Wavelet integrated attention network with multi-resolution frequency learning for mixed-type wafer defect recognition
Wafer defect recognition has been an important measure in developing the manufacturing process. In real-life manufacturing, however, defects can be complicated, and their wafer maps are often accompanied by noise. This encourages us to build a noise-robust framework with outstanding performance and...
Saved in:
Published in | Engineering applications of artificial intelligence Vol. 121; p. 105975 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0952-1976 1873-6769 |
DOI | 10.1016/j.engappai.2023.105975 |
Cover
Abstract | Wafer defect recognition has been an important measure in developing the manufacturing process. In real-life manufacturing, however, defects can be complicated, and their wafer maps are often accompanied by noise. This encourages us to build a noise-robust framework with outstanding performance and sound interpretability on defect recognition. Therefore, this paper chooses discrete wavelet transform for its clear physical meaning and ability of frequency learning. Moreover, it outperforms traditional down-sampling operations in the preservation of fringe information. Based on this, we propose a multiresolution wavelet integrated attention network (MRWA-Net). Specifically, we design a learnable discrete wavelet transform layer (DWT-Layer), which expands convolutional neural network’s (CNN’s) feature learning space to the wavelet domain. This helps the framework procure hidden information from different frequency components and their location information. Furthermore, we utilize different levels of wavelet transform to interpret the images with different resolutions, thus learning features from different perspectives. Additionally, we insert a frequency-location attention module (FLA) to select the useful frequency-location information captured by DWT-Layer. The proposed approach is evaluated on a dataset with 38015 subjects and 38 types of defects and reaches 98.84% accuracy. To demonstrate the noise-robustness of our framework, we further compare it with other state-of-the-art methods on wafer maps with different ratios of additional noise. The results show that our framework excels other methods under all noise ratios and exhibits more notable excellence on data accompanied by a higher ratio of noise. Finally, we present visualizing analysis to demonstrate that the proposed DWT-Layer can learn from different frequency bands and retrieve information with multiple resolutions. |
---|---|
AbstractList | Wafer defect recognition has been an important measure in developing the manufacturing process. In real-life manufacturing, however, defects can be complicated, and their wafer maps are often accompanied by noise. This encourages us to build a noise-robust framework with outstanding performance and sound interpretability on defect recognition. Therefore, this paper chooses discrete wavelet transform for its clear physical meaning and ability of frequency learning. Moreover, it outperforms traditional down-sampling operations in the preservation of fringe information. Based on this, we propose a multiresolution wavelet integrated attention network (MRWA-Net). Specifically, we design a learnable discrete wavelet transform layer (DWT-Layer), which expands convolutional neural network’s (CNN’s) feature learning space to the wavelet domain. This helps the framework procure hidden information from different frequency components and their location information. Furthermore, we utilize different levels of wavelet transform to interpret the images with different resolutions, thus learning features from different perspectives. Additionally, we insert a frequency-location attention module (FLA) to select the useful frequency-location information captured by DWT-Layer. The proposed approach is evaluated on a dataset with 38015 subjects and 38 types of defects and reaches 98.84% accuracy. To demonstrate the noise-robustness of our framework, we further compare it with other state-of-the-art methods on wafer maps with different ratios of additional noise. The results show that our framework excels other methods under all noise ratios and exhibits more notable excellence on data accompanied by a higher ratio of noise. Finally, we present visualizing analysis to demonstrate that the proposed DWT-Layer can learn from different frequency bands and retrieve information with multiple resolutions. |
ArticleNumber | 105975 |
