Degradation mechanism of surface hydrophobicity by ferrous ions in the sulfidization flotation system of smithsonite

Metal ions commonly exist in the flotation pulp, which will affect the mineral surface properties and lead to a change in the mineral floatability. In this work, the effect of Fe2+ on the flotation behavior of smithsonite was investigated, and the interaction mechanism of Fe2+ with the smithsonite s...

Full description

Saved in:
Bibliographic Details
Published inColloids and surfaces. A, Physicochemical and engineering aspects Vol. 648; p. 129119
Main Authors Feng, Qicheng, Zhao, Guanghu, Zhang, Ga, Zhao, Wenjuan, Han, Guang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 05.09.2022
Subjects
Online AccessGet full text
ISSN0927-7757
1873-4359
DOI10.1016/j.colsurfa.2022.129119

Cover

Loading…
Abstract Metal ions commonly exist in the flotation pulp, which will affect the mineral surface properties and lead to a change in the mineral floatability. In this work, the effect of Fe2+ on the flotation behavior of smithsonite was investigated, and the interaction mechanism of Fe2+ with the smithsonite surface in the sulfidization flotation system was clarified. The results of microflotation tests showed that the presence of Fe2+ can greatly reduce the flotation recovery of smithsonite. The results of zeta-potential measurement, time-of-flight secondary-ion mass spectrometry, and X-ray photoelectron spectroscopy indicated that addition of Fe2+ before sulfidization generated FeOOH species and hindered formation of active sulfide species on smithsonite. The results of infrared spectroscopy and contact-angle measurement showed that addition of Fe2+ was harmful for adsorption of the collector on smithsonite, and it was difficult to obtain hydrophobic smithsonite surfaces in the Fe2+–sulfidization–xanthate flotation system. Considering the above results, the presence of Fe2+ depressed adsorption of sulfide ions and the collector on smithsonite, making smithsonite show poor floatability, and it was difficult to obtain the ideal flotation recovery of smithsonite. [Display omitted] •Fe2+ an generate iron species with spatial depth on the smithsonite surface.•Addition of Fe2+ decreased the number of active sites on the smithsonite surface.•The content of sulfide on the smithsonite surface decreased after addition of Fe2+.•Adsorption of xanthate on the smithsonite surface was hindered by Fe2+.
AbstractList Metal ions commonly exist in the flotation pulp, which will affect the mineral surface properties and lead to a change in the mineral floatability. In this work, the effect of Fe²⁺ on the flotation behavior of smithsonite was investigated, and the interaction mechanism of Fe²⁺ with the smithsonite surface in the sulfidization flotation system was clarified. The results of microflotation tests showed that the presence of Fe²⁺ can greatly reduce the flotation recovery of smithsonite. The results of zeta-potential measurement, time-of-flight secondary-ion mass spectrometry, and X-ray photoelectron spectroscopy indicated that addition of Fe²⁺ before sulfidization generated FeOOH species and hindered formation of active sulfide species on smithsonite. The results of infrared spectroscopy and contact-angle measurement showed that addition of Fe²⁺ was harmful for adsorption of the collector on smithsonite, and it was difficult to obtain hydrophobic smithsonite surfaces in the Fe²⁺–sulfidization–xanthate flotation system. Considering the above results, the presence of Fe²⁺ depressed adsorption of sulfide ions and the collector on smithsonite, making smithsonite show poor floatability, and it was difficult to obtain the ideal flotation recovery of smithsonite.
Metal ions commonly exist in the flotation pulp, which will affect the mineral surface properties and lead to a change in the mineral floatability. In this work, the effect of Fe2+ on the flotation behavior of smithsonite was investigated, and the interaction mechanism of Fe2+ with the smithsonite surface in the sulfidization flotation system was clarified. The results of microflotation tests showed that the presence of Fe2+ can greatly reduce the flotation recovery of smithsonite. The results of zeta-potential measurement, time-of-flight secondary-ion mass spectrometry, and X-ray photoelectron spectroscopy indicated that addition of Fe2+ before sulfidization generated FeOOH species and hindered formation of active sulfide species on smithsonite. The results of infrared spectroscopy and contact-angle measurement showed that addition of Fe2+ was harmful for adsorption of the collector on smithsonite, and it was difficult to obtain hydrophobic smithsonite surfaces in the Fe2+–sulfidization–xanthate flotation system. Considering the above results, the presence of Fe2+ depressed adsorption of sulfide ions and the collector on smithsonite, making smithsonite show poor floatability, and it was difficult to obtain the ideal flotation recovery of smithsonite. [Display omitted] •Fe2+ an generate iron species with spatial depth on the smithsonite surface.•Addition of Fe2+ decreased the number of active sites on the smithsonite surface.•The content of sulfide on the smithsonite surface decreased after addition of Fe2+.•Adsorption of xanthate on the smithsonite surface was hindered by Fe2+.
ArticleNumber 129119
Author Zhang, Ga
Han, Guang
Feng, Qicheng
Zhao, Wenjuan
Zhao, Guanghu
Author_xml – sequence: 1
  givenname: Qicheng
  surname: Feng
  fullname: Feng, Qicheng
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 2
  givenname: Guanghu
  surname: Zhao
  fullname: Zhao, Guanghu
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 3
  givenname: Ga
  surname: Zhang
  fullname: Zhang, Ga
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 4
  givenname: Wenjuan
  surname: Zhao
  fullname: Zhao, Wenjuan
  email: zwjkust@126.com
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 5
  givenname: Guang
  surname: Han
  fullname: Han, Guang
  email: ghkmust@126.com
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
BookMark eNqFkE1LxDAURYMoOKP-BenSTcck_cgEXCjjJwy40XVIkxeboW3GJCPUX2_G6saNm7w8uOfCO3N0OLgBEDoneEEwqS83C-W6sPNGLiimdEEoJ4QfoBlZsiIvi4ofohnmlOWMVewYzUPYYIzLivEZirfw5qWW0boh60G1crChz5zJvhsVZO2ovdu2rrHKxjFrxsyA924XsoSkZ8hiCyndGavt51RkOhenXxhDhKmvt7ENbrARTtGRkV2As595gl7v715Wj_n6-eFpdbPOFWVVzGsMmnHMoSRQlEAbzalOCysaIEvSaEpKw1XdKA11wbWRFdMFMbygadaqOEEXU-_Wu_cdhCh6GxR0nRwgHSAoI0tKeVXSFK2nqPIuBA9GbL3tpR8FwWKvWWzEr2ax1ywmzQm8-gMmTd-3Ry9t9z9-PeGQPHxY8CIoC4MCbT2oKLSz_1V8AQxlo7c
CitedBy_id crossref_primary_10_1016_j_molliq_2022_120485
crossref_primary_10_1016_j_apsusc_2024_159932
crossref_primary_10_1016_j_molliq_2023_122406
crossref_primary_10_1016_j_colsurfa_2023_131126
crossref_primary_10_1016_j_seppur_2022_122772
crossref_primary_10_1016_j_colsurfa_2022_130497
crossref_primary_10_1016_j_molliq_2023_121659
crossref_primary_10_1016_j_gsme_2024_05_004
crossref_primary_10_1016_j_mineng_2024_109020
crossref_primary_10_1016_j_mineng_2023_108349
crossref_primary_10_1016_j_apsusc_2024_161479
crossref_primary_10_3390_min14090855
crossref_primary_10_1016_j_colsurfa_2024_134057
crossref_primary_10_1016_j_colsurfa_2024_133443
crossref_primary_10_3390_min14111105
crossref_primary_10_1016_j_seppur_2022_121679
Cites_doi 10.1016/j.colsurfa.2018.12.022
10.1016/j.mineng.2016.11.005
10.1016/0301-7516(89)90058-6
10.1016/j.mineng.2018.12.028
10.1016/j.apsusc.2019.143801
10.1016/j.powtec.2019.10.060
10.1016/j.ijmst.2021.10.008
10.1016/j.mineng.2018.01.029
10.1007/s12613-021-2321-3
10.1111/ejss.12437
10.1016/j.mineng.2021.106991
10.1016/j.mineng.2004.01.003
10.1016/j.mineng.2021.106982
10.1016/j.ijmst.2021.11.001
10.1016/S1003-6326(21)65748-5
10.1007/s12613-020-2062-8
10.1016/j.jcis.2005.01.022
10.1016/0301-7516(87)90015-9
10.1016/j.mineng.2013.05.025
10.1016/j.cis.2013.02.003
10.1016/j.mineng.2020.106707
10.1016/j.jmatprotec.2007.04.025
10.1016/j.jtice.2018.11.021
10.1021/acs.langmuir.9b00669
10.1016/S1003-6326(21)65640-6
10.1016/j.mineng.2018.03.040
10.1016/j.minpro.2013.08.007
10.1016/S1003-6326(22)65823-0
10.1016/S1003-6326(21)65771-0
10.1016/j.seppur.2021.118670
10.1016/S1003-6326(22)65824-2
10.1016/j.jngse.2021.103959
10.1016/j.mineng.2021.106956
10.1016/j.seppur.2021.119573
10.1038/s41467-020-17752-x
10.1016/j.hydromet.2014.08.001
10.1016/j.matlet.2006.06.029
10.1016/j.jiec.2017.11.042
10.1016/j.mineng.2013.02.001
10.1016/S0301-7516(97)00064-1
10.1007/s12613-020-2158-1
10.1016/j.mineng.2021.106904
10.1007/s11356-015-5712-z
10.1016/j.powtec.2019.04.036
10.1016/S1003-6326(21)65616-9
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.colsurfa.2022.129119
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-4359
ExternalDocumentID 10_1016_j_colsurfa_2022_129119
S0927775722008743
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SPC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
WH7
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIIUN
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SCB
SEW
SSH
VH1
WUQ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c275t-60ed7909e41e34e2bd92de4173be181bd214f9c6bcde639dfa57d31f9327d36c3
IEDL.DBID .~1
ISSN 0927-7757
IngestDate Thu Sep 04 17:08:05 EDT 2025
Tue Jul 01 02:42:13 EDT 2025
Thu Apr 24 22:51:23 EDT 2025
Fri Feb 23 02:39:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Smithsonite
Surface hydrophobicity
Sulfidization flotation
Fe2+ species
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-60ed7909e41e34e2bd92de4173be181bd214f9c6bcde639dfa57d31f9327d36c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718229542
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718229542
crossref_primary_10_1016_j_colsurfa_2022_129119
crossref_citationtrail_10_1016_j_colsurfa_2022_129119
elsevier_sciencedirect_doi_10_1016_j_colsurfa_2022_129119
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-05
PublicationDateYYYYMMDD 2022-09-05
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-05
  day: 05
PublicationDecade 2020
PublicationTitle Colloids and surfaces. A, Physicochemical and engineering aspects
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cakmak, Kutman (bib3) 2018; 69
Chen, Peng, Bradshaw (bib38) 2013; 125
Li, Bai, Ding, Yu (bib7) 2019; 96
Han, Wen, Wang, Feng (bib25) 2021; 278
Bai, Li, Fu, Liu, Wen (bib31) 2018; 61
Liu, Peng, Liu, Wang, Zhao, Wang (bib41) 2020; 360
Zhang, Wen, Xian, Zhao, Feng, Bai, Han, Lang Wang (bib45) 2019; 498
Gan, D, Liu (bib17) 2022; 32
Han, Wen, Wang, Feng (bib36) 2021; 31
Cai, Liu, Shen, Zhang, Song, Jia, Su (bib9) 2021; 169
Zhou, Yang, Zhang, Xie, Luo (bib11) 2021; 167
Liu, Zhang, Song, Li, Liu (bib6) 2019; 352
Gao, Jiang, Sun, Gao (bib21) 2021; 31
Kumar, Millot, Battaglia-Brunet, Omoregie, Chaurand, Borschneck, Bastiaens, Rose (bib28) 2016; 23
Pistofidis, Vourlias, Konidaris, Pavlidou, Stergiou, Stergioudis (bib2) 2007; 61
Xian, Wen, Bai, Chen (bib13) 2013; 50
Cao, Chen, Peng (bib33) 2018; 119
Zhao, Ruan, Niu, Li, Zhang (bib8) 2021; 31
Han, Wen, Wang, Feng, Bai (bib40) 2021; 267
Abkhoshk, Jorjani, Al-Harahsheh, Rashchi, Naazeri (bib5) 2014; 149
Cao, Xie, Tong, Feng, Lv, Chen, Song (bib24) 2021; 160
Han, Wen, Wang, Feng (bib34) 2021; 31
Feng, Liu, Yu, Liu, Ou, Zhang (bib20) 2006; 37
Wei, Wei, Qiu (bib22) 1987; 20
Kongolo, Benzaazoua, Donato, Drouet, Barrès (bib44) 2004; 17
Ejtemaei, Gharabaghi, Irannajad (bib10) 2014; 206
Liu, Huang, Rao, Zhu, Zheng, Wen (bib42) 2022; 29
Han, Wen, Wang, Feng (bib32) 2021; 169
Zhang, Luan, Huang, Wang, Sun, Tang, Ji, Wang (bib4) 2020; 11
Yu, Wang, Wang, Xie (bib23) 2014; 50
Liu, Zhao, Liu, Yang, Duan (bib46) 2019; 134
Yang (bib1) 2007; 192
Chiam, Le, Pung, Yeoh (bib30) 2021; 28
Bai, Wen, Xian, Liu, Deng (bib14) 2013; 45
Ejtemaei, Nguyen (bib35) 2017; 100
Bai, Li, Fu, Ding, Wen (bib47) 2018; 125
Page, Hazell (bib37) 1989; 25
Fredriksson, Larsson (bib43) 2005; 286
Wei, Dong, Yang, Liu, Jiao, Qin (bib16) 2022; 32
Liu, Song, Li, Li, Ai (bib26) 2019; 563
Fu, Yin, Dong, Sun, Yang, Yao, Liu, Li, Kim (bib18) 2021; 28
Xia, Huang, Yan, Yuan (bib27) 2021; 91
Zhong, Feng, Chen, Guo, Wang (bib29) 2021; 31
Wei, Jiao, Dong, Liu, Qin (bib19) 2021; 31
Liu, Sun, Liu, Dai, Duan, Zhou, Qiu (bib12) 2021; 170
Zhang, Xu, Bozkurt, Finch (bib15) 1997; 52
Hao, Li, Somasundaran, Yuan (bib39) 2019; 35
Hao (10.1016/j.colsurfa.2022.129119_bib39) 2019; 35
Chen (10.1016/j.colsurfa.2022.129119_bib38) 2013; 125
Liu (10.1016/j.colsurfa.2022.129119_bib12) 2021; 170
Fu (10.1016/j.colsurfa.2022.129119_bib18) 2021; 28
Ejtemaei (10.1016/j.colsurfa.2022.129119_bib35) 2017; 100
Liu (10.1016/j.colsurfa.2022.129119_bib6) 2019; 352
Gan (10.1016/j.colsurfa.2022.129119_bib17) 2022; 32
Han (10.1016/j.colsurfa.2022.129119_bib34) 2021; 31
Liu (10.1016/j.colsurfa.2022.129119_bib41) 2020; 360
Zhang (10.1016/j.colsurfa.2022.129119_bib45) 2019; 498
Cai (10.1016/j.colsurfa.2022.129119_bib9) 2021; 169
Wei (10.1016/j.colsurfa.2022.129119_bib16) 2022; 32
Gao (10.1016/j.colsurfa.2022.129119_bib21) 2021; 31
Xian (10.1016/j.colsurfa.2022.129119_bib13) 2013; 50
Li (10.1016/j.colsurfa.2022.129119_bib7) 2019; 96
Kumar (10.1016/j.colsurfa.2022.129119_bib28) 2016; 23
Liu (10.1016/j.colsurfa.2022.129119_bib46) 2019; 134
Han (10.1016/j.colsurfa.2022.129119_bib40) 2021; 267
Cao (10.1016/j.colsurfa.2022.129119_bib33) 2018; 119
Kongolo (10.1016/j.colsurfa.2022.129119_bib44) 2004; 17
Liu (10.1016/j.colsurfa.2022.129119_bib42) 2022; 29
Pistofidis (10.1016/j.colsurfa.2022.129119_bib2) 2007; 61
Zhang (10.1016/j.colsurfa.2022.129119_bib15) 1997; 52
Feng (10.1016/j.colsurfa.2022.129119_bib20) 2006; 37
Wei (10.1016/j.colsurfa.2022.129119_bib19) 2021; 31
Han (10.1016/j.colsurfa.2022.129119_bib25) 2021; 278
Xia (10.1016/j.colsurfa.2022.129119_bib27) 2021; 91
Zhong (10.1016/j.colsurfa.2022.129119_bib29) 2021; 31
Yu (10.1016/j.colsurfa.2022.129119_bib23) 2014; 50
Liu (10.1016/j.colsurfa.2022.129119_bib26) 2019; 563
Zhang (10.1016/j.colsurfa.2022.129119_bib4) 2020; 11
Ejtemaei (10.1016/j.colsurfa.2022.129119_bib10) 2014; 206
Wei (10.1016/j.colsurfa.2022.129119_bib22) 1987; 20
Bai (10.1016/j.colsurfa.2022.129119_bib31) 2018; 61
Zhou (10.1016/j.colsurfa.2022.129119_bib11) 2021; 167
Cao (10.1016/j.colsurfa.2022.129119_bib24) 2021; 160
Yang (10.1016/j.colsurfa.2022.129119_bib1) 2007; 192
Zhao (10.1016/j.colsurfa.2022.129119_bib8) 2021; 31
Bai (10.1016/j.colsurfa.2022.129119_bib47) 2018; 125
Cakmak (10.1016/j.colsurfa.2022.129119_bib3) 2018; 69
Bai (10.1016/j.colsurfa.2022.129119_bib14) 2013; 45
Fredriksson (10.1016/j.colsurfa.2022.129119_bib43) 2005; 286
Abkhoshk (10.1016/j.colsurfa.2022.129119_bib5) 2014; 149
Chiam (10.1016/j.colsurfa.2022.129119_bib30) 2021; 28
Han (10.1016/j.colsurfa.2022.129119_bib32) 2021; 169
Page (10.1016/j.colsurfa.2022.129119_bib37) 1989; 25
Han (10.1016/j.colsurfa.2022.129119_bib36) 2021; 31
References_xml – volume: 45
  start-page: 94
  year: 2013
  end-page: 99
  ident: bib14
  article-title: New source of unavoidable ions in galena flotation pulp: components released from fluid inclusions
  publication-title: Miner. Eng.
– volume: 278
  year: 2021
  ident: bib25
  article-title: Effect of ferric ion on cuprite surface properties and sulfidization flotation
  publication-title: Sep. Purif. Technol.
– volume: 149
  start-page: 153
  year: 2014
  end-page: 167
  ident: bib5
  article-title: Review of the hydrometallurgical processing of non-sulfide zinc ores
  publication-title: Hydrometallurgy
– volume: 119
  start-page: 93
  year: 2018
  end-page: 98
  ident: bib33
  article-title: The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation
  publication-title: Miner. Eng.
– volume: 267
  year: 2021
  ident: bib40
  article-title: Pyrogallic acid as depressant for flotation separation of pyrite from chalcopyrite under low-alkalinity conditions
  publication-title: Sep. Purif. Technol.
– volume: 134
  start-page: 394
  year: 2019
  end-page: 401
  ident: bib46
  article-title: Synthesis and utilization of a gemini surfactant as a collector for the flotation of hemimorphite from quartz
  publication-title: Miner. Eng.
– volume: 125
  start-page: 190
  year: 2018
  end-page: 199
  ident: bib47
  article-title: Promoting sulfidation of smithsonite by zinc sulfide species increase with addition of ammonium chloride and its effect on flotation performance
  publication-title: Miner. Eng.
– volume: 91
  year: 2021
  ident: bib27
  article-title: Influencing mechanism of Fe
  publication-title: J. Nat. Gas. Sci. Eng.
– volume: 352
  start-page: 11
  year: 2019
  end-page: 15
  ident: bib6
  article-title: Flotation separation of smithsonite from calcite using 2-phosphonobutane-1, 2, 4-tricarboxylic acid as a depressant
  publication-title: Powder Technol.
– volume: 29
  start-page: 446
  year: 2022
  end-page: 454
  ident: bib42
  article-title: Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 167
  year: 2021
  ident: bib11
  article-title: Flotation separation of smithsonite from calcite by using flaxseed gum as depressant
  publication-title: Miner. Eng.
– volume: 31
  start-page: 3879
  year: 2021
  end-page: 3890
  ident: bib29
  article-title: Flotation separation of molybdenite and talc using tragacanth gum as depressant and potassium butyl xanthate as collector
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 28
  start-page: 325
  year: 2021
  end-page: 334
  ident: bib30
  article-title: Effect of pH on the photocatalytic removal of silver ions by β-MnO2 particles
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 360
  start-page: 1117
  year: 2020
  end-page: 1125
  ident: bib41
  article-title: Effect mechanism of the iso-propanol substituent on amine collectors in the flotation of quartz and magnesite
  publication-title: Powder Technol.
– volume: 69
  start-page: 172
  year: 2018
  end-page: 180
  ident: bib3
  article-title: Agronomic biofortification of cereals with zinc: a review
  publication-title: Eur. J. Soil. Sci.
– volume: 28
  start-page: 1898
  year: 2021
  end-page: 1907
  ident: bib18
  article-title: New insights into the flotation responses of brucite and serpentine for different conditioning times: surface dissolution behavior
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 50
  start-page: 535
  year: 2014
  end-page: 550
  ident: bib23
  article-title: Investigation on different behavior and mechanism of Ca (II) and Fe (III) adsorption on spodumene surface
  publication-title: Physicochem. Probl. Miner. Pro
– volume: 31
  start-page: 1117
  year: 2021
  end-page: 1128
  ident: bib34
  article-title: Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant
  publication-title: Int. J. Min. Sci. Technol.
– volume: 35
  start-page: 6878
  year: 2019
  end-page: 6887
  ident: bib39
  article-title: Adsorption of pregelatinized starch for selective flocculation and flotation of fine siderite
  publication-title: Langmuir
– volume: 498
  year: 2019
  ident: bib45
  article-title: Lead ion modification and its enhancement for xanthate adsorption on smithsonite surface
  publication-title: Appl. Surf. Sci.
– volume: 31
  start-page: 1085
  year: 2021
  end-page: 1093
  ident: bib8
  article-title: A nanoscale qualitative study on the role of sodium hydrosulfide in oxidized carrollite flotation
  publication-title: Int. J. Min. Sci. Technol.
– volume: 50
  start-page: 1
  year: 2013
  end-page: 3
  ident: bib13
  article-title: Metal ions released from fluid inclusions of quartz associated with sulfides
  publication-title: Miner. Eng.
– volume: 31
  start-page: 3564
  year: 2021
  end-page: 3578
  ident: bib36
  article-title: Enhanced sulfidization flotation of cuprite by surface modification with hydrogen peroxide
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 96
  start-page: 53
  year: 2019
  end-page: 62
  ident: bib7
  article-title: S. Wen. Visual MINTEQ model, ToF–SIMS, and XPS study of smithsonite surface sulfidation behavior: zinc sulfide precipitation adsorption
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 206
  start-page: 68
  year: 2014
  end-page: 78
  ident: bib10
  article-title: A review of zinc oxide mineral beneficiation using flotation method
  publication-title: Adv. Colloid Interface Sci.
– volume: 11
  start-page: 3961
  year: 2020
  ident: bib4
  article-title: Revealing the role of crystal orientation of protective layers for stable zinc anode
  publication-title: Nat. Commun.
– volume: 170
  year: 2021
  ident: bib12
  article-title: An ion-tolerance collector AESNa for effective flotation of magnesite from dolomite
  publication-title: Miner. Eng.
– volume: 20
  start-page: 35
  year: 1987
  end-page: 44
  ident: bib22
  article-title: The activation mechanisms of wolframite by Ca
  publication-title: Int. J. Miner. Process.
– volume: 23
  start-page: 5960
  year: 2016
  end-page: 5968
  ident: bib28
  article-title: Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations
  publication-title: Environ. Sci. Pollut. Res.
– volume: 563
  start-page: 324
  year: 2019
  end-page: 329
  ident: bib26
  article-title: Elimination of the adverse effect of calcite slimes on the sulfidization flotation of malachite in the presence of water glass
  publication-title: Colloid Surf A-Physicochem. Eng. Asp.
– volume: 52
  start-page: 187
  year: 1997
  end-page: 201
  ident: bib15
  article-title: Pyrite flotation in the presence of metal ions and sphalerite
  publication-title: Int. J. Miner. Process.
– volume: 37
  start-page: 476
  year: 2006
  end-page: 480
  ident: bib20
  article-title: Influence and mechanism of ferric and ferrous ions on flotation of talc
  publication-title: J. Cent. South Univ. Sci. Technol.
– volume: 61
  start-page: 994
  year: 2007
  end-page: 997
  ident: bib2
  article-title: The effect of bismuth on the structure of zinc hot-dip galvanized coatings
  publication-title: Mater. Lett.
– volume: 25
  start-page: 87
  year: 1989
  end-page: 100
  ident: bib37
  article-title: X-ray photoelectron spectroscopy (XPS) studies of potassium amyl xanthate (KAX) adsorption on precipitated PbS related to galena flotation
  publication-title: Int. J. Miner. Process.
– volume: 125
  start-page: 129
  year: 2013
  end-page: 136
  ident: bib38
  article-title: Effect of regrinding conditions on pyrite flotation in the presence of copper ions
  publication-title: Int. J. Miner. Process.
– volume: 192
  start-page: 114
  year: 2007
  end-page: 120
  ident: bib1
  article-title: The effect of solidification time in squeeze casting of aluminium and zinc alloys
  publication-title: J. Mater. Process. Technol.
– volume: 32
  start-page: 668
  year: 2022
  end-page: 681
  ident: bib16
  article-title: Selective depression mechanism of combination of lime and sodium humate on arsenopyrite in flotation separation of Zn–As bulk concentrate
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 32
  start-page: 657
  year: 2022
  end-page: 667
  ident: bib17
  article-title: Surface characteristics, collector adsorption, and flotation response of covellite in oxidizing environment
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 169
  year: 2021
  ident: bib9
  article-title: Effects of heating-sulfidation on the formation of zinc sulfide species on smithsonite surfaces and its response to flotation
  publication-title: Miner. Eng.
– volume: 17
  start-page: 505
  year: 2004
  end-page: 515
  ident: bib44
  article-title: The comparison between amine thioacetate and amyl xanthate collector performances for pyrite flotation and its application to tailings desulphurization
  publication-title: Miner. Eng.
– volume: 31
  start-page: 2081
  year: 2021
  end-page: 2101
  ident: bib21
  article-title: Typical roles of metal ions in mineral flotation: a review
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 100
  start-page: 223
  year: 2017
  end-page: 232
  ident: bib35
  article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate
  publication-title: Miner. Eng.
– volume: 169
  year: 2021
  ident: bib32
  article-title: Surface sulfidization mechanism of cuprite and its response to xanthate adsorption and flotation performance
  publication-title: Miner. Eng.
– volume: 61
  start-page: 19
  year: 2018
  end-page: 27
  ident: bib31
  article-title: Characterization of zinc sulfide species on smithsonite surfaces during sulfidation processing: effect of ammonia liquor
  publication-title: J. Ind. Eng. Chem.
– volume: 286
  start-page: 1
  year: 2005
  end-page: 6
  ident: bib43
  article-title: A. Holmgren. n-Heptyl xanthate adsorption on a ZnS layer synthesized on germanium: an in situ attenuated total reflection IR study
  publication-title: J. Colloid Interface Sci.
– volume: 31
  start-page: 1784
  year: 2021
  end-page: 1795
  ident: bib19
  article-title: Selective depression of copper-activated sphalerite by polyaspartic acid during chalcopyrite flotation
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 160
  year: 2021
  ident: bib24
  article-title: The activation mechanism of Fe (II) ion-modified cassiterite surface to promote salicylhydroxamic acid adsorption
  publication-title: Miner. Eng.
– volume: 563
  start-page: 324
  year: 2019
  ident: 10.1016/j.colsurfa.2022.129119_bib26
  article-title: Elimination of the adverse effect of calcite slimes on the sulfidization flotation of malachite in the presence of water glass
  publication-title: Colloid Surf A-Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2018.12.022
– volume: 100
  start-page: 223
  year: 2017
  ident: 10.1016/j.colsurfa.2022.129119_bib35
  article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.11.005
– volume: 25
  start-page: 87
  year: 1989
  ident: 10.1016/j.colsurfa.2022.129119_bib37
  article-title: X-ray photoelectron spectroscopy (XPS) studies of potassium amyl xanthate (KAX) adsorption on precipitated PbS related to galena flotation
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/0301-7516(89)90058-6
– volume: 134
  start-page: 394
  year: 2019
  ident: 10.1016/j.colsurfa.2022.129119_bib46
  article-title: Synthesis and utilization of a gemini surfactant as a collector for the flotation of hemimorphite from quartz
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.12.028
– volume: 498
  year: 2019
  ident: 10.1016/j.colsurfa.2022.129119_bib45
  article-title: Lead ion modification and its enhancement for xanthate adsorption on smithsonite surface
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143801
– volume: 360
  start-page: 1117
  year: 2020
  ident: 10.1016/j.colsurfa.2022.129119_bib41
  article-title: Effect mechanism of the iso-propanol substituent on amine collectors in the flotation of quartz and magnesite
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.10.060
– volume: 31
  start-page: 1085
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib8
  article-title: A nanoscale qualitative study on the role of sodium hydrosulfide in oxidized carrollite flotation
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2021.10.008
– volume: 119
  start-page: 93
  year: 2018
  ident: 10.1016/j.colsurfa.2022.129119_bib33
  article-title: The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.01.029
– volume: 29
  start-page: 446
  year: 2022
  ident: 10.1016/j.colsurfa.2022.129119_bib42
  article-title: Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-021-2321-3
– volume: 69
  start-page: 172
  year: 2018
  ident: 10.1016/j.colsurfa.2022.129119_bib3
  article-title: Agronomic biofortification of cereals with zinc: a review
  publication-title: Eur. J. Soil. Sci.
  doi: 10.1111/ejss.12437
– volume: 170
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib12
  article-title: An ion-tolerance collector AESNa for effective flotation of magnesite from dolomite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2021.106991
– volume: 17
  start-page: 505
  year: 2004
  ident: 10.1016/j.colsurfa.2022.129119_bib44
  article-title: The comparison between amine thioacetate and amyl xanthate collector performances for pyrite flotation and its application to tailings desulphurization
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2004.01.003
– volume: 169
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib32
  article-title: Surface sulfidization mechanism of cuprite and its response to xanthate adsorption and flotation performance
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2021.106982
– volume: 31
  start-page: 1117
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib34
  article-title: Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2021.11.001
– volume: 31
  start-page: 3564
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib36
  article-title: Enhanced sulfidization flotation of cuprite by surface modification with hydrogen peroxide
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(21)65748-5
– volume: 28
  start-page: 325
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib30
  article-title: Effect of pH on the photocatalytic removal of silver ions by β-MnO2 particles
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-020-2062-8
– volume: 286
  start-page: 1
  year: 2005
  ident: 10.1016/j.colsurfa.2022.129119_bib43
  article-title: A. Holmgren. n-Heptyl xanthate adsorption on a ZnS layer synthesized on germanium: an in situ attenuated total reflection IR study
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.01.022
– volume: 20
  start-page: 35
  year: 1987
  ident: 10.1016/j.colsurfa.2022.129119_bib22
  article-title: The activation mechanisms of wolframite by Ca2+ and Fe3+ ions in hydrophobic agglomeration, using sodium oleate as collector
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/0301-7516(87)90015-9
– volume: 50
  start-page: 1
  year: 2013
  ident: 10.1016/j.colsurfa.2022.129119_bib13
  article-title: Metal ions released from fluid inclusions of quartz associated with sulfides
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2013.05.025
– volume: 206
  start-page: 68
  year: 2014
  ident: 10.1016/j.colsurfa.2022.129119_bib10
  article-title: A review of zinc oxide mineral beneficiation using flotation method
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2013.02.003
– volume: 37
  start-page: 476
  year: 2006
  ident: 10.1016/j.colsurfa.2022.129119_bib20
  article-title: Influence and mechanism of ferric and ferrous ions on flotation of talc
  publication-title: J. Cent. South Univ. Sci. Technol.
– volume: 160
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib24
  article-title: The activation mechanism of Fe (II) ion-modified cassiterite surface to promote salicylhydroxamic acid adsorption
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2020.106707
– volume: 192
  start-page: 114
  year: 2007
  ident: 10.1016/j.colsurfa.2022.129119_bib1
  article-title: The effect of solidification time in squeeze casting of aluminium and zinc alloys
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.04.025
– volume: 96
  start-page: 53
  year: 2019
  ident: 10.1016/j.colsurfa.2022.129119_bib7
  article-title: S. Wen. Visual MINTEQ model, ToF–SIMS, and XPS study of smithsonite surface sulfidation behavior: zinc sulfide precipitation adsorption
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2018.11.021
– volume: 35
  start-page: 6878
  year: 2019
  ident: 10.1016/j.colsurfa.2022.129119_bib39
  article-title: Adsorption of pregelatinized starch for selective flocculation and flotation of fine siderite
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b00669
– volume: 31
  start-page: 2081
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib21
  article-title: Typical roles of metal ions in mineral flotation: a review
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(21)65640-6
– volume: 125
  start-page: 190
  year: 2018
  ident: 10.1016/j.colsurfa.2022.129119_bib47
  article-title: Promoting sulfidation of smithsonite by zinc sulfide species increase with addition of ammonium chloride and its effect on flotation performance
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.03.040
– volume: 125
  start-page: 129
  year: 2013
  ident: 10.1016/j.colsurfa.2022.129119_bib38
  article-title: Effect of regrinding conditions on pyrite flotation in the presence of copper ions
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2013.08.007
– volume: 32
  start-page: 657
  year: 2022
  ident: 10.1016/j.colsurfa.2022.129119_bib17
  article-title: Surface characteristics, collector adsorption, and flotation response of covellite in oxidizing environment
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(22)65823-0
– volume: 31
  start-page: 3879
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib29
  article-title: Flotation separation of molybdenite and talc using tragacanth gum as depressant and potassium butyl xanthate as collector
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(21)65771-0
– volume: 50
  start-page: 535
  year: 2014
  ident: 10.1016/j.colsurfa.2022.129119_bib23
  article-title: Investigation on different behavior and mechanism of Ca (II) and Fe (III) adsorption on spodumene surface
  publication-title: Physicochem. Probl. Miner. Pro
– volume: 267
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib40
  article-title: Pyrogallic acid as depressant for flotation separation of pyrite from chalcopyrite under low-alkalinity conditions
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118670
– volume: 32
  start-page: 668
  year: 2022
  ident: 10.1016/j.colsurfa.2022.129119_bib16
  article-title: Selective depression mechanism of combination of lime and sodium humate on arsenopyrite in flotation separation of Zn–As bulk concentrate
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(22)65824-2
– volume: 91
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib27
  article-title: Influencing mechanism of Fe2+ on biomethane production from coal
  publication-title: J. Nat. Gas. Sci. Eng.
  doi: 10.1016/j.jngse.2021.103959
– volume: 169
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib9
  article-title: Effects of heating-sulfidation on the formation of zinc sulfide species on smithsonite surfaces and its response to flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2021.106956
– volume: 278
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib25
  article-title: Effect of ferric ion on cuprite surface properties and sulfidization flotation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119573
– volume: 11
  start-page: 3961
  year: 2020
  ident: 10.1016/j.colsurfa.2022.129119_bib4
  article-title: Revealing the role of crystal orientation of protective layers for stable zinc anode
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17752-x
– volume: 149
  start-page: 153
  year: 2014
  ident: 10.1016/j.colsurfa.2022.129119_bib5
  article-title: Review of the hydrometallurgical processing of non-sulfide zinc ores
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2014.08.001
– volume: 61
  start-page: 994
  year: 2007
  ident: 10.1016/j.colsurfa.2022.129119_bib2
  article-title: The effect of bismuth on the structure of zinc hot-dip galvanized coatings
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2006.06.029
– volume: 61
  start-page: 19
  year: 2018
  ident: 10.1016/j.colsurfa.2022.129119_bib31
  article-title: Characterization of zinc sulfide species on smithsonite surfaces during sulfidation processing: effect of ammonia liquor
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2017.11.042
– volume: 45
  start-page: 94
  year: 2013
  ident: 10.1016/j.colsurfa.2022.129119_bib14
  article-title: New source of unavoidable ions in galena flotation pulp: components released from fluid inclusions
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2013.02.001
– volume: 52
  start-page: 187
  year: 1997
  ident: 10.1016/j.colsurfa.2022.129119_bib15
  article-title: Pyrite flotation in the presence of metal ions and sphalerite
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/S0301-7516(97)00064-1
– volume: 28
  start-page: 1898
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib18
  article-title: New insights into the flotation responses of brucite and serpentine for different conditioning times: surface dissolution behavior
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-020-2158-1
– volume: 167
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib11
  article-title: Flotation separation of smithsonite from calcite by using flaxseed gum as depressant
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2021.106904
– volume: 23
  start-page: 5960
  year: 2016
  ident: 10.1016/j.colsurfa.2022.129119_bib28
  article-title: Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-5712-z
– volume: 352
  start-page: 11
  year: 2019
  ident: 10.1016/j.colsurfa.2022.129119_bib6
  article-title: Flotation separation of smithsonite from calcite using 2-phosphonobutane-1, 2, 4-tricarboxylic acid as a depressant
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.04.036
– volume: 31
  start-page: 1784
  year: 2021
  ident: 10.1016/j.colsurfa.2022.129119_bib19
  article-title: Selective depression of copper-activated sphalerite by polyaspartic acid during chalcopyrite flotation
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(21)65616-9
SSID ssj0004579
Score 2.479063
Snippet Metal ions commonly exist in the flotation pulp, which will affect the mineral surface properties and lead to a change in the mineral floatability. In this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 129119
SubjectTerms adsorption
contact angle
Fe2+ species
hydrophobicity
infrared spectroscopy
mass spectrometry
pulp
Smithsonite
sulfides
Sulfidization flotation
Surface hydrophobicity
X-ray photoelectron spectroscopy
zeta potential
Title Degradation mechanism of surface hydrophobicity by ferrous ions in the sulfidization flotation system of smithsonite
URI https://dx.doi.org/10.1016/j.colsurfa.2022.129119
https://www.proquest.com/docview/2718229542
Volume 648
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPbQ9VIW2KuUhI_UaNvY6MT6iBbRQlUuLxM2K7bEIWpJVdvfAhd_OTB5oWyFx4BQ5GlvWjDXzJZ75hrGfCHJFkD4kxqWQKJ2b5DiTRVLkIk8Dfo7FNonm91U-vVaXN9nNBpsMtTCUVtn7_s6nt966fzPqtTmal-XoT2qk1jrTkq7wMRBSBbvSxJ9_9CjWGMN7vj2pE5JeqxK-w7Vni1UTiX9IyiMMfYIYd14OUP-56jb-nH9mn3rgyE-6vW2xDai22fvJ0K9tm31coxb8wpanxALRNUzi90D1veXinteRt1vxwG8fQlPPb2tXekTi3D3wCE1TrxacTiIvK47YEKVnsQx9sSaPs7q7uucdA3S7Hv2bWZBrgK_s-vzs72Sa9B0WEi91tkzyFII2qQElYKxAumBkwIEeO8DQ74IUKhqfOx8AoUyIRabDWEQEffjM_fgb26zqCr4zXhSuEHl0HhWuCgXHWYriwQiHYhLMDssGtVrf049TF4yZHfLM7uxgDkvmsJ05dtjoed68I-B4dYYZrGb_OUoWo8Srcw8HM1s0H12eFBWg6q3EIE6tz5X88Yb1d9kHGrVJatke21w2K9hHVLN0B-2xPWDvTi5-Ta-eAGMq-1k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT90wDI-AHWCHaWObYGMsSLuW16RJQ47obeixAZeBxC1qEkcUPdqnvvcOXPjbcfoxPSYkDpyqtk4U2Zbt1vbPhPzAIJd57nyibQqJULlOjiQvkiJneerxcyy0RTTnF_nkSvy-ltdrZDz0wsSyyt72dza9tdb9k1HPzdGsLEd_U82VUlLxmMJHR7hO3giZqajahw9sBTK8B9zjKonkK23Ct7j5dL5sQgQg4vwQfR-LkDvPe6j_bHXrgE7ek3d95EiPu8N9IGtQbZPN8TCwbZu8XcEW_EgWPyMMRDcxid5BbPAt53e0DrQ9igN6c--benZT29JhKE7tPQ3QNPVyTqMq0rKiGBwi9TSUvu_WpGFad7l72kFAt_vFnzPzaBvgE7k6-XU5niT9iIXEcSUXSZ6CVzrVIBhkArj1mnu8UZkF9P3WcyaCdrl1HjCW8aGQymcsYNSH19xln8lGVVewQ2hR2ILlwTpkuCgEHMkUyb1mFsk46F0iB7Ya1-OPxzEYUzMUmt2aQRwmisN04tglo3_rZh0Cx4sr9CA180SXDLqJF9ceDGI2KL6YPSkqQNYbjl48zj4X_Msr9v9ONieX52fm7PTiz1eyFd-0FWtyj2wsmiV8wxBnYfdbFX4EK0f87w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+mechanism+of+surface+hydrophobicity+by+ferrous+ions+in+the+sulfidization+flotation+system+of+smithsonite&rft.jtitle=Colloids+and+surfaces.+A%2C+Physicochemical+and+engineering+aspects&rft.au=Feng%2C+Qicheng&rft.au=Zhao%2C+Guanghu&rft.au=Zhang%2C+Ga&rft.au=Zhao%2C+Wenjuan&rft.date=2022-09-05&rft.issn=0927-7757&rft.volume=648+p.129119-&rft_id=info:doi/10.1016%2Fj.colsurfa.2022.129119&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7757&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7757&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7757&client=summon