Identification of the diffusion coefficient in a time fractional diffusion equation

In this paper, we study the existence and uniqueness of a quasi solution to a time fractional diffusion equation related to , where the function is unknown. We consider a methodology, involving minimization of a least squares cost functional, to identify the unknown function . At the first step of t...

Full description

Saved in:
Bibliographic Details
Published inJournal of inverse and ill-posed problems Vol. 28; no. 2; pp. 299 - 306
Main Authors Salehi Shayegan, Amir Hossein, Zakeri, Ali, Bodaghi, Soheila, Heshmati, M.
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.04.2020
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study the existence and uniqueness of a quasi solution to a time fractional diffusion equation related to , where the function is unknown. We consider a methodology, involving minimization of a least squares cost functional, to identify the unknown function . At the first step of the methodology, we give a stability result corresponding to connectivity of and which leads to the continuity of the cost functional. We next construct an appropriate class of admissible functions and show that a solution of the minimization problem exists for the continuous cost functional. At the end, convexity of the introduced cost functional and subsequently the uniqueness theorem of the quasi solution are given.
AbstractList In this paper, we study the existence and uniqueness of a quasi solution to a time fractional diffusion equation related to , where the function is unknown. We consider a methodology, involving minimization of a least squares cost functional, to identify the unknown function . At the first step of the methodology, we give a stability result corresponding to connectivity of and which leads to the continuity of the cost functional. We next construct an appropriate class of admissible functions and show that a solution of the minimization problem exists for the continuous cost functional. At the end, convexity of the introduced cost functional and subsequently the uniqueness theorem of the quasi solution are given.
In this paper, we study the existence and uniqueness of a quasi solution to a time fractional diffusion equation related to D t α C ⁢ u - ∇ ⋅ ( k ⁢ ( x ) ⁢ ∇ ⁡ u ) = f {{}^{C}D_{t}^{\alpha}u-\nabla\cdot(k(x)\nabla u)=f} , where the function k = k ⁢ ( x ) {k=k(x)} is unknown. We consider a methodology, involving minimization of a least squares cost functional, to identify the unknown function k . At the first step of the methodology, we give a stability result corresponding to connectivity of k and u which leads to the continuity of the cost functional. We next construct an appropriate class of admissible functions and show that a solution of the minimization problem exists for the continuous cost functional. At the end, convexity of the introduced cost functional and subsequently the uniqueness theorem of the quasi solution are given.
In this paper, we study the existence and uniqueness of a quasi solution to a time fractional diffusion equation related to [Image omitted], where the function [Image omitted] is unknown. We consider a methodology, involving minimization of a least squares cost functional, to identify the unknown function k. At the first step of the methodology, we give a stability result corresponding to connectivity of k and u which leads to the continuity of the cost functional. We next construct an appropriate class of admissible functions and show that a solution of the minimization problem exists for the continuous cost functional. At the end, convexity of the introduced cost functional and subsequently the uniqueness theorem of the quasi solution are given.
Author Zakeri, Ali
Bodaghi, Soheila
Salehi Shayegan, Amir Hossein
Heshmati, M.
Author_xml – sequence: 1
  givenname: Amir Hossein
  surname: Salehi Shayegan
  fullname: Salehi Shayegan, Amir Hossein
  email: ah.salehi@mail.kntu.ac.ir
  organization: Mathematics Department, Faculty of Basic Science, Khatam-ol-Anbia (PBU) University, Tehran, Iran
– sequence: 2
  givenname: Ali
  surname: Zakeri
  fullname: Zakeri, Ali
  email: azakeri@kntu.ac.ir
  organization: Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 3
  givenname: Soheila
  surname: Bodaghi
  fullname: Bodaghi, Soheila
  email: sbodaghi@mail.kntu.ac.ir
  organization: Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 4
  givenname: M.
  surname: Heshmati
  fullname: Heshmati, M.
  email: mmheshmati.kau@gmail.com
  organization: Mathematics Department, Faculty of Basic Science, Khatam-ol-Anbia (PBU) University, Tehran, Iran
BookMark eNptkM1LAzEQxYNUsK1ePS943jqTbHYT8CLFj4LgQT2HbD40pd1tk12k_727VtCDpxne_N5jeDMyadrGEXKJsECO_Hodwi6ngCIHBHlCpshLmTNZ8AmZgqSDTlGekVlKawCsOKVT8rKyrumCD0Z3oW2y1mfdh8ts8L5Po2Ba54drGKgsNJnOurB1mY_ajLze_EHdvv8OOSenXm-Su_iZc_J2f_e6fMyfnh9Wy9un3NCKd3lJvS-0qCsmrS-FBW99BTUFB2hlWRXCCm-4QGMFWI01GCe8pgiaOcNrNidXx9xdbPe9S51at30cfkqKMolQFozhQC2OlIltStF5tYthq-NBIaixODUWp8bi1FjcYLg5Gj71pnPRuvfYH4blN_1_IxWUSsm-AOIfeHw
Cites_doi 10.1016/0020-7225(87)90098-X
10.1137/S0036139997331628
10.1080/17415977.2017.1384826
10.1007/978-3-319-62797-7
10.2478/s13540-011-0028-2
10.1515/156939406778247615
10.1515/jiip-2018-0042
10.4208/cicp.020709.221209a
ContentType Journal Article
Copyright 2020 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2020 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1515/jiip-2018-0109
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1569-3945
EndPage 306
ExternalDocumentID 10_1515_jiip_2018_0109
10_1515_jiip_2018_0109282299
GroupedDBID 0R~
0~D
4.4
5GY
AAAEU
AADQG
AAFPC
AAGVJ
AAJBH
AALGR
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABMBZ
ABPLS
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACIWK
ACPMA
ACUND
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADOZN
AECWL
AEGVQ
AEICA
AEJTT
AENEX
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFQUK
AFYRI
AGBEV
AHGBP
AHVWV
AHXUK
AIERV
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ASYPN
BAKPI
BBCWN
BCIFA
CFGNV
CS3
DU5
EBS
HZ~
IY9
KDIRW
O9-
P2P
PQQKQ
QD8
RDG
SA.
SLJYH
UK5
WTRAM
AAYXX
CITATION
7SC
7TB
8FD
ADNPR
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c275t-62ff4a8b739df68d0fdf70b20e01d96748d8fc581cd80da1b0ce8fa210a3ec5b3
ISSN 0928-0219
IngestDate Wed Aug 13 03:44:32 EDT 2025
Tue Jul 01 01:23:33 EDT 2025
Thu Jul 10 10:37:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c275t-62ff4a8b739df68d0fdf70b20e01d96748d8fc581cd80da1b0ce8fa210a3ec5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2391064331
PQPubID 2030080
PageCount 8
ParticipantIDs proquest_journals_2391064331
crossref_primary_10_1515_jiip_2018_0109
walterdegruyter_journals_10_1515_jiip_2018_0109282299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of inverse and ill-posed problems
PublicationYear 2020
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References Hanke, M.; Scherzer, O. (j_jiip-2018-0109_ref_003) 1999; 59
Ford, N.; Xiao, J.; Yan, Y. (j_jiip-2018-0109_ref_002) 2011; 14
Salehi Shayegan, A. H.; Zakeri, A. (j_jiip-2018-0109_ref_007) 2018; 26
Hasanov, A.; Duchateau, P.; Pektas, B. (j_jiip-2018-0109_ref_004) 2006; 14
Li, X.; Xu, C. (j_jiip-2018-0109_ref_006) 2010; 8
Cannon, J. R.; DuChateau, P. (j_jiip-2018-0109_ref_001) 1987; 25
Salehi Shayegan, A. H.; Zakeri, A. (j_jiip-2018-0109_ref_008) 2019; 27
2023040100055454152_j_jiip-2018-0109_ref_003_w2aab3b7d796b1b6b1ab2b1b3Aa
2023040100055454152_j_jiip-2018-0109_ref_010_w2aab3b7d796b1b6b1ab2b1c10Aa
2023040100055454152_j_jiip-2018-0109_ref_002_w2aab3b7d796b1b6b1ab2b1b2Aa
2023040100055454152_j_jiip-2018-0109_ref_008_w2aab3b7d796b1b6b1ab2b1b8Aa
2023040100055454152_j_jiip-2018-0109_ref_001_w2aab3b7d796b1b6b1ab2b1b1Aa
2023040100055454152_j_jiip-2018-0109_ref_009_w2aab3b7d796b1b6b1ab2b1b9Aa
2023040100055454152_j_jiip-2018-0109_ref_006_w2aab3b7d796b1b6b1ab2b1b6Aa
2023040100055454152_j_jiip-2018-0109_ref_007_w2aab3b7d796b1b6b1ab2b1b7Aa
2023040100055454152_j_jiip-2018-0109_ref_005_w2aab3b7d796b1b6b1ab2b1b5Aa
2023040100055454152_j_jiip-2018-0109_ref_004_w2aab3b7d796b1b6b1ab2b1b4Aa
References_xml – volume: 14
  start-page: 454
  issue: 3
  year: 2011
  end-page: 474
  ident: j_jiip-2018-0109_ref_002
  article-title: A finite element method for time fractional partial differential equations
  publication-title: Fract. Calc. Appl. Anal.
– volume: 8
  start-page: 1016
  issue: 5
  year: 2010
  end-page: 1051
  ident: j_jiip-2018-0109_ref_006
  article-title: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
  publication-title: Commun. Comput. Phys.
– volume: 59
  start-page: 1012
  year: 1999
  end-page: 1027
  ident: j_jiip-2018-0109_ref_003
  article-title: Error analysis of an equation error method for the identification of the diffusion coefficient in a quasilinear parabolic differential equation
  publication-title: SIAM J. Appl. Math.
– volume: 27
  start-page: 795
  issue: 6
  year: 2019
  end-page: 814
  ident: j_jiip-2018-0109_ref_008
  article-title: Quasi solution of a backward space fractional diffusion equation
  publication-title: J. Inverse Ill-Posed Probl.
– volume: 26
  start-page: 1130
  issue: 8
  year: 2018
  end-page: 1154
  ident: j_jiip-2018-0109_ref_007
  article-title: A numerical method for determining a quasi solution of a backward time-fractional diffusion equation
  publication-title: Inverse Probl. Sci. Eng.
– volume: 25
  start-page: 1067
  year: 1987
  end-page: 1078
  ident: j_jiip-2018-0109_ref_001
  article-title: Design of an experiment for the determination of a coefficient in a nonlinear diffusion equation
  publication-title: Int. J. Eng. Sci.
– volume: 14
  start-page: 435
  year: 2006
  end-page: 463
  ident: j_jiip-2018-0109_ref_004
  article-title: An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation
  publication-title: J. Inverse Ill-Posed Probl.
– ident: 2023040100055454152_j_jiip-2018-0109_ref_001_w2aab3b7d796b1b6b1ab2b1b1Aa
  doi: 10.1016/0020-7225(87)90098-X
– ident: 2023040100055454152_j_jiip-2018-0109_ref_003_w2aab3b7d796b1b6b1ab2b1b3Aa
  doi: 10.1137/S0036139997331628
– ident: 2023040100055454152_j_jiip-2018-0109_ref_007_w2aab3b7d796b1b6b1ab2b1b7Aa
  doi: 10.1080/17415977.2017.1384826
– ident: 2023040100055454152_j_jiip-2018-0109_ref_005_w2aab3b7d796b1b6b1ab2b1b5Aa
  doi: 10.1007/978-3-319-62797-7
– ident: 2023040100055454152_j_jiip-2018-0109_ref_010_w2aab3b7d796b1b6b1ab2b1c10Aa
– ident: 2023040100055454152_j_jiip-2018-0109_ref_002_w2aab3b7d796b1b6b1ab2b1b2Aa
  doi: 10.2478/s13540-011-0028-2
– ident: 2023040100055454152_j_jiip-2018-0109_ref_004_w2aab3b7d796b1b6b1ab2b1b4Aa
  doi: 10.1515/156939406778247615
– ident: 2023040100055454152_j_jiip-2018-0109_ref_008_w2aab3b7d796b1b6b1ab2b1b8Aa
  doi: 10.1515/jiip-2018-0042
– ident: 2023040100055454152_j_jiip-2018-0109_ref_006_w2aab3b7d796b1b6b1ab2b1b6Aa
  doi: 10.4208/cicp.020709.221209a
– ident: 2023040100055454152_j_jiip-2018-0109_ref_009_w2aab3b7d796b1b6b1ab2b1b9Aa
SSID ssj0017522
Score 2.1568532
Snippet In this paper, we study the existence and uniqueness of a quasi solution to a time fractional diffusion equation related to , where the function is unknown. We...
In this paper, we study the existence and uniqueness of a quasi solution to a time fractional diffusion equation related to D t α C ⁢ u - ∇ ⋅ ( k ⁢ ( x ) ⁢ ∇ ⁡...
In this paper, we study the existence and uniqueness of a quasi solution to a time fractional diffusion equation related to [Image omitted], where the function...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Publisher
StartPage 299
SubjectTerms 35R30
Continuity (mathematics)
Convexity
Diffusion
Diffusion coefficient
Functionals
Inverse coefficient problem
Optimization
quasi solution
time fractional diffusion equation
Uniqueness theorems
Title Identification of the diffusion coefficient in a time fractional diffusion equation
URI https://www.degruyter.com/doi/10.1515/jiip-2018-0109
https://www.proquest.com/docview/2391064331
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4HDxKcoDJQDEocqw7HjxD4WNKiQxqUbmrhEdmKvGSUtTSI0_hf-V-zETtKth8ElqlLHSv1-9Xt-H78HwBscS0ZlyHwaptgPUUh9gdLYDyUUTKTa4m94uk-_RPPz8PMFuRiN_gyylupKHKe_99aV_I9U9T0tV1Ml-w-S7SbVN_RnLV991RLW1zvJuK2yVdbt5sL9pudJbZxghvijYYgw8f68mPKmk_xUbdtihiY844bKn3Uvo9vGal6Y9A0balit_M26lIZgoOlG05nlC61tlrkhgb6Wl61ndfYj35rmJKXMOxh-499tgftslXf-gHXG2w7D08V6KfNVpy_mslwau7rx3R4P3RQIDrJbrL_RUGG7_VHa3TZiPmYtn6TbjhEdwA4N91bGBmoaN0QFtzUAacgyrvJ8o6ESmEQ9yHpd5-L7N1Rgl5hojkR6hsQ8n5jnE_P8PXCA9CkEjcHB7NP7k69dmCq2dPTut1lWUD3Du9032LV6-qPM4a8mKSKTl9v6unJB-Ma2OXsIDq2cvVmLsEdgJIvH4MFpx-hbPgGLXax5a-Xpb70OQN4Aa15eeNwzWPN6rA2GOqw9BecfT84-zH3bkMNPUUwqP0JKhZyKGLNMRTSDKlMxFAhKGGTMtK3JqEoJDdKMwowHAqaSKo4CyLFMicDPwLhYF_I58HAaQMoFgUiwUGDFCceUEKUiiTN9zJ6At27Bkk3Lu5LsF84EHLn1TOx_s0wQ1mZwZKoBJ4DcWON-1P4JTWI1Yy_u_AIvwf0e8EdgXG1r-UpbqpV4bfHyF1XZl4U
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BOQAHlteKAgs-IHEKdWI7sY_dFVAe5cJD3KL4BV2ghTYR2v312E3a8jrBOZORPWNrHp75BmCHJEZwQ0XAqSIBjSgPZKSSgBoshVTO4x_idLfP4tYlPb5m1696YXxZpTY3_eJfXiKkNnRPFT5RNsYacBa48bfTeXQKDn0hFhaN2_zhfhpmuGNMazDTPPy9fzV-S0gqzHDhsZjdBa2gGz-yeWuaJv7mwvPw5Xq8rFcG6OAHqNHSy7qTu70il3vq_ztUx-_tbREWKv8UNcsDtQRTprsM8-0xuOtgBc7L5l5bZftQzyL3FflRK4XPvSHVM0NgCkeFOl2UIT_AHtl-2UPhuE9IzVMJNb4Klwf7F39aQTWbIVBRwvIgjqylGZcJEdrGXGOrbYJlhA0OtfATTDS3ivFQaY51FkqsDLeZCzAzYhST5CfUur2uWQNEVIh5JhmOpKCS2IxlhDNmbWyIdhFXHXZHakkfSwiO1IcuTlapl1XqZZV6WdVhc6S1tLqKgzQiziOKfWNYHdg7TU6oPmfoa2yFWP_if9sw27pon6anR2cnGzAX-Uh9WPOzCbW8X5hfzp3J5VZ1Xl8Axw_y4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BKiE4pC1Qkb7wAYnTJt61vWsf00cI0ERIEMRttX5VKVISkl1V7a-vnX2EBk5w3tmRPWNrHp75BuAdSYzghoqAU0UCGlEeyEglATVYCqmcx7_G6R6N4-GEfvrB6mrCVVVWqc31srjLS4TUnp6rwifKGqwBZ4F7N9Ppwik49IVYWPQW2j6FHU5dLNOCnf6Hs8vvzVNCUkGGCw_F7O5nhdz4J5fHlmnjbrZv1w_Xzap-sz-DXZD1ysuyk5_dIpdddb8F6vhfW9uDduWdon55nPbhiZm9hBejBtp19Qq-lq29tsr1oblF7ivyg1YKn3lDam7WsBSOCk1nKEN-fD2yy7KDwnHfkJpfJdD4a5gMLr-dD4NqMkOgooTlQRxZSzMuEyK0jbnGVtsEywgbHGrh55dobhXjodIc6yyUWBluMxdeZsQoJskBtGbzmXkDiKgQ80wyHElBJbEZywhnzNrYEO3irQ68r7WSLkoAjtQHLk5UqRdV6kWVelF14LhWWlpdxFUaEecPxb4trANsS5Ebqr8z9BW2Qhz-439v4dmXi0F69XH8-QieRz5MXxf8HEMrXxbmxPkyuTytTusDAIDxhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+the+diffusion+coefficient+in+a+time+fractional+diffusion+equation&rft.jtitle=Journal+of+inverse+and+ill-posed+problems&rft.au=Salehi+Shayegan%2C+Amir+Hossein&rft.au=Zakeri%2C+Ali&rft.au=Bodaghi%2C+Soheila&rft.au=Heshmati%2C+M.&rft.date=2020-04-01&rft.issn=0928-0219&rft.eissn=1569-3945&rft.volume=28&rft.issue=2&rft.spage=299&rft.epage=306&rft_id=info:doi/10.1515%2Fjiip-2018-0109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jiip_2018_0109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0219&client=summon