Author | Wang, Huan Wei, Yuxiang |
Author_xml | – sequence: 1 givenname: Yuxiang orcidid: 0000-0001-6552-8912 surname: Wei fullname: Wei, Yuxiang organization: Glasgow College, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Huan orcidid: 0000-0002-1403-5314 surname: Wang fullname: Wang, Huan email: huan-wan21@mails.tsinghua.edu.cn organization: Department of Industrial Engineering, Tsinghua University, Beijing, China |
BookMark | eNqFkMtOwzAQRS1UJNrCLyD_QIqdhxNLLEAVL6kSGxBLy3HGwSW1g-O09O9JKGzYdDXSHZ2rmTNDE-ssIHRJyYISyq7WC7C1bFtpFjGJkyHMeJ6doCkt8iRiOeMTNCU8iyPKc3aGZl23JoQkRcqmqH-TW2ggYGMD1F4GqLAMAWwwzmILYef8B96Z8I43fRNM5KFzTf-z1R4-e7BqjxuQ3hpbY-083pgvqKKwbwHvpAaPK9CgAvagXG3NiJ6jUy2bDi5-5xy93t-9LB-j1fPD0_J2Fak4z0LEVMU4VAUvZFrksqRlkdMEaFGWSax5QUkpqaZlwkHTnMcEmEoVTyUjKdEqS-bo-tCrvOs6D1ooE-R4QfDSNIISMSoUa_GnUIwKxUHhgLN_eOvNRvr9cfDmAMLw3NaAF50ygymozGAhiMqZYxXfdtqV3Q |
CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126903 crossref_primary_10_1016_j_eswa_2024_124406 crossref_primary_10_1016_j_engappai_2024_108848 crossref_primary_10_1016_j_engappai_2023_107384 crossref_primary_10_1088_1361_6501_ad457f crossref_primary_10_1016_j_engappai_2025_110121 crossref_primary_10_1016_j_engappai_2024_108476 crossref_primary_10_1109_ACCESS_2023_3321025 crossref_primary_10_1016_j_eswa_2025_127121 crossref_primary_10_1088_1361_6501_ad730b crossref_primary_10_1016_j_ress_2023_109850 crossref_primary_10_1109_ACCESS_2025_3528242 crossref_primary_10_1016_j_engappai_2023_106390 |
Cites_doi | 10.1016/j.engappai.2022.104959 10.1117/1.JMM.14.1.014001 10.1080/24725854.2017.1386337 10.1109/TSM.2018.2841416 10.1109/TSM.2020.3020985 10.1016/j.engappai.2012.03.016 10.1016/j.eswa.2007.09.023 10.1007/s10951-010-0222-9 10.1016/j.cie.2022.107977 10.1016/j.patcog.2004.03.009 10.1080/00207543.2019.1637035 10.1109/TSM.2022.3183008 10.1016/j.mee.2004.12.003 10.1109/ACCESS.2020.2970461 10.1016/j.compind.2022.103720 10.1109/TSM.2021.3062943 10.1109/TSM.2018.2806931 10.1109/TSM.2020.2994357 10.1109/TII.2021.3092372 10.1109/CSTIC49141.2020.9282438 10.1109/TSM.2019.2902657 10.1109/TSM.2020.3010984 10.1080/00207543.2011.574502 10.1007/s10845-020-01540-x 10.1016/j.engappai.2021.104387 10.1016/j.measurement.2022.111872 10.1109/TIM.2020.3007292 10.1016/j.icte.2021.04.007 10.1016/j.cie.2022.107996 10.1016/j.eswa.2009.01.003 10.1109/34.192463 10.1109/TIE.2020.3013492 10.3390/app12042209 10.1016/j.engfailanal.2021.105756 10.1109/TIP.2021.3101395 10.5220/0009177909740979 10.1080/07408179208964233 10.1109/TII.2015.2481719 10.1080/00207543.2017.1401233 10.1109/TSM.2019.2925361 10.1109/TSM.2020.3027431 10.1109/TSM.2011.2154870 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engappai.2023.105975 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1873-6769 |
ExternalDocumentID | 10_1016_j_engappai_2023_105975 S0952197623001598 |
GrantInformation_xml | – fundername: Innovation Fund of Glasgow College, University of Electronic Science and Technology of China |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c275t-6cd69ed898a487ab1b8713e18bb32f9810ba1f1b39ef17920e6c4c94a6040fc53 |
IEDL.DBID | AIKHN |
ISSN | 0952-1976 |
IngestDate | Tue Jul 01 01:04:07 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 Fri Feb 23 02:35:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wavelet transform Semiconductor manufacturing Wafer defect recognition Convolutional neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c275t-6cd69ed898a487ab1b8713e18bb32f9810ba1f1b39ef17920e6c4c94a6040fc53 |
ORCID | 0000-0002-1403-5314 0000-0001-6552-8912 |
ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2023_105975 crossref_primary_10_1016_j_engappai_2023_105975 elsevier_sciencedirect_doi_10_1016_j_engappai_2023_105975 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationTitle | Engineering applications of artificial intelligence |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ezzat, Liu, Hochbaum, Ding (b13) 2021; 34 Ooi, Sok, Kuang, Demidenko, Chan (b31) 2013; 26 Chen, Yi, Guo, Ma, Ke, Cen (b8) 2021 Boutell, Luo, Shen, Brown (b3) 2004; 37 Wen, Gao, Cai, Wang, Mei (b42) 2020; 69 Gómez-Sirvent, López De La Rosa, Sánchez-Reolid, Morales, Fernández-Caballero (b14) 2022; 202 Li, Huang (b24) 2009; 36 Mallat (b26) 1989; 7 Kim, Lee, Kim (b19) 2018; 50 Zhuang, J., Mao, G., Wang, Y., Chen, X., Wei, Z., 2020. A Neural-Network Approach to Better Diagnosis of Defect Pattern in Wafer Bin Map. In: Proc. 2020 China Semiconductor Technology International Conference. pp. 1–3. Korkmaz, Acikgoz (b21) 2022; 113 Cha, Jeong (b5) 2022; 12 Chen, Chen, Han, Zhao, Zhang, Zhu (b7) 2020; 8 Kim, Lee, Lee, Sohn (b20) 2021 Mat Jizat, Abdul Majeed, Ab. Nasir, Taha, Yuen (b27) 2021; 7 Mönch, Uzsoy, Fowler (b29) 2018; 56 Piao, Jin, Lee, Byun (b32) 2018; 31 Valens (b37) 1999 Wang, Yang, Zhang, Zhang, Chien (b40) 2019; 32 Yuan, Kuo, Bae (b47) 2011; 24 Guo, Lu, Liu, Cheng, Hu (b15) 2022 Cheon, Lee, Kim, Lee (b10) 2019; 32 Yoon, Kang (b43) 2022; 166 Lee, Kim (b23) 2020; 33 Shin, Kahng, Kim (b35) 2022; 167 Chen, Zhang, Yi, Shang, Yang (b9) 2021; 130 Yu, Shen, Wang (b46) 2021; 105 Nag, Makwana, R, Mittal, Mohan (b30) 2022; 142 Adly, Alhussein, Yoo, Al-Hammadi, Taha, Muhaidat (b1) 2015; 11 Jin, Kim, Piao, Li, Piao (b17) 2020; 31 Mönch, Fowler, Dauzère-Pérès, Mason, Rose (b28) 2011; 6 Shankar, Zhong (b34) 2005; 77 Saqlain, Abbas, Lee (b33) 2020; 33 Choi, Kim, Ha, Bae (b11) 2012; 50 Wang, Xu, Yang, Zhang, Li (b39) 2020; 33 Wang, Chen (b38) 2022; 35 Barnes, Goasmat, Sohn, Zhou, Vladár, Silver (b2) 2015; 14 Yu, Liu (b44) 2021; 68 Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner (b12) 2020 Yu, Liu (b45) 2022; 18 Chao, Tong (b6) 2009; 36 Kyeong, Kim (b22) 2018; 31 Kim, Jeong, Tong, Jeong (b18) 2020; 58 Hyun, Kim (b16) 2020; 33 Li, Shen, Guo, Lai (b25) 2021; 30 Byun, Y., Baek, U., 2020. Mixed pattern Recognition Methodology on Wafer Maps with Pre-trained Convolutional Neural Networks. In: Proc. ICAART. Wang, Zhong, Zhao, Zuo (b41) 2021; 11 Uzsoy, Lee, Martin-Vega (b36) 1992; 24 Yuan (10.1016/j.engappai.2023.105975_b47) 2011; 24 Mat Jizat (10.1016/j.engappai.2023.105975_b27) 2021; 7 Kyeong (10.1016/j.engappai.2023.105975_b22) 2018; 31 Yu (10.1016/j.engappai.2023.105975_b44) 2021; 68 Shin (10.1016/j.engappai.2023.105975_b35) 2022; 167 Mönch (10.1016/j.engappai.2023.105975_b28) 2011; 6 Ooi (10.1016/j.engappai.2023.105975_b31) 2013; 26 Wang (10.1016/j.engappai.2023.105975_b39) 2020; 33 Cheon (10.1016/j.engappai.2023.105975_b10) 2019; 32 Li (10.1016/j.engappai.2023.105975_b25) 2021; 30 Wang (10.1016/j.engappai.2023.105975_b40) 2019; 32 Wang (10.1016/j.engappai.2023.105975_b41) 2021; 11 Yu (10.1016/j.engappai.2023.105975_b45) 2022; 18 10.1016/j.engappai.2023.105975_b48 Boutell (10.1016/j.engappai.2023.105975_b3) 2004; 37 Mönch (10.1016/j.engappai.2023.105975_b29) 2018; 56 Wang (10.1016/j.engappai.2023.105975_b38) 2022; 35 Yu (10.1016/j.engappai.2023.105975_b46) 2021; 105 Chen (10.1016/j.engappai.2023.105975_b7) 2020; 8 10.1016/j.engappai.2023.105975_b4 Nag (10.1016/j.engappai.2023.105975_b30) 2022; 142 Choi (10.1016/j.engappai.2023.105975_b11) 2012; 50 Chen (10.1016/j.engappai.2023.105975_b9) 2021; 130 Ezzat (10.1016/j.engappai.2023.105975_b13) 2021; 34 Mallat (10.1016/j.engappai.2023.105975_b26) 1989; 7 Piao (10.1016/j.engappai.2023.105975_b32) 2018; 31 Hyun (10.1016/j.engappai.2023.105975_b16) 2020; 33 Saqlain (10.1016/j.engappai.2023.105975_b33) 2020; 33 Cha (10.1016/j.engappai.2023.105975_b5) 2022; 12 Korkmaz (10.1016/j.engappai.2023.105975_b21) 2022; 113 Chen (10.1016/j.engappai.2023.105975_b8) 2021 Shankar (10.1016/j.engappai.2023.105975_b34) 2005; 77 Gómez-Sirvent (10.1016/j.engappai.2023.105975_b14) 2022; 202 Dosovitskiy (10.1016/j.engappai.2023.105975_b12) 2020 Barnes (10.1016/j.engappai.2023.105975_b2) 2015; 14 Yoon (10.1016/j.engappai.2023.105975_b43) 2022; 166 Kim (10.1016/j.engappai.2023.105975_b18) 2020; 58 Kim (10.1016/j.engappai.2023.105975_b19) 2018; 50 Guo (10.1016/j.engappai.2023.105975_b15) 2022 Chao (10.1016/j.engappai.2023.105975_b6) 2009; 36 Lee (10.1016/j.engappai.2023.105975_b23) 2020; 33 Wen (10.1016/j.engappai.2023.105975_b42) 2020; 69 Jin (10.1016/j.engappai.2023.105975_b17) 2020; 31 Kim (10.1016/j.engappai.2023.105975_b20) 2021 Adly (10.1016/j.engappai.2023.105975_b1) 2015; 11 Uzsoy (10.1016/j.engappai.2023.105975_b36) 1992; 24 Li (10.1016/j.engappai.2023.105975_b24) 2009; 36 Valens (10.1016/j.engappai.2023.105975_b37) 1999 |
References_xml | – volume: 33 start-page: 653 year: 2020 end-page: 662 ident: b23 article-title: Semi-supervised multi-label learning for classification of wafer bin maps with mixed-type defect patterns publication-title: IEEE Trans. Semicond. Manuf. – year: 2021 ident: b20 article-title: Novel method for detection of mixed-type defect patterns in wafer maps based on a single shot detector algorithm publication-title: J. Intell. Manuf. – volume: 36 start-page: 10158 year: 2009 end-page: 10167 ident: b6 article-title: Wafer defect pattern recognition by multi-class support vector machines by using a novel defect cluster index publication-title: Expert Syst. Appl. – volume: 11 start-page: 1267 year: 2015 end-page: 1276 ident: b1 article-title: Simplified subspaced regression network for identification of defect patterns in semiconductor wafer maps publication-title: IEEE Trans. Ind. Inform. – volume: 14 start-page: 14001 year: 2015 ident: b2 article-title: Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection publication-title: J. Micro/Nanolithography MEMS MOEMS – volume: 77 start-page: 337 year: 2005 end-page: 346 ident: b34 article-title: Defect detection on semiconductor wafer surfaces publication-title: Microelectron. Eng. – year: 2021 ident: b8 article-title: Research on mixed type wafer map based on deep convolutional neural network – volume: 202 year: 2022 ident: b14 article-title: Defect classification on semiconductor wafers using Fisher vector and visual vocabularies coding publication-title: Measurement: J. Int. Meas. Confed. – volume: 33 start-page: 622 year: 2020 end-page: 634 ident: b16 article-title: Memory-augmented convolutional neural networks with triplet loss for imbalanced wafer defect pattern classification publication-title: IEEE Trans. Semicond. Manuf. – volume: 18 start-page: 1674 year: 2022 end-page: 1683 ident: b45 article-title: Multiple granularities generative adversarial network for recognition of wafer map defects publication-title: IEEE Trans. Ind. Inform. – volume: 50 start-page: 3274 year: 2012 end-page: 3287 ident: b11 article-title: Multi-step ART1 algorithm for recognition of defect patterns on semiconductor wafers publication-title: Int. J. Prod. Res. – volume: 7 start-page: 674 year: 1989 end-page: 693 ident: b26 article-title: A theory for multiresolution signal decomposition: The wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 68 start-page: 8789 year: 2021 end-page: 8797 ident: b44 article-title: Two-dimensional principal ComponentAnalysis-based convolutional autoencoder for wafer map defect detection publication-title: IEEE Trans. Ind. Electron. – volume: 31 start-page: 1861 year: 2020 end-page: 1875 ident: b17 article-title: Wafer map defect pattern classification based on convolutional neural network features and error-correcting output codes publication-title: J. Intell. Manuf. – volume: 37 start-page: 1757 year: 2004 end-page: 1771 ident: b3 article-title: Learning multi-label scene classification publication-title: Pattern Recognit. – volume: 32 start-page: 310 year: 2019 end-page: 319 ident: b40 article-title: AdaBalGAN: An improved generative adversarial network with imbalanced learning for wafer defective pattern recognition publication-title: IEEE Trans. Semicond. Manuf. – volume: 31 start-page: 395 year: 2018 end-page: 402 ident: b22 article-title: Classification of mixed-type defect patterns in wafer bin maps using convolutional neural networks publication-title: IEEE Trans. Semicond. Manuf. – volume: 7 start-page: 535 year: 2021 end-page: 539 ident: b27 article-title: Evaluation of the machine learning classifier in wafer defects classification publication-title: ICT Express – volume: 24 start-page: 47 year: 1992 end-page: 60 ident: b36 article-title: A review of production planning and scheduling models in the semiconductor industry Part I: System characteristics, performance evaluation and production planning publication-title: IIE Trans. – volume: 167 year: 2022 ident: b35 article-title: Mixup-based classification of mixed-type defect patterns in wafer bin maps publication-title: Comput. Ind. Eng. – volume: 50 start-page: 99 year: 2018 end-page: 111 ident: b19 article-title: Detection and clustering of mixed-type defect patterns in wafer bin maps publication-title: IISE Trans. – volume: 36 start-page: 374 year: 2009 end-page: 385 ident: b24 article-title: Defect spatial pattern recognition using a hybrid SOM–SVM approach in semiconductor manufacturing publication-title: Expert Syst. Appl. – volume: 30 start-page: 7074 year: 2021 end-page: 7089 ident: b25 article-title: WaveCNet: Wavelet integrated CNNs to suppress aliasing effect for noise-robust image classification publication-title: IEEE Trans. Image Process. – volume: 33 start-page: 436 year: 2020 end-page: 444 ident: b33 article-title: A deep convolutional neural network for wafer defect identification on an imbalanced dataset in semiconductor manufacturing processes publication-title: IEEE Trans. Semicond. Manuf. – volume: 34 start-page: 194 year: 2021 end-page: 206 ident: b13 article-title: A graph-theoretic approach for spatial filtering and its impact on mixed-type spatial pattern recognition in wafer bin maps publication-title: IEEE Trans. Semicond. Manuf. – reference: Byun, Y., Baek, U., 2020. Mixed pattern Recognition Methodology on Wafer Maps with Pre-trained Convolutional Neural Networks. In: Proc. ICAART. – volume: 31 start-page: 250 year: 2018 end-page: 257 ident: b32 article-title: Decision tree ensemble-based wafer map failure pattern recognition based on radon transform-based features publication-title: IEEE Trans. Semicond. Manuf. – year: 1999 ident: b37 article-title: A Really Friendly Guide to Wavelets – volume: 130 year: 2021 ident: b9 article-title: AI classification of wafer map defect patterns by using dual-channel convolutional neural network publication-title: Eng. Fail. Anal. – volume: 8 start-page: 24006 year: 2020 end-page: 24018 ident: b7 article-title: A light-weighted CNN model for wafer structural defect detection publication-title: IEEE Access – volume: 33 start-page: 587 year: 2020 end-page: 596 ident: b39 article-title: Deformable convolutional networks for efficient mixed-type wafer defect pattern recognition publication-title: IEEE Trans. Semicond. Manuf. – volume: 12 start-page: 2209 year: 2022 ident: b5 article-title: Improved U-net with residual attention block for mixed-defect wafer maps publication-title: Appl. Sci. – volume: 6 start-page: 583 year: 2011 end-page: 599 ident: b28 article-title: A survey of problems, solution techniques, and future challenges publication-title: J. Sched. – volume: 56 start-page: 4524 year: 2018 end-page: 4545 ident: b29 article-title: A survey of semiconductor supply chain models Part I: Semiconductor supply chains, strategic network design, and supply chain simulation publication-title: Int. J. Prod. Res. – volume: 35 start-page: 485 year: 2022 end-page: 494 ident: b38 article-title: Detection and recognition of mixed-type defect patterns in wafer bin maps via tensor voting publication-title: IEEE Trans. Semicond. Manuf. – volume: 113 year: 2022 ident: b21 article-title: An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network publication-title: Eng. Appl. Artif. Intell. – volume: 142 year: 2022 ident: b30 article-title: WaferSegClassNet - A light-weight network for classification and segmentation of semiconductor wafer defects publication-title: Comput. Ind. – volume: 32 start-page: 163 year: 2019 end-page: 170 ident: b10 article-title: Convolutional neural network for wafer surface defect classification and the detection of unknown defect class publication-title: IEEE Trans. Semicond. Manuf. – reference: Zhuang, J., Mao, G., Wang, Y., Chen, X., Wei, Z., 2020. A Neural-Network Approach to Better Diagnosis of Defect Pattern in Wafer Bin Map. In: Proc. 2020 China Semiconductor Technology International Conference. pp. 1–3. – volume: 24 start-page: 392 year: 2011 end-page: 403 ident: b47 article-title: Detection of spatial defect patterns generated in semiconductor fabrication process publication-title: IEEE Trans. Semicond. Manuf. – volume: 11 start-page: 2055 year: 2021 end-page: 2060 ident: b41 article-title: A variational autoencoder enhanced deep learning model for wafer defect imbalanced classification publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. 2011 – volume: 166 year: 2022 ident: b43 article-title: Semi-automatic wafer map pattern classification with convolutional neural networks publication-title: Comput. Ind. Eng. – volume: 26 start-page: 1029 year: 2013 end-page: 1043 ident: b31 article-title: Defect cluster recognition system for fabricated semiconductor wafers publication-title: Eng. Appl. Artif. Intell. – volume: 105 year: 2021 ident: b46 article-title: Wafer map defect recognition based on deep transfer learning-based densely connected convolutional network and deep forest publication-title: Eng. Appl. Artif. Intell. – year: 2020 ident: b12 article-title: An image is worth 16x16 words: Transformers for image recognition at scale – volume: 69 start-page: 9668 year: 2020 end-page: 9680 ident: b42 article-title: A novel method based on deep convolutional neural networks for wafer semiconductor surface defect inspection publication-title: IEEE Trans. Instrum. Meas. – volume: 58 start-page: 2805 year: 2020 end-page: 2821 ident: b18 article-title: A generalised uncertain decision tree for defect classification of multiple wafer maps publication-title: Int. J. Prod. Res. – year: 2022 ident: b15 article-title: Visual attention network – year: 2021 ident: 10.1016/j.engappai.2023.105975_b20 article-title: Novel method for detection of mixed-type defect patterns in wafer maps based on a single shot detector algorithm publication-title: J. Intell. Manuf. – volume: 113 year: 2022 ident: 10.1016/j.engappai.2023.105975_b21 article-title: An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104959 – volume: 14 start-page: 14001 issue: 1 year: 2015 ident: 10.1016/j.engappai.2023.105975_b2 article-title: Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection publication-title: J. Micro/Nanolithography MEMS MOEMS doi: 10.1117/1.JMM.14.1.014001 – volume: 50 start-page: 99 issue: 2 year: 2018 ident: 10.1016/j.engappai.2023.105975_b19 article-title: Detection and clustering of mixed-type defect patterns in wafer bin maps publication-title: IISE Trans. doi: 10.1080/24725854.2017.1386337 – volume: 31 start-page: 395 issue: 3 year: 2018 ident: 10.1016/j.engappai.2023.105975_b22 article-title: Classification of mixed-type defect patterns in wafer bin maps using convolutional neural networks publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2018.2841416 – volume: 33 start-page: 587 issue: 4 year: 2020 ident: 10.1016/j.engappai.2023.105975_b39 article-title: Deformable convolutional networks for efficient mixed-type wafer defect pattern recognition publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2020.3020985 – volume: 26 start-page: 1029 issue: 3 year: 2013 ident: 10.1016/j.engappai.2023.105975_b31 article-title: Defect cluster recognition system for fabricated semiconductor wafers publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.03.016 – volume: 11 start-page: 2055 issue: 12 year: 2021 ident: 10.1016/j.engappai.2023.105975_b41 article-title: A variational autoencoder enhanced deep learning model for wafer defect imbalanced classification publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. 2011 – volume: 36 start-page: 374 issue: 1 year: 2009 ident: 10.1016/j.engappai.2023.105975_b24 article-title: Defect spatial pattern recognition using a hybrid SOM–SVM approach in semiconductor manufacturing publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.09.023 – volume: 6 start-page: 583 issue: 14 year: 2011 ident: 10.1016/j.engappai.2023.105975_b28 article-title: A survey of problems, solution techniques, and future challenges publication-title: J. Sched. doi: 10.1007/s10951-010-0222-9 – volume: 166 year: 2022 ident: 10.1016/j.engappai.2023.105975_b43 article-title: Semi-automatic wafer map pattern classification with convolutional neural networks publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.107977 – volume: 37 start-page: 1757 issue: 9 year: 2004 ident: 10.1016/j.engappai.2023.105975_b3 article-title: Learning multi-label scene classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.03.009 – volume: 58 start-page: 2805 issue: 9 year: 2020 ident: 10.1016/j.engappai.2023.105975_b18 article-title: A generalised uncertain decision tree for defect classification of multiple wafer maps publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2019.1637035 – volume: 35 start-page: 485 issue: 3 year: 2022 ident: 10.1016/j.engappai.2023.105975_b38 article-title: Detection and recognition of mixed-type defect patterns in wafer bin maps via tensor voting publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2022.3183008 – volume: 77 start-page: 337 issue: 3 year: 2005 ident: 10.1016/j.engappai.2023.105975_b34 article-title: Defect detection on semiconductor wafer surfaces publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2004.12.003 – volume: 8 start-page: 24006 year: 2020 ident: 10.1016/j.engappai.2023.105975_b7 article-title: A light-weighted CNN model for wafer structural defect detection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2970461 – year: 2022 ident: 10.1016/j.engappai.2023.105975_b15 – volume: 142 year: 2022 ident: 10.1016/j.engappai.2023.105975_b30 article-title: WaferSegClassNet - A light-weight network for classification and segmentation of semiconductor wafer defects publication-title: Comput. Ind. doi: 10.1016/j.compind.2022.103720 – volume: 34 start-page: 194 issue: 2 year: 2021 ident: 10.1016/j.engappai.2023.105975_b13 article-title: A graph-theoretic approach for spatial filtering and its impact on mixed-type spatial pattern recognition in wafer bin maps publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2021.3062943 – volume: 31 start-page: 250 issue: 2 year: 2018 ident: 10.1016/j.engappai.2023.105975_b32 article-title: Decision tree ensemble-based wafer map failure pattern recognition based on radon transform-based features publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2018.2806931 – volume: 33 start-page: 436 issue: 3 year: 2020 ident: 10.1016/j.engappai.2023.105975_b33 article-title: A deep convolutional neural network for wafer defect identification on an imbalanced dataset in semiconductor manufacturing processes publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2020.2994357 – volume: 18 start-page: 1674 issue: 3 year: 2022 ident: 10.1016/j.engappai.2023.105975_b45 article-title: Multiple granularities generative adversarial network for recognition of wafer map defects publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3092372 – ident: 10.1016/j.engappai.2023.105975_b48 doi: 10.1109/CSTIC49141.2020.9282438 – year: 2021 ident: 10.1016/j.engappai.2023.105975_b8 – volume: 32 start-page: 163 issue: 2 year: 2019 ident: 10.1016/j.engappai.2023.105975_b10 article-title: Convolutional neural network for wafer surface defect classification and the detection of unknown defect class publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2019.2902657 – volume: 33 start-page: 622 issue: 4 year: 2020 ident: 10.1016/j.engappai.2023.105975_b16 article-title: Memory-augmented convolutional neural networks with triplet loss for imbalanced wafer defect pattern classification publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2020.3010984 – volume: 50 start-page: 3274 issue: 12 year: 2012 ident: 10.1016/j.engappai.2023.105975_b11 article-title: Multi-step ART1 algorithm for recognition of defect patterns on semiconductor wafers publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2011.574502 – volume: 31 start-page: 1861 issue: 8 year: 2020 ident: 10.1016/j.engappai.2023.105975_b17 article-title: Wafer map defect pattern classification based on convolutional neural network features and error-correcting output codes publication-title: J. Intell. Manuf. doi: 10.1007/s10845-020-01540-x – volume: 105 year: 2021 ident: 10.1016/j.engappai.2023.105975_b46 article-title: Wafer map defect recognition based on deep transfer learning-based densely connected convolutional network and deep forest publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104387 – volume: 202 year: 2022 ident: 10.1016/j.engappai.2023.105975_b14 article-title: Defect classification on semiconductor wafers using Fisher vector and visual vocabularies coding publication-title: Measurement: J. Int. Meas. Confed. doi: 10.1016/j.measurement.2022.111872 – volume: 69 start-page: 9668 issue: 12 year: 2020 ident: 10.1016/j.engappai.2023.105975_b42 article-title: A novel method based on deep convolutional neural networks for wafer semiconductor surface defect inspection publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3007292 – year: 2020 ident: 10.1016/j.engappai.2023.105975_b12 – volume: 7 start-page: 535 issue: 4 year: 2021 ident: 10.1016/j.engappai.2023.105975_b27 article-title: Evaluation of the machine learning classifier in wafer defects classification publication-title: ICT Express doi: 10.1016/j.icte.2021.04.007 – volume: 167 year: 2022 ident: 10.1016/j.engappai.2023.105975_b35 article-title: Mixup-based classification of mixed-type defect patterns in wafer bin maps publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.107996 – year: 1999 ident: 10.1016/j.engappai.2023.105975_b37 – volume: 36 start-page: 10158 issue: 6 year: 2009 ident: 10.1016/j.engappai.2023.105975_b6 article-title: Wafer defect pattern recognition by multi-class support vector machines by using a novel defect cluster index publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.01.003 – volume: 7 start-page: 674 issue: 11 year: 1989 ident: 10.1016/j.engappai.2023.105975_b26 article-title: A theory for multiresolution signal decomposition: The wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.192463 – volume: 68 start-page: 8789 issue: 9 year: 2021 ident: 10.1016/j.engappai.2023.105975_b44 article-title: Two-dimensional principal ComponentAnalysis-based convolutional autoencoder for wafer map defect detection publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3013492 – volume: 12 start-page: 2209 issue: 4 year: 2022 ident: 10.1016/j.engappai.2023.105975_b5 article-title: Improved U-net with residual attention block for mixed-defect wafer maps publication-title: Appl. Sci. doi: 10.3390/app12042209 – volume: 130 year: 2021 ident: 10.1016/j.engappai.2023.105975_b9 article-title: AI classification of wafer map defect patterns by using dual-channel convolutional neural network publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2021.105756 – volume: 30 start-page: 7074 year: 2021 ident: 10.1016/j.engappai.2023.105975_b25 article-title: WaveCNet: Wavelet integrated CNNs to suppress aliasing effect for noise-robust image classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3101395 – ident: 10.1016/j.engappai.2023.105975_b4 doi: 10.5220/0009177909740979 – volume: 24 start-page: 47 issue: 4 year: 1992 ident: 10.1016/j.engappai.2023.105975_b36 article-title: A review of production planning and scheduling models in the semiconductor industry Part I: System characteristics, performance evaluation and production planning publication-title: IIE Trans. doi: 10.1080/07408179208964233 – volume: 11 start-page: 1267 issue: 6 year: 2015 ident: 10.1016/j.engappai.2023.105975_b1 article-title: Simplified subspaced regression network for identification of defect patterns in semiconductor wafer maps publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2015.2481719 – volume: 56 start-page: 4524 issue: 13 year: 2018 ident: 10.1016/j.engappai.2023.105975_b29 article-title: A survey of semiconductor supply chain models Part I: Semiconductor supply chains, strategic network design, and supply chain simulation publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2017.1401233 – volume: 32 start-page: 310 issue: 3 year: 2019 ident: 10.1016/j.engappai.2023.105975_b40 article-title: AdaBalGAN: An improved generative adversarial network with imbalanced learning for wafer defective pattern recognition publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2019.2925361 – volume: 33 start-page: 653 issue: 4 year: 2020 ident: 10.1016/j.engappai.2023.105975_b23 article-title: Semi-supervised multi-label learning for classification of wafer bin maps with mixed-type defect patterns publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2020.3027431 – volume: 24 start-page: 392 issue: 3 year: 2011 ident: 10.1016/j.engappai.2023.105975_b47 article-title: Detection of spatial defect patterns generated in semiconductor fabrication process publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2011.2154870 |
SSID | ssj0003846 |
Score | 2.4528263 |
Snippet | Wafer defect recognition has been an important measure in developing the manufacturing process. In real-life manufacturing, however, defects can be... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105975 |
SubjectTerms | Convolutional neural network Semiconductor manufacturing Wafer defect recognition Wavelet transform |
Title | Wavelet integrated attention network with multi-resolution frequency learning for mixed-type wafer defect recognition |
URI | https://dx.doi.org/10.1016/j.engappai.2023.105975 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5BuHCBtoCgFORDr07i9T7sYxQVhUbl0BbBbeUnCoIlokHAhd_emaw3AqkSh55Wa3m0K49n5hvr8wzAVycq4XU15HEYJc8N5qzKZp7nVQx5ESlloPOOH2fl5Dz_fllcrsG4uwtDtMrk-1ufvvTWaWSQVnMwn80GvxAcoLmhMUsK_Fqtw0YmdVn0YGN0Op2crRyyVO19HZzPSeDVReHrfmiuzHxuZn3qI05dbzVRDv8Vo17FnZMPsJUAIxu1__QR1kLzCbYTeGTJNP_gUNefoRvbgYcLQ20lFmxVE8IzKqe5JDiypiWAMzqJZUteIcfUO-1EFu9bjvUzS30lrhjCW3Y7ewqe07ktezQRP-YD8UHYiod01-zC-cm33-MJT20WuMuqYsFL50sdvNLKYPZirLCYRMkglLUyi1qJoTUiCit1iGi-2TCULnc6NyU6gOgKuQe95q4J-8Bi5REyuApxYMiVqJR0KjcIQb0zsQz2AIpuYWuXapBTK4ybuiObXdedQmpSSN0q5AAGK7l5W4XjXQnd6a1-s59qDBXvyH7-D9lD2KS3lhL5BXqL-4dwhLBlYY9hvf8ijtPmpOf058X0L63S8ZY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHODCG_EmB67Z1jVtk-M0MW08dgHEblWeaAjKBJuAf4-zptOQkDhwTWu1imP7c_TZBjjXURYZkTWpa7qYMok5K1ctQ1nmLEucTxn8fcfNIO3ds8thMlyCTlUL42mVwfeXPn3mrcNKI-xmYzwaNW4RHKC5oTHHPvALvgwrLMFsrwYr7f5VbzB3yDEv63XwfeoFFgqFn-q2eJTjsRzV_RxxP_VWeMrhbzFqIe50N2E9AEbSLv9pC5ZssQ0bATySYJrvuFTNZ6jWdmD6IP1YiQmZ94QwxLfTnBEcSVESwIm_iSUzXiHF1DucROLeSo71FwlzJR4JwlvyMvq0hvp7W_IhHX7MWM8HIXMe0muxC_fdi7tOj4YxC1S3smRCU21SYQ0XXGL2IlWkMImKbcSViltO8KipZOQiFQvr0HxbTZtqpgWTKToAp5N4D2rFa2H3gbjMIGTQGeJAy3iU8VhzJhGCGi1datUBJNXG5jr0IPejMJ7zimz2lFcKyb1C8lIhB9CYy43LLhx_SohKb_mP85RjqPhD9vAfsmew2ru7uc6v-4OrI1jzT0p65DHUJm9Te4IQZqJOwxH9Bulf8eI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelet+integrated+attention+network+with+multi-resolution+frequency+learning+for+mixed-type+wafer+defect+recognition&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wei%2C+Yuxiang&rft.au=Wang%2C+Huan&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=121&rft_id=info:doi/10.1016%2Fj.engappai.2023.105975&rft.externalDocID=S0952197623001598 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |