Degradation mechanism of surface hydrophobicity by ferrous ions in the sulfidization flotation system of smithsonite
Metal ions commonly exist in the flotation pulp, which will affect the mineral surface properties and lead to a change in the mineral floatability. In this work, the effect of Fe2+ on the flotation behavior of smithsonite was investigated, and the interaction mechanism of Fe2+ with the smithsonite s...
Saved in:
Published in | Colloids and surfaces. A, Physicochemical and engineering aspects Vol. 648; p. 129119 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0927-7757 1873-4359 |
DOI | 10.1016/j.colsurfa.2022.129119 |
Cover
Loading…
Abstract | Metal ions commonly exist in the flotation pulp, which will affect the mineral surface properties and lead to a change in the mineral floatability. In this work, the effect of Fe2+ on the flotation behavior of smithsonite was investigated, and the interaction mechanism of Fe2+ with the smithsonite surface in the sulfidization flotation system was clarified. The results of microflotation tests showed that the presence of Fe2+ can greatly reduce the flotation recovery of smithsonite. The results of zeta-potential measurement, time-of-flight secondary-ion mass spectrometry, and X-ray photoelectron spectroscopy indicated that addition of Fe2+ before sulfidization generated FeOOH species and hindered formation of active sulfide species on smithsonite. The results of infrared spectroscopy and contact-angle measurement showed that addition of Fe2+ was harmful for adsorption of the collector on smithsonite, and it was difficult to obtain hydrophobic smithsonite surfaces in the Fe2+–sulfidization–xanthate flotation system. Considering the above results, the presence of Fe2+ depressed adsorption of sulfide ions and the collector on smithsonite, making smithsonite show poor floatability, and it was difficult to obtain the ideal flotation recovery of smithsonite.
[Display omitted]
•Fe2+ an generate iron species with spatial depth on the smithsonite surface.•Addition of Fe2+ decreased the number of active sites on the smithsonite surface.•The content of sulfide on the smithsonite surface decreased after addition of Fe2+.•Adsorption of xanthate on the smithsonite surface was hindered by Fe2+. |
---|---|
AbstractList | Metal ions commonly exist in the flotation pulp, which will affect the mineral surface properties and lead to a change in the mineral floatability. In this work, the effect of Fe²⁺ on the flotation behavior of smithsonite was investigated, and the interaction mechanism of Fe²⁺ with the smithsonite surface in the sulfidization flotation system was clarified. The results of microflotation tests showed that the presence of Fe²⁺ can greatly reduce the flotation recovery of smithsonite. The results of zeta-potential measurement, time-of-flight secondary-ion mass spectrometry, and X-ray photoelectron spectroscopy indicated that addition of Fe²⁺ before sulfidization generated FeOOH species and hindered formation of active sulfide species on smithsonite. The results of infrared spectroscopy and contact-angle measurement showed that addition of Fe²⁺ was harmful for adsorption of the collector on smithsonite, and it was difficult to obtain hydrophobic smithsonite surfaces in the Fe²⁺–sulfidization–xanthate flotation system. Considering the above results, the presence of Fe²⁺ depressed adsorption of sulfide ions and the collector on smithsonite, making smithsonite show poor floatability, and it was difficult to obtain the ideal flotation recovery of smithsonite. Metal ions commonly exist in the flotation pulp, which will affect the mineral surface properties and lead to a change in the mineral floatability. In this work, the effect of Fe2+ on the flotation behavior of smithsonite was investigated, and the interaction mechanism of Fe2+ with the smithsonite surface in the sulfidization flotation system was clarified. The results of microflotation tests showed that the presence of Fe2+ can greatly reduce the flotation recovery of smithsonite. The results of zeta-potential measurement, time-of-flight secondary-ion mass spectrometry, and X-ray photoelectron spectroscopy indicated that addition of Fe2+ before sulfidization generated FeOOH species and hindered formation of active sulfide species on smithsonite. The results of infrared spectroscopy and contact-angle measurement showed that addition of Fe2+ was harmful for adsorption of the collector on smithsonite, and it was difficult to obtain hydrophobic smithsonite surfaces in the Fe2+–sulfidization–xanthate flotation system. Considering the above results, the presence of Fe2+ depressed adsorption of sulfide ions and the collector on smithsonite, making smithsonite show poor floatability, and it was difficult to obtain the ideal flotation recovery of smithsonite. [Display omitted] •Fe2+ an generate iron species with spatial depth on the smithsonite surface.•Addition of Fe2+ decreased the number of active sites on the smithsonite surface.•The content of sulfide on the smithsonite surface decreased after addition of Fe2+.•Adsorption of xanthate on the smithsonite surface was hindered by Fe2+. |
ArticleNumber | 129119 |
Author | Zhang, Ga Han, Guang Feng, Qicheng Zhao, Wenjuan Zhao, Guanghu |
Author_xml | – sequence: 1 givenname: Qicheng surname: Feng fullname: Feng, Qicheng organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 2 givenname: Guanghu surname: Zhao fullname: Zhao, Guanghu organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 3 givenname: Ga surname: Zhang fullname: Zhang, Ga organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 4 givenname: Wenjuan surname: Zhao fullname: Zhao, Wenjuan email: zwjkust@126.com organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 5 givenname: Guang surname: Han fullname: Han, Guang email: ghkmust@126.com organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China |
BookMark | eNqFkE1LxDAURYMoOKP-BenSTcck_cgEXCjjJwy40XVIkxeboW3GJCPUX2_G6saNm7w8uOfCO3N0OLgBEDoneEEwqS83C-W6sPNGLiimdEEoJ4QfoBlZsiIvi4ofohnmlOWMVewYzUPYYIzLivEZirfw5qWW0boh60G1crChz5zJvhsVZO2ovdu2rrHKxjFrxsyA924XsoSkZ8hiCyndGavt51RkOhenXxhDhKmvt7ENbrARTtGRkV2As595gl7v715Wj_n6-eFpdbPOFWVVzGsMmnHMoSRQlEAbzalOCysaIEvSaEpKw1XdKA11wbWRFdMFMbygadaqOEEXU-_Wu_cdhCh6GxR0nRwgHSAoI0tKeVXSFK2nqPIuBA9GbL3tpR8FwWKvWWzEr2ax1ywmzQm8-gMmTd-3Ry9t9z9-PeGQPHxY8CIoC4MCbT2oKLSz_1V8AQxlo7c |
CitedBy_id | crossref_primary_10_1016_j_molliq_2022_120485 crossref_primary_10_1016_j_apsusc_2024_159932 crossref_primary_10_1016_j_molliq_2023_122406 crossref_primary_10_1016_j_colsurfa_2023_131126 crossref_primary_10_1016_j_seppur_2022_122772 crossref_primary_10_1016_j_colsurfa_2022_130497 crossref_primary_10_1016_j_molliq_2023_121659 crossref_primary_10_1016_j_gsme_2024_05_004 crossref_primary_10_1016_j_mineng_2024_109020 crossref_primary_10_1016_j_mineng_2023_108349 crossref_primary_10_1016_j_apsusc_2024_161479 crossref_primary_10_3390_min14090855 crossref_primary_10_1016_j_colsurfa_2024_134057 crossref_primary_10_1016_j_colsurfa_2024_133443 crossref_primary_10_3390_min14111105 crossref_primary_10_1016_j_seppur_2022_121679 |
Cites_doi | 10.1016/j.colsurfa.2018.12.022 10.1016/j.mineng.2016.11.005 10.1016/0301-7516(89)90058-6 10.1016/j.mineng.2018.12.028 10.1016/j.apsusc.2019.143801 10.1016/j.powtec.2019.10.060 10.1016/j.ijmst.2021.10.008 10.1016/j.mineng.2018.01.029 10.1007/s12613-021-2321-3 10.1111/ejss.12437 10.1016/j.mineng.2021.106991 10.1016/j.mineng.2004.01.003 10.1016/j.mineng.2021.106982 10.1016/j.ijmst.2021.11.001 10.1016/S1003-6326(21)65748-5 10.1007/s12613-020-2062-8 10.1016/j.jcis.2005.01.022 10.1016/0301-7516(87)90015-9 10.1016/j.mineng.2013.05.025 10.1016/j.cis.2013.02.003 10.1016/j.mineng.2020.106707 10.1016/j.jmatprotec.2007.04.025 10.1016/j.jtice.2018.11.021 10.1021/acs.langmuir.9b00669 10.1016/S1003-6326(21)65640-6 10.1016/j.mineng.2018.03.040 10.1016/j.minpro.2013.08.007 10.1016/S1003-6326(22)65823-0 10.1016/S1003-6326(21)65771-0 10.1016/j.seppur.2021.118670 10.1016/S1003-6326(22)65824-2 10.1016/j.jngse.2021.103959 10.1016/j.mineng.2021.106956 10.1016/j.seppur.2021.119573 10.1038/s41467-020-17752-x 10.1016/j.hydromet.2014.08.001 10.1016/j.matlet.2006.06.029 10.1016/j.jiec.2017.11.042 10.1016/j.mineng.2013.02.001 10.1016/S0301-7516(97)00064-1 10.1007/s12613-020-2158-1 10.1016/j.mineng.2021.106904 10.1007/s11356-015-5712-z 10.1016/j.powtec.2019.04.036 10.1016/S1003-6326(21)65616-9 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.colsurfa.2022.129119 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-4359 |
ExternalDocumentID | 10_1016_j_colsurfa_2022_129119 S0927775722008743 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABNUV ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SPC SPD SSG SSK SSM SSQ SSZ T5K WH7 ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AI. AIIUN ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- RIG SCB SEW SSH VH1 WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c275t-60ed7909e41e34e2bd92de4173be181bd214f9c6bcde639dfa57d31f9327d36c3 |
IEDL.DBID | .~1 |
ISSN | 0927-7757 |
IngestDate | Thu Sep 04 17:08:05 EDT 2025 Tue Jul 01 02:42:13 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 Fri Feb 23 02:39:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Smithsonite Surface hydrophobicity Sulfidization flotation Fe2+ species |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c275t-60ed7909e41e34e2bd92de4173be181bd214f9c6bcde639dfa57d31f9327d36c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2718229542 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2718229542 crossref_primary_10_1016_j_colsurfa_2022_129119 crossref_citationtrail_10_1016_j_colsurfa_2022_129119 elsevier_sciencedirect_doi_10_1016_j_colsurfa_2022_129119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-05 |
PublicationDateYYYYMMDD | 2022-09-05 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Colloids and surfaces. A, Physicochemical and engineering aspects |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cakmak, Kutman (bib3) 2018; 69 Chen, Peng, Bradshaw (bib38) 2013; 125 Li, Bai, Ding, Yu (bib7) 2019; 96 Han, Wen, Wang, Feng (bib25) 2021; 278 Bai, Li, Fu, Liu, Wen (bib31) 2018; 61 Liu, Peng, Liu, Wang, Zhao, Wang (bib41) 2020; 360 Zhang, Wen, Xian, Zhao, Feng, Bai, Han, Lang Wang (bib45) 2019; 498 Gan, D, Liu (bib17) 2022; 32 Han, Wen, Wang, Feng (bib36) 2021; 31 Cai, Liu, Shen, Zhang, Song, Jia, Su (bib9) 2021; 169 Zhou, Yang, Zhang, Xie, Luo (bib11) 2021; 167 Liu, Zhang, Song, Li, Liu (bib6) 2019; 352 Gao, Jiang, Sun, Gao (bib21) 2021; 31 Kumar, Millot, Battaglia-Brunet, Omoregie, Chaurand, Borschneck, Bastiaens, Rose (bib28) 2016; 23 Pistofidis, Vourlias, Konidaris, Pavlidou, Stergiou, Stergioudis (bib2) 2007; 61 Xian, Wen, Bai, Chen (bib13) 2013; 50 Cao, Chen, Peng (bib33) 2018; 119 Zhao, Ruan, Niu, Li, Zhang (bib8) 2021; 31 Han, Wen, Wang, Feng, Bai (bib40) 2021; 267 Abkhoshk, Jorjani, Al-Harahsheh, Rashchi, Naazeri (bib5) 2014; 149 Cao, Xie, Tong, Feng, Lv, Chen, Song (bib24) 2021; 160 Han, Wen, Wang, Feng (bib34) 2021; 31 Feng, Liu, Yu, Liu, Ou, Zhang (bib20) 2006; 37 Wei, Wei, Qiu (bib22) 1987; 20 Kongolo, Benzaazoua, Donato, Drouet, Barrès (bib44) 2004; 17 Ejtemaei, Gharabaghi, Irannajad (bib10) 2014; 206 Liu, Huang, Rao, Zhu, Zheng, Wen (bib42) 2022; 29 Han, Wen, Wang, Feng (bib32) 2021; 169 Zhang, Luan, Huang, Wang, Sun, Tang, Ji, Wang (bib4) 2020; 11 Yu, Wang, Wang, Xie (bib23) 2014; 50 Liu, Zhao, Liu, Yang, Duan (bib46) 2019; 134 Yang (bib1) 2007; 192 Chiam, Le, Pung, Yeoh (bib30) 2021; 28 Bai, Wen, Xian, Liu, Deng (bib14) 2013; 45 Ejtemaei, Nguyen (bib35) 2017; 100 Bai, Li, Fu, Ding, Wen (bib47) 2018; 125 Page, Hazell (bib37) 1989; 25 Fredriksson, Larsson (bib43) 2005; 286 Wei, Dong, Yang, Liu, Jiao, Qin (bib16) 2022; 32 Liu, Song, Li, Li, Ai (bib26) 2019; 563 Fu, Yin, Dong, Sun, Yang, Yao, Liu, Li, Kim (bib18) 2021; 28 Xia, Huang, Yan, Yuan (bib27) 2021; 91 Zhong, Feng, Chen, Guo, Wang (bib29) 2021; 31 Wei, Jiao, Dong, Liu, Qin (bib19) 2021; 31 Liu, Sun, Liu, Dai, Duan, Zhou, Qiu (bib12) 2021; 170 Zhang, Xu, Bozkurt, Finch (bib15) 1997; 52 Hao, Li, Somasundaran, Yuan (bib39) 2019; 35 Hao (10.1016/j.colsurfa.2022.129119_bib39) 2019; 35 Chen (10.1016/j.colsurfa.2022.129119_bib38) 2013; 125 Liu (10.1016/j.colsurfa.2022.129119_bib12) 2021; 170 Fu (10.1016/j.colsurfa.2022.129119_bib18) 2021; 28 Ejtemaei (10.1016/j.colsurfa.2022.129119_bib35) 2017; 100 Liu (10.1016/j.colsurfa.2022.129119_bib6) 2019; 352 Gan (10.1016/j.colsurfa.2022.129119_bib17) 2022; 32 Han (10.1016/j.colsurfa.2022.129119_bib34) 2021; 31 Liu (10.1016/j.colsurfa.2022.129119_bib41) 2020; 360 Zhang (10.1016/j.colsurfa.2022.129119_bib45) 2019; 498 Cai (10.1016/j.colsurfa.2022.129119_bib9) 2021; 169 Wei (10.1016/j.colsurfa.2022.129119_bib16) 2022; 32 Gao (10.1016/j.colsurfa.2022.129119_bib21) 2021; 31 Xian (10.1016/j.colsurfa.2022.129119_bib13) 2013; 50 Li (10.1016/j.colsurfa.2022.129119_bib7) 2019; 96 Kumar (10.1016/j.colsurfa.2022.129119_bib28) 2016; 23 Liu (10.1016/j.colsurfa.2022.129119_bib46) 2019; 134 Han (10.1016/j.colsurfa.2022.129119_bib40) 2021; 267 Cao (10.1016/j.colsurfa.2022.129119_bib33) 2018; 119 Kongolo (10.1016/j.colsurfa.2022.129119_bib44) 2004; 17 Liu (10.1016/j.colsurfa.2022.129119_bib42) 2022; 29 Pistofidis (10.1016/j.colsurfa.2022.129119_bib2) 2007; 61 Zhang (10.1016/j.colsurfa.2022.129119_bib15) 1997; 52 Feng (10.1016/j.colsurfa.2022.129119_bib20) 2006; 37 Wei (10.1016/j.colsurfa.2022.129119_bib19) 2021; 31 Han (10.1016/j.colsurfa.2022.129119_bib25) 2021; 278 Xia (10.1016/j.colsurfa.2022.129119_bib27) 2021; 91 Zhong (10.1016/j.colsurfa.2022.129119_bib29) 2021; 31 Yu (10.1016/j.colsurfa.2022.129119_bib23) 2014; 50 Liu (10.1016/j.colsurfa.2022.129119_bib26) 2019; 563 Zhang (10.1016/j.colsurfa.2022.129119_bib4) 2020; 11 Ejtemaei (10.1016/j.colsurfa.2022.129119_bib10) 2014; 206 Wei (10.1016/j.colsurfa.2022.129119_bib22) 1987; 20 Bai (10.1016/j.colsurfa.2022.129119_bib31) 2018; 61 Zhou (10.1016/j.colsurfa.2022.129119_bib11) 2021; 167 Cao (10.1016/j.colsurfa.2022.129119_bib24) 2021; 160 Yang (10.1016/j.colsurfa.2022.129119_bib1) 2007; 192 Zhao (10.1016/j.colsurfa.2022.129119_bib8) 2021; 31 Bai (10.1016/j.colsurfa.2022.129119_bib47) 2018; 125 Cakmak (10.1016/j.colsurfa.2022.129119_bib3) 2018; 69 Bai (10.1016/j.colsurfa.2022.129119_bib14) 2013; 45 Fredriksson (10.1016/j.colsurfa.2022.129119_bib43) 2005; 286 Abkhoshk (10.1016/j.colsurfa.2022.129119_bib5) 2014; 149 Chiam (10.1016/j.colsurfa.2022.129119_bib30) 2021; 28 Han (10.1016/j.colsurfa.2022.129119_bib32) 2021; 169 Page (10.1016/j.colsurfa.2022.129119_bib37) 1989; 25 Han (10.1016/j.colsurfa.2022.129119_bib36) 2021; 31 |
References_xml | – volume: 45 start-page: 94 year: 2013 end-page: 99 ident: bib14 article-title: New source of unavoidable ions in galena flotation pulp: components released from fluid inclusions publication-title: Miner. Eng. – volume: 278 year: 2021 ident: bib25 article-title: Effect of ferric ion on cuprite surface properties and sulfidization flotation publication-title: Sep. Purif. Technol. – volume: 149 start-page: 153 year: 2014 end-page: 167 ident: bib5 article-title: Review of the hydrometallurgical processing of non-sulfide zinc ores publication-title: Hydrometallurgy – volume: 119 start-page: 93 year: 2018 end-page: 98 ident: bib33 article-title: The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation publication-title: Miner. Eng. – volume: 267 year: 2021 ident: bib40 article-title: Pyrogallic acid as depressant for flotation separation of pyrite from chalcopyrite under low-alkalinity conditions publication-title: Sep. Purif. Technol. – volume: 134 start-page: 394 year: 2019 end-page: 401 ident: bib46 article-title: Synthesis and utilization of a gemini surfactant as a collector for the flotation of hemimorphite from quartz publication-title: Miner. Eng. – volume: 125 start-page: 190 year: 2018 end-page: 199 ident: bib47 article-title: Promoting sulfidation of smithsonite by zinc sulfide species increase with addition of ammonium chloride and its effect on flotation performance publication-title: Miner. Eng. – volume: 91 year: 2021 ident: bib27 article-title: Influencing mechanism of Fe publication-title: J. Nat. Gas. Sci. Eng. – volume: 352 start-page: 11 year: 2019 end-page: 15 ident: bib6 article-title: Flotation separation of smithsonite from calcite using 2-phosphonobutane-1, 2, 4-tricarboxylic acid as a depressant publication-title: Powder Technol. – volume: 29 start-page: 446 year: 2022 end-page: 454 ident: bib42 article-title: Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite publication-title: Int. J. Miner. Metall. Mater. – volume: 167 year: 2021 ident: bib11 article-title: Flotation separation of smithsonite from calcite by using flaxseed gum as depressant publication-title: Miner. Eng. – volume: 31 start-page: 3879 year: 2021 end-page: 3890 ident: bib29 article-title: Flotation separation of molybdenite and talc using tragacanth gum as depressant and potassium butyl xanthate as collector publication-title: Trans. Nonferrous Met. Soc. China – volume: 28 start-page: 325 year: 2021 end-page: 334 ident: bib30 article-title: Effect of pH on the photocatalytic removal of silver ions by β-MnO2 particles publication-title: Int. J. Miner. Metall. Mater. – volume: 360 start-page: 1117 year: 2020 end-page: 1125 ident: bib41 article-title: Effect mechanism of the iso-propanol substituent on amine collectors in the flotation of quartz and magnesite publication-title: Powder Technol. – volume: 69 start-page: 172 year: 2018 end-page: 180 ident: bib3 article-title: Agronomic biofortification of cereals with zinc: a review publication-title: Eur. J. Soil. Sci. – volume: 28 start-page: 1898 year: 2021 end-page: 1907 ident: bib18 article-title: New insights into the flotation responses of brucite and serpentine for different conditioning times: surface dissolution behavior publication-title: Int. J. Miner. Metall. Mater. – volume: 50 start-page: 535 year: 2014 end-page: 550 ident: bib23 article-title: Investigation on different behavior and mechanism of Ca (II) and Fe (III) adsorption on spodumene surface publication-title: Physicochem. Probl. Miner. Pro – volume: 31 start-page: 1117 year: 2021 end-page: 1128 ident: bib34 article-title: Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant publication-title: Int. J. Min. Sci. Technol. – volume: 35 start-page: 6878 year: 2019 end-page: 6887 ident: bib39 article-title: Adsorption of pregelatinized starch for selective flocculation and flotation of fine siderite publication-title: Langmuir – volume: 498 year: 2019 ident: bib45 article-title: Lead ion modification and its enhancement for xanthate adsorption on smithsonite surface publication-title: Appl. Surf. Sci. – volume: 31 start-page: 1085 year: 2021 end-page: 1093 ident: bib8 article-title: A nanoscale qualitative study on the role of sodium hydrosulfide in oxidized carrollite flotation publication-title: Int. J. Min. Sci. Technol. – volume: 50 start-page: 1 year: 2013 end-page: 3 ident: bib13 article-title: Metal ions released from fluid inclusions of quartz associated with sulfides publication-title: Miner. Eng. – volume: 31 start-page: 3564 year: 2021 end-page: 3578 ident: bib36 article-title: Enhanced sulfidization flotation of cuprite by surface modification with hydrogen peroxide publication-title: Trans. Nonferrous Met. Soc. China – volume: 96 start-page: 53 year: 2019 end-page: 62 ident: bib7 article-title: S. Wen. Visual MINTEQ model, ToF–SIMS, and XPS study of smithsonite surface sulfidation behavior: zinc sulfide precipitation adsorption publication-title: J. Taiwan Inst. Chem. Eng. – volume: 206 start-page: 68 year: 2014 end-page: 78 ident: bib10 article-title: A review of zinc oxide mineral beneficiation using flotation method publication-title: Adv. Colloid Interface Sci. – volume: 11 start-page: 3961 year: 2020 ident: bib4 article-title: Revealing the role of crystal orientation of protective layers for stable zinc anode publication-title: Nat. Commun. – volume: 170 year: 2021 ident: bib12 article-title: An ion-tolerance collector AESNa for effective flotation of magnesite from dolomite publication-title: Miner. Eng. – volume: 20 start-page: 35 year: 1987 end-page: 44 ident: bib22 article-title: The activation mechanisms of wolframite by Ca publication-title: Int. J. Miner. Process. – volume: 23 start-page: 5960 year: 2016 end-page: 5968 ident: bib28 article-title: Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations publication-title: Environ. Sci. Pollut. Res. – volume: 563 start-page: 324 year: 2019 end-page: 329 ident: bib26 article-title: Elimination of the adverse effect of calcite slimes on the sulfidization flotation of malachite in the presence of water glass publication-title: Colloid Surf A-Physicochem. Eng. Asp. – volume: 52 