, we further compare it with other state-of-the-art methods on wafer maps with different ratios of additional noise. The results show that our framework excels other methods under all noise ratios and exhibits more notable excellence on data accompanied by a higher ratio of noise. Finally, we present visualizing analysis to demonstrate that the proposed DWT-Layer can learn from different frequency bands and retrieve information with multiple resolutions.
AbstractList Wafer defect recognition has been an important measure in developing the manufacturing process. In real-life manufacturing, however, defects can be complicated, and their wafer maps are often accompanied by noise. This encourages us to build a noise-robust framework with outstanding performance and sound interpretability on defect recognition. Therefore, this paper chooses discrete wavelet transform for its clear physical meaning and ability of frequency learning. Moreover, it outperforms traditional down-sampling operations in the preservation of fringe information. Based on this, we propose a multiresolution wavelet integrated attention network (MRWA-Net). Specifically, we design a learnable discrete wavelet transform layer (DWT-Layer), which expands convolutional neural network’s (CNN’s) feature learning space to the wavelet domain. This helps the framework procure hidden information from different frequency components and their location information. Furthermore, we utilize different levels of wavelet transform to interpret the images with different resolutions, thus learning features from different perspectives. Additionally, we insert a frequency-location attention module (FLA) to select the useful frequency-location information captured by DWT-Layer. The proposed approach is evaluated on a dataset with 38015 subjects and 38 types of defects and reaches 98.84% accuracy. To demonstrate the noise-robustness of our framework, we further compare it with other state-of-the-art methods on wafer maps with different ratios of additional noise. The results show that our framework excels other methods under all noise ratios and exhibits more notable excellence on data accompanied by a higher ratio of noise. Finally, we present visualizing analysis to demonstrate that the proposed DWT-Layer can learn from different frequency bands and retrieve information with multiple resolutions.
ArticleNumber 105975
Author Wang, Huan
Wei, Yuxiang
Author_xml – sequence: 1
  givenname: Yuxiang
  orcidid: 0000-0001-6552-8912
  surname: Wei
  fullname: Wei, Yuxiang
  organization: Glasgow College, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Huan
  orcidid: 0000-0002-1403-5314
  surname: Wang
  fullname: Wang, Huan
  email: huan-wan21@mails.tsinghua.edu.cn
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
BookMark eNqFkMtOwzAQRS1UJNrCLyD_QIqdhxNLLEAVL6kSGxBLy3HGwSW1g-O09O9JKGzYdDXSHZ2rmTNDE-ssIHRJyYISyq7WC7C1bFtpFjGJkyHMeJ6doCkt8iRiOeMTNCU8iyPKc3aGZl23JoQkRcqmqH-TW2ggYGMD1F4GqLAMAWwwzmILYef8B96Z8I43fRNM5KFzTf-z1R4-e7BqjxuQ3hpbY-083pgvqKKwbwHvpAaPK9CgAvagXG3NiJ6jUy2bDi5-5xy93t-9LB-j1fPD0_J2Fak4z0LEVMU4VAUvZFrksqRlkdMEaFGWSax5QUkpqaZlwkHTnMcEmEoVTyUjKdEqS-bo-tCrvOs6D1ooE-R4QfDSNIISMSoUa_GnUIwKxUHhgLN_eOvNRvr9cfDmAMLw3NaAF50ygymozGAhiMqZYxXfdtqV3Q
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126903
crossref_primary_10_1016_j_eswa_2024_124406
crossref_primary_10_1016_j_engappai_2024_108848
crossref_primary_10_1016_j_engappai_2023_107384
crossref_primary_10_1088_1361_6501_ad457f
crossref_primary_10_1016_j_engappai_2025_110121
crossref_primary_10_1016_j_engappai_2024_108476
crossref_primary_10_1109_ACCESS_2023_3321025
crossref_primary_10_1016_j_eswa_2025_127121
crossref_primary_10_1088_1361_6501_ad730b
crossref_primary_10_1016_j_ress_2023_109850
crossref_primary_10_1109_ACCESS_2025_3528242
crossref_primary_10_1016_j_engappai_2023_106390
Cites_doi 10.1016/j.engappai.2022.104959
10.1117/1.JMM.14.1.014001
10.1080/24725854.2017.1386337
10.1109/TSM.2018.2841416
10.1109/TSM.2020.3020985
10.1016/j.engappai.2012.03.016
10.1016/j.eswa.2007.09.023
10.1007/s10951-010-0222-9
10.1016/j.cie.2022.107977
10.1016/j.patcog.2004.03.009
10.1080/00207543.2019.1637035
10.1109/TSM.2022.3183008
10.1016/j.mee.2004.12.003
10.1109/ACCESS.2020.2970461
10.1016/j.compind.2022.103720
10.1109/TSM.2021.3062943
10.1109/TSM.2018.2806931
10.1109/TSM.2020.2994357
10.1109/TII.2021.3092372
10.1109/CSTIC49141.2020.9282438
10.1109/TSM.2019.2902657
10.1109/TSM.2020.3010984
10.1080/00207543.2011.574502
10.1007/s10845-020-01540-x
10.1016/j.engappai.2021.104387
10.1016/j.measurement.2022.111872
10.1109/TIM.2020.3007292
10.1016/j.icte.2021.04.007
10.1016/j.cie.2022.107996
10.1016/j.eswa.2009.01.003
10.1109/34.192463
10.1109/TIE.2020.3013492
10.3390/app12042209
10.1016/j.engfailanal.2021.105756
10.1109/TIP.2021.3101395
10.5220/0009177909740979
10.1080/07408179208964233
10.1109/TII.2015.2481719
10.1080/00207543.2017.1401233
10.1109/TSM.2019.2925361
10.1109/TSM.2020.3027431
10.1109/TSM.2011.2154870
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2023.105975
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2023_105975
S0952197623001598
GrantInformation_xml – fundername: Innovation Fund of Glasgow College, University of Electronic Science and Technology of China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c275t-6cd69ed898a487ab1b8713e18bb32f9810ba1f1b39ef17920e6c4c94a6040fc53
IEDL.DBID AIKHN
ISSN 0952-1976
IngestDate Tue Jul 01 01:04:07 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
Fri Feb 23 02:35:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wavelet transform
Semiconductor manufacturing
Wafer defect recognition
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-6cd69ed898a487ab1b8713e18bb32f9810ba1f1b39ef17920e6c4c94a6040fc53
ORCID 0000-0002-1403-5314
0000-0001-6552-8912
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2023_105975
crossref_primary_10_1016_j_engappai_2023_105975
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_105975
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ezzat, Liu, Hochbaum, Ding (b13) 2021; 34
Ooi, Sok, Kuang, Demidenko, Chan (b31) 2013; 26
Chen, Yi, Guo, Ma, Ke, Cen (b8) 2021
Boutell, Luo, Shen, Brown (b3) 2004; 37
Wen, Gao, Cai, Wang, Mei (b42) 2020; 69
Gómez-Sirvent, López De La Rosa, Sánchez-Reolid, Morales, Fernández-Caballero (b14) 2022; 202
Li, Huang (b24) 2009; 36
Mallat (b26) 1989; 7
Kim, Lee, Kim (b19) 2018; 50
Zhuang, J., Mao, G., Wang, Y., Chen, X., Wei, Z., 2020. A Neural-Network Approach to Better Diagnosis of Defect Pattern in Wafer Bin Map. In: Proc. 2020 China Semiconductor Technology International Conference. pp. 1–3.
Korkmaz, Acikgoz (b21) 2022; 113
Cha, Jeong (b5) 2022; 12
Chen, Chen, Han, Zhao, Zhang, Zhu (b7) 2020; 8
Kim, Lee, Lee, Sohn (b20) 2021
Mat Jizat, Abdul Majeed, Ab. Nasir, Taha, Yuen (b27) 2021; 7
Mönch, Uzsoy, Fowler (b29) 2018; 56
Piao, Jin, Lee, Byun (b32) 2018; 31
Valens (b37) 1999
Wang, Yang, Zhang, Zhang, Chien (b40) 2019; 32
Yuan, Kuo, Bae (b47) 2011; 24
Guo, Lu, Liu, Cheng, Hu (b15) 2022
Cheon, Lee, Kim, Lee (b10) 2019; 32
Yoon, Kang (b43) 2022; 166
Lee, Kim (b23) 2020; 33
Shin, Kahng, Kim (b35) 2022; 167
Chen, Zhang, Yi, Shang, Yang (b9) 2021; 130
Yu, Shen, Wang (b46) 2021; 105
Nag, Makwana, R, Mittal, Mohan (b30) 2022; 142
Adly, Alhussein, Yoo, Al-Hammadi, Taha, Muhaidat (b1) 2015; 11
Jin, Kim, Piao, Li, Piao (b17) 2020; 31
Mönch, Fowler, Dauzère-Pérès, Mason, Rose (b28) 2011; 6
Shankar, Zhong (b34) 2005; 77
Saqlain, Abbas, Lee (b33) 2020; 33
Choi, Kim, Ha, Bae (b11) 2012; 50
Wang, Xu, Yang, Zhang, Li (b39) 2020; 33
Wang, Chen (b38) 2022; 35
Barnes, Goasmat, Sohn, Zhou, Vladár, Silver (b2) 2015; 14
Yu, Liu (b44) 2021; 68
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner (b12) 2020
Yu, Liu (b45) 2022; 18
Chao, Tong (b6) 2009; 36
Kyeong, Kim (b22) 2018; 31
Kim, Jeong, Tong, Jeong (b18) 2020; 58
Hyun, Kim (b16) 2020; 33
Li, Shen, Guo, Lai (b25) 2021; 30
Byun, Y., Baek, U., 2020. Mixed pattern Recognition Methodology on Wafer Maps with Pre-trained Convolutional Neural Networks. In: Proc. ICAART.
Wang, Zhong, Zhao, Zuo (b41) 2021; 11
Uzsoy, Lee, Martin-Vega (b36) 1992; 24
Yuan (10.1016/j.engappai.2023.105975_b47) 2011; 24
Mat Jizat (10.1016/j.engappai.2023.105975_b27) 2021; 7
Kyeong (10.1016/j.engappai.2023.105975_b22) 2018; 31
Yu (10.1016/j.engappai.2023.105975_b44) 2021; 68
Shin (10.1016/j.engappai.2023.105975_b35) 2022; 167
Mönch (10.1016/j.engappai.2023.105975_b28) 2011; 6
Ooi (10.1016/j.engappai.2023.105975_b31) 2013; 26
Wang (10.1016/j.engappai.2023.105975_b39) 2020; 33
Cheon (10.1016/j.engappai.2023.105975_b10) 2019; 32
Li (10.1016/j.engappai.2023.105975_b25) 2021; 30
Wang (10.1016/j.engappai.2023.105975_b40) 2019; 32
Wang (10.1016/j.engappai.2023.105975_b41) 2021; 11
Yu (10.1016/j.engappai.2023.105975_b45) 2022; 18
10.1016/j.engappai.2023.105975_b48
Boutell (10.1016/j.engappai.2023.105975_b3) 2004; 37
Mönch (10.1016/j.engappai.2023.105975_b29) 2018; 56
Wang (10.1016/j.engappai.2023.105975_b38) 2022; 35
Yu (10.1016/j.engappai.2023.105975_b46) 2021; 105
Chen (10.1016/j.engappai.2023.105975_b7) 2020; 8
10.1016/j.engappai.2023.105975_b4
Nag (10.1016/j.engappai.2023.105975_b30) 2022; 142
Choi (10.1016/j.engappai.2023.105975_b11) 2012; 50
Chen (10.1016/j.engappai.2023.105975_b9) 2021; 130
Ezzat (10.1016/j.engappai.2023.105975_b13) 2021; 34
Mallat (10.1016/j.engappai.2023.105975_b26) 1989; 7
Piao (10.1016/j.engappai.2023.105975_b32) 2018; 31
Hyun (10.1016/j.engappai.2023.105975_b16) 2020; 33
Saqlain (10.1016/j.engappai.2023.105975_b33) 2020; 33
Cha (10.1016/j.engappai.2023.105975_b5) 2022; 12
Korkmaz (10.1016/j.engappai.2023.105975_b21) 2022; 113
Chen (10.1016/j.engappai.2023.105975_b8) 2021
Shankar (10.1016/j.engappai.2023.105975_b34) 2005; 77
Gómez-Sirvent (10.1016/j.engappai.2023.105975_b14) 2022; 202
Dosovitskiy (10.1016/j.engappai.2023.105975_b12) 2020
Barnes (10.1016/j.engappai.2023.105975_b2) 2015; 14
Yoon (10.1016/j.engappai.2023.105975_b43) 2022; 166
Kim (10.1016/j.engappai.2023.105975_b18) 2020; 58
Kim (10.1016/j.engappai.2023.105975_b19) 2018; 50
Guo (10.1016/j.engappai.2023.105975_b15) 2022
Chao (10.1016/j.engappai.2023.105975_b6) 2009; 36
Lee (10.1016/j.engappai.2023.105975_b23) 2020; 33
Wen (10.1016/j.engappai.2023.105975_b42) 2020; 69
Jin (10.1016/j.engappai.2023.105975_b17) 2020; 31
Kim (10.1016/j.engappai.2023.105975_b20) 2021
Adly (10.1016/j.engappai.2023.105975_b1) 2015; 11
Uzsoy (10.1016/j.engappai.2023.105975_b36) 1992; 24
Li (10.1016/j.engappai.2023.105975_b24) 2009; 36
Valens (10.1016/j.engappai.2023.105975_b37) 1999
References_xml – volume: 33
  start-page: 653
  year: 2020
  end-page: 662
  ident: b23
  article-title: Semi-supervised multi-label learning for classification of wafer bin maps with mixed-type defect patterns
  publication-title: IEEE Trans. Semicond. Manuf.
– year: 2021
  ident: b20
  article-title: Novel method for detection of mixed-type defect patterns in wafer maps based on a single shot detector algorithm
  publication-title: J. Intell. Manuf.
– volume: 36
  start-page: 10158
  year: 2009
  end-page: 10167
  ident: b6
  article-title: Wafer defect pattern recognition by multi-class support vector machines by using a novel defect cluster index
  publication-title: Expert Syst. Appl.
– volume: 11
  start-page: 1267
  year: 2015
  end-page: 1276
  ident: b1
  article-title: Simplified subspaced regression network for identification of defect patterns in semiconductor wafer maps
  publication-title: IEEE Trans. Ind. Inform.
– volume: 14
  start-page: 14001
  year: 2015
  ident: b2
  article-title: Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection
  publication-title: J. Micro/Nanolithography MEMS MOEMS
– volume: 77
  start-page: 337
  year: 2005
  end-page: 346
  ident: b34
  article-title: Defect detection on semiconductor wafer surfaces
  publication-title: Microelectron. Eng.
– year: 2021
  ident: b8
  article-title: Research on mixed type wafer map based on deep convolutional neural network
– volume: 202
  year: 2022
  ident: b14
  article-title: Defect classification on semiconductor wafers using Fisher vector and visual vocabularies coding
  publication-title: Measurement: J. Int. Meas. Confed.
– volume: 33
  start-page: 622
  year: 2020
  end-page: 634
  ident: b16
  article-title: Memory-augmented convolutional neural networks with triplet loss for imbalanced wafer defect pattern classification
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 18
  start-page: 1674
  year: 2022
  end-page: 1683
  ident: b45
  article-title: Multiple granularities generative adversarial network for recognition of wafer map defects
  publication-title: IEEE Trans. Ind. Inform.
– volume: 50
  start-page: 3274
  year: 2012
  end-page: 3287
  ident: b11
  article-title: Multi-step ART1 algorithm for recognition of defect patterns on semiconductor wafers
  publication-title: Int. J. Prod. Res.
– volume: 7
  start-page: 674
  year: 1989
  end-page: 693
  ident: b26
  article-title: A theory for multiresolution signal decomposition: The wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 68
  start-page: 8789
  year: 2021
  end-page: 8797
  ident: b44
  article-title: Two-dimensional principal ComponentAnalysis-based convolutional autoencoder for wafer map defect detection
  publication-title: IEEE Trans. Ind. Electron.
– volume: 31
  start-page: 1861
  year: 2020
  end-page: 1875
  ident: b17
  article-title: Wafer map defect pattern classification based on convolutional neural network features and error-correcting output codes
  publication-title: J. Intell. Manuf.
– volume: 37
  start-page: 1757
  year: 2004
  end-page: 1771
  ident: b3
  article-title: Learning multi-label scene classification
  publication-title: Pattern Recognit.
– volume: 32
  start-page: 310
  year: 2019
  end-page: 319
  ident: b40
  article-title: AdaBalGAN: An improved generative adversarial network with imbalanced learning for wafer defective pattern recognition
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 31
  start-page: 395
  year: 2018
  end-page: 402
  ident: b22
  article-title: Classification of mixed-type defect patterns in wafer bin maps using convolutional neural networks
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 7
  start-page: 535
  year: 2021
  end-page: 539
  ident: b27
  article-title: Evaluation of the machine learning classifier in wafer defects classification
  publication-title: ICT Express
– volume: 24
  start-page: 47
  year: 1992
  end-page: 60
  ident: b36
  article-title: A review of production planning and scheduling models in the semiconductor industry Part I: System characteristics, performance evaluation and production planning
  publication-title: IIE Trans.
– volume: 167
  year: 2022
  ident: b35
  article-title: Mixup-based classification of mixed-type defect patterns in wafer bin maps
  publication-title: Comput. Ind. Eng.
– volume: 50
  start-page: 99
  year: 2018
  end-page: 111
  ident: b19
  article-title: Detection and clustering of mixed-type defect patterns in wafer bin maps
  publication-title: IISE Trans.
– volume: 36
  start-page: 374
  year: 2009
  end-page: 385
  ident: b24
  article-title: Defect spatial pattern recognition using a hybrid SOM–SVM approach in semiconductor manufacturing
  publication-title: Expert Syst. Appl.
– volume: 30
  start-page: 7074
  year: 2021
  end-page: 7089
  ident: b25
  article-title: WaveCNet: Wavelet integrated CNNs to suppress aliasing effect for noise-robust image classification
  publication-title: IEEE Trans. Image Process.
– volume: 33
  start-page: 436
  year: 2020
  end-page: 444
  ident: b33
  article-title: A deep convolutional neural network for wafer defect identification on an imbalanced dataset in semiconductor manufacturing processes
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 34
  start-page: 194
  year: 2021
  end-page: 206
  ident: b13
  article-title: A graph-theoretic approach for spatial filtering and its impact on mixed-type spatial pattern recognition in wafer bin maps
  publication-title: IEEE Trans. Semicond. Manuf.
– reference: Byun, Y., Baek, U., 2020. Mixed pattern Recognition Methodology on Wafer Maps with Pre-trained Convolutional Neural Networks. In: Proc. ICAART.
– volume: 31
  start-page: 250
  year: 2018
  end-page: 257
  ident: b32
  article-title: Decision tree ensemble-based wafer map failure pattern recognition based on radon transform-based features
  publication-title: IEEE Trans. Semicond. Manuf.
– year: 1999
  ident: b37
  article-title: A Really Friendly Guide to Wavelets
– volume: 130
  year: 2021
  ident: b9
  article-title: AI classification of wafer map defect patterns by using dual-channel convolutional neural network
  publication-title: Eng. Fail. Anal.
– volume: 8
  start-page: 24006
  year: 2020
  end-page: 24018
  ident: b7
  article-title: A light-weighted CNN model for wafer structural defect detection
  publication-title: IEEE Access
– volume: 33
  start-page: 587
  year: 2020
  end-page: 596
  ident: b39
  article-title: Deformable convolutional networks for efficient mixed-type wafer defect pattern recognition
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 12
  start-page: 2209
  year: 2022
  ident: b5
  article-title: Improved U-net with residual attention block for mixed-defect wafer maps
  publication-title: Appl. Sci.
– volume: 6
  start-page: 583
  year: 2011
  end-page: 599
  ident: b28
  article-title: A survey of problems, solution techniques, and future challenges
  publication-title: J. Sched.
– volume: 56
  start-page: 4524
  year: 2018
  end-page: 4545
  ident: b29
  article-title: A survey of semiconductor supply chain models Part I: Semiconductor supply chains, strategic network design, and supply chain simulation
  publication-title: Int. J. Prod. Res.
– volume: 35
  start-page: 485
  year: 2022
  end-page: 494
  ident: b38
  article-title: Detection and recognition of mixed-type defect patterns in wafer bin maps via tensor voting
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 113
  year: 2022
  ident: b21
  article-title: An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network
  publication-title: Eng. Appl. Artif. Intell.
– volume: 142
  year: 2022
  ident: b30
  article-title: WaferSegClassNet - A light-weight network for classification and segmentation of semiconductor wafer defects
  publication-title: Comput. Ind.
– volume: 32
  start-page: 163
  year: 2019
  end-page: 170
  ident: b10
  article-title: Convolutional neural network for wafer surface defect classification and the detection of unknown defect class
  publication-title: IEEE Trans. Semicond. Manuf.
– reference: Zhuang, J., Mao, G., Wang, Y., Chen, X., Wei, Z., 2020. A Neural-Network Approach to Better Diagnosis of Defect Pattern in Wafer Bin Map. In: Proc. 2020 China Semiconductor Technology International Conference. pp. 1–3.
– volume: 24
  start-page: 392
  year: 2011
  end-page: 403
  ident: b47
  article-title: Detection of spatial defect patterns generated in semiconductor fabrication process
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 11
  start-page: 2055
  year: 2021
  end-page: 2060
  ident: b41
  article-title: A variational autoencoder enhanced deep learning model for wafer defect imbalanced classification
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. 2011
– volume: 166
  year: 2022
  ident: b43
  article-title: Semi-automatic wafer map pattern classification with convolutional neural networks
  publication-title: Comput. Ind. Eng.
– volume: 26
  start-page: 1029
  year: 2013
  end-page: 1043
  ident: b31
  article-title: Defect cluster recognition system for fabricated semiconductor wafers
  publication-title: Eng. Appl. Artif. Intell.
– volume: 105
  year: 2021
  ident: b46
  article-title: Wafer map defect recognition based on deep transfer learning-based densely connected convolutional network and deep forest
  publication-title: Eng. Appl. Artif. Intell.
– year: 2020
  ident: b12
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– volume: 69
  start-page: 9668
  year: 2020
  end-page: 9680
  ident: b42
  article-title: A novel method based on deep convolutional neural networks for wafer semiconductor surface defect inspection
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 58
  start-page: 2805
  year: 2020
  end-page: 2821
  ident: b18
  article-title: A generalised uncertain decision tree for defect classification of multiple wafer maps
  publication-title: Int. J. Prod. Res.
– year: 2022
  ident: b15
  article-title: Visual attention network
– year: 2021
  ident: 10.1016/j.engappai.2023.105975_b20
  article-title: Novel method for detection of mixed-type defect patterns in wafer maps based on a single shot detector algorithm
  publication-title: J. Intell. Manuf.
– volume: 113
  year: 2022
  ident: 10.1016/j.engappai.2023.105975_b21
  article-title: An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104959
– volume: 14
  start-page: 14001
  issue: 1
  year: 2015
  ident: 10.1016/j.engappai.2023.105975_b2
  article-title: Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection
  publication-title: J. Micro/Nanolithography MEMS MOEMS
  doi: 10.1117/1.JMM.14.1.014001
– volume: 50
  start-page: 99
  issue: 2
  year: 2018
  ident: 10.1016/j.engappai.2023.105975_b19
  article-title: Detection and clustering of mixed-type defect patterns in wafer bin maps
  publication-title: IISE Trans.
  doi: 10.1080/24725854.2017.1386337
– volume: 31
  start-page: 395
  issue: 3
  year: 2018
  ident: 10.1016/j.engappai.2023.105975_b22
  article-title: Classification of mixed-type defect patterns in wafer bin maps using convolutional neural networks
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2018.2841416
– volume: 33
  start-page: 587
  issue: 4
  year: 2020
  ident: 10.1016/j.engappai.2023.105975_b39
  article-title: Deformable convolutional networks for efficient mixed-type wafer defect pattern recognition
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2020.3020985
– volume: 26
  start-page: 1029
  issue: 3
  year: 2013
  ident: 10.1016/j.engappai.2023.105975_b31
  article-title: Defect cluster recognition system for fabricated semiconductor wafers
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.03.016
– volume: 11
  start-page: 2055
  issue: 12
  year: 2021
  ident: 10.1016/j.engappai.2023.105975_b41
  article-title: A variational autoencoder enhanced deep learning model for wafer defect imbalanced classification
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. 2011
– volume: 36
  start-page: 374
  issue: 1
  year: 2009
  ident: 10.1016/j.engappai.2023.105975_b24
  article-title: Defect spatial pattern recognition using a hybrid SOM–SVM approach in semiconductor manufacturing
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.09.023
– volume: 6
  start-page: 583
  issue: 14
  year: 2011
  ident: 10.1016/j.engappai.2023.105975_b28
  article-title: A survey of problems, solution techniques, and future challenges
  publication-title: J. Sched.
  doi: 10.1007/s10951-010-0222-9
– volume: 166
  year: 2022
  ident: 10.1016/j.engappai.2023.105975_b43
  article-title: Semi-automatic wafer map pattern classification with convolutional neural networks
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.107977
– volume: 37
  start-page: 1757
  issue: 9
  year: 2004
  ident: 10.1016/j.engappai.2023.105975_b3
  article-title: Learning multi-label scene classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2004.03.009
– volume: 58
  start-page: 2805
  issue: 9
  year: 2020
  ident: 10.1016/j.engappai.2023.105975_b18
  article-title: A generalised uncertain decision tree for defect classification of multiple wafer maps
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2019.1637035
– volume: 35
  start-page: 485
  issue: 3
  year: 2022
  ident: 10.1016/j.engappai.2023.105975_b38
  article-title: Detection and recognition of mixed-type defect patterns in wafer bin maps via tensor voting
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2022.3183008
– volume: 77
  start-page: 337
  issue: 3
  year: 2005
  ident: 10.1016/j.engappai.2023.105975_b34
  article-title: Defect detection on semiconductor wafer surfaces
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2004.12.003
– volume: 8
  start-page: 24006
  year: 2020
  ident: 10.1016/j.engappai.2023.105975_b7
  article-title: A light-weighted CNN model for wafer structural defect detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2970461
– year: 2022
  ident: 10.1016/j.engappai.2023.105975_b15
– volume: 142
  year: 2022
  ident: 10.1016/j.engappai.2023.105975_b30
  article-title: WaferSegClassNet - A light-weight network for classification and segmentation of semiconductor wafer defects
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2022.103720
– volume: 34
  start-page: 194
  issue: 2
  year: 2021
  ident: 10.1016/j.engappai.2023.105975_b13
  article-title: A graph-theoretic approach for spatial filtering and its impact on mixed-type spatial pattern recognition in wafer bin maps
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2021.3062943
– volume: 31
  start-page: 250
  issue: 2
  year: 2018
  ident: 10.1016/j.engappai.2023.105975_b32
  article-title: Decision tree ensemble-based wafer map failure pattern recognition based on radon transform-based features
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2018.2806931
– volume: 33
  start-page: 436
  issue: 3
  year: 2020
  ident: 10.1016/j.engappai.2023.105975_b33
  article-title: A deep convolutional neural network for wafer defect identification on an imbalanced dataset in semiconductor manufacturing processes
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2020.2994357
– volume: 18
  start-page: 1674
  issue: 3
  year: 2022
  ident: 10.1016/j.engappai.2023.105975_b45
  article-title: Multiple granularities generative adversarial network for recognition of wafer map defects
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3092372
– ident: 10.1016/j.engappai.2023.105975_b48
  doi: 10.1109/CSTIC49141.2020.9282438
– year: 2021
  ident: 10.1016/j.engappai.2023.105975_b8
– volume: 32
  start-page: 163
  issue: 2
  year: 2019
  ident: 10.1016/j.engappai.2023.105975_b10
  article-title: Convolutional neural network for wafer surface defect classification and the detection of unknown defect class
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2019.2902657
– volume: 33
  start-page: 622
  issue: 4
  year: 2020
  ident: 10.1016/j.engappai.2023.105975_b16
  article-title: Memory-augmented convolutional neural networks with triplet loss for imbalanced wafer defect pattern classification
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2020.3010984
– volume: 50
  start-page: 3274
  issue: 12
  year: 2012
  ident: 10.1016/j.engappai.2023.105975_b11
  article-title: Multi-step ART1 algorithm for recognition of defect patterns on semiconductor wafers
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2011.574502
– volume: 31
  start-page: 1861
  issue: 8
  year: 2020
  ident: 10.1016/j.engappai.2023.105975_b17
  article-title: Wafer map defect pattern classification based on convolutional neural network features and error-correcting output codes
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01540-x
– volume: 105
  year: 2021
  ident: 10.1016/j.engappai.2023.105975_b46
  article-title: Wafer map defect recognition based on deep transfer learning-based densely connected convolutional network and deep forest
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104387
– volume: 202
  year: 2022
  ident: 10.1016/j.engappai.2023.105975_b14
  article-title: Defect classification on semiconductor wafers using Fisher vector and visual vocabularies coding
  publication-title: Measurement: J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2022.111872
– volume: 69
  start-page: 9668
  issue: 12
  year: 2020
  ident: 10.1016/j.engappai.2023.105975_b42
  article-title: A novel method based on deep convolutional neural networks for wafer semiconductor surface defect inspection
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3007292
– year: 2020
  ident: 10.1016/j.engappai.2023.105975_b12
– volume: 7
  start-page: 535
  issue: 4
  year: 2021
  ident: 10.1016/j.engappai.2023.105975_b27
  article-title: Evaluation of the machine learning classifier in wafer defects classification
  publication-title: ICT Express
  doi: 10.1016/j.icte.2021.04.007
– volume: 167
  year: 2022
  ident: 10.1016/j.engappai.2023.105975_b35
  article-title: Mixup-based classification of mixed-type defect patterns in wafer bin maps
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.107996
– year: 1999
  ident: 10.1016/j.engappai.2023.105975_b37
– volume: 36
  start-page: 10158
  issue: 6
  year: 2009
  ident: 10.1016/j.engappai.2023.105975_b6
  article-title: Wafer defect pattern recognition by multi-class support vector machines by using a novel defect cluster index
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.01.003
– volume: 7
  start-page: 674
  issue: 11
  year: 1989
  ident: 10.1016/j.engappai.2023.105975_b26
  article-title: A theory for multiresolution signal decomposition: The wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.192463
– volume: 68
  start-page: 8789
  issue: 9
  year: 2021
  ident: 10.1016/j.engappai.2023.105975_b44
  article-title: Two-dimensional principal ComponentAnalysis-based convolutional autoencoder for wafer map defect detection
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3013492
– volume: 12
  start-page: 2209
  issue: 4
  year: 2022
  ident: 10.1016/j.engappai.2023.105975_b5
  article-title: Improved U-net with residual attention block for mixed-defect wafer maps
  publication-title: Appl. Sci.
  doi: 10.3390/app12042209
– volume: 130
  year: 2021
  ident: 10.1016/j.engappai.2023.105975_b9
  article-title: AI classification of wafer map defect patterns by using dual-channel convolutional neural network
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2021.105756
– volume: 30
  start-page: 7074
  year: 2021
  ident: 10.1016/j.engappai.2023.105975_b25
  article-title: WaveCNet: Wavelet integrated CNNs to suppress aliasing effect for noise-robust image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3101395
– ident: 10.1016/j.engappai.2023.105975_b4
  doi: 10.5220/0009177909740979
– volume: 24
  start-page: 47
  issue: 4
  year: 1992
  ident: 10.1016/j.engappai.2023.105975_b36
  article-title: A review of production planning and scheduling models in the semiconductor industry Part I: System characteristics, performance evaluation and production planning
  publication-title: IIE Trans.
  doi: 10.1080/07408179208964233
– volume: 11
  start-page: 1267
  issue: 6
  year: 2015
  ident: 10.1016/j.engappai.2023.105975_b1
  article-title: Simplified subspaced regression network for identification of defect patterns in semiconductor wafer maps
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2015.2481719
– volume: 56
  start-page: 4524
  issue: 13
  year: 2018
  ident: 10.1016/j.engappai.2023.105975_b29
  article-title: A survey of semiconductor supply chain models Part I: Semiconductor supply chains, strategic network design, and supply chain simulation
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2017.1401233
– volume: 32
  start-page: 310
  issue: 3
  year: 2019
  ident: 10.1016/j.engappai.2023.105975_b40
  article-title: AdaBalGAN: An improved generative adversarial network with imbalanced learning for wafer defective pattern recognition
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2019.2925361
– volume: 33
  start-page: 653
  issue: 4
  year: 2020
  ident: 10.1016/j.engappai.2023.105975_b23
  article-title: Semi-supervised multi-label learning for classification of wafer bin maps with mixed-type defect patterns
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2020.3027431
– volume: 24
  start-page: 392
  issue: 3
  year: 2011
  ident: 10.1016/j.engappai.2023.105975_b47
  article-title: Detection of spatial defect patterns generated in semiconductor fabrication process
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2011.2154870
SSID ssj0003846
Score 2.4528263
Snippet Wafer defect recognition has been an important measure in developing the manufacturing process. In real-life manufacturing, however, defects can be...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105975
SubjectTerms Convolutional neural network
Semiconductor manufacturing
Wafer defect recognition
Wavelet transform
Title Wavelet integrated attention network with multi-resolution frequency learning for mixed-type wafer defect recognition
URI https://dx.doi.org/10.1016/j.engappai.2023.105975
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5BuHCBtoCgFORDr07i9T7sYxQVhUbl0BbBbeUnCoIlokHAhd_emaw3AqkSh55Wa3m0K49n5hvr8wzAVycq4XU15HEYJc8N5qzKZp7nVQx5ESlloPOOH2fl5Dz_fllcrsG4uwtDtMrk-1ufvvTWaWSQVnMwn80GvxAcoLmhMUsK_Fqtw0YmdVn0YGN0Op2crRyyVO19HZzPSeDVReHrfmiuzHxuZn3qI05dbzVRDv8Vo17FnZMPsJUAIxu1__QR1kLzCbYTeGTJNP_gUNefoRvbgYcLQ20lFmxVE8IzKqe5JDiypiWAMzqJZUteIcfUO-1EFu9bjvUzS30lrhjCW3Y7ewqe07ktezQRP-YD8UHYiod01-zC-cm33-MJT20WuMuqYsFL50sdvNLKYPZirLCYRMkglLUyi1qJoTUiCit1iGi-2TCULnc6NyU6gOgKuQe95q4J-8Bi5REyuApxYMiVqJR0KjcIQb0zsQz2AIpuYWuXapBTK4ybuiObXdedQmpSSN0q5AAGK7l5W4XjXQnd6a1-s59qDBXvyH7-D9lD2KS3lhL5BXqL-4dwhLBlYY9hvf8ijtPmpOf058X0L63S8ZY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHODCG_EmB67Z1jVtk-M0MW08dgHEblWeaAjKBJuAf4-zptOQkDhwTWu1imP7c_TZBjjXURYZkTWpa7qYMok5K1ctQ1nmLEucTxn8fcfNIO3ds8thMlyCTlUL42mVwfeXPn3mrcNKI-xmYzwaNW4RHKC5oTHHPvALvgwrLMFsrwYr7f5VbzB3yDEv63XwfeoFFgqFn-q2eJTjsRzV_RxxP_VWeMrhbzFqIe50N2E9AEbSLv9pC5ZssQ0bATySYJrvuFTNZ6jWdmD6IP1YiQmZ94QwxLfTnBEcSVESwIm_iSUzXiHF1DucROLeSo71FwlzJR4JwlvyMvq0hvp7W_IhHX7MWM8HIXMe0muxC_fdi7tOj4YxC1S3smRCU21SYQ0XXGL2IlWkMImKbcSViltO8KipZOQiFQvr0HxbTZtqpgWTKToAp5N4D2rFa2H3gbjMIGTQGeJAy3iU8VhzJhGCGi1datUBJNXG5jr0IPejMJ7zimz2lFcKyb1C8lIhB9CYy43LLhx_SohKb_mP85RjqPhD9vAfsmew2ru7uc6v-4OrI1jzT0p65DHUJm9Te4IQZqJOwxH9Bulf8eI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelet+integrated+attention+network+with+multi-resolution+frequency+learning+for+mixed-type+wafer+defect+recognition&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wei%2C+Yuxiang&rft.au=Wang%2C+Huan&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=121&rft_id=info:doi/10.1016%2Fj.engappai.2023.105975&rft.externalDocID=S0952197623001598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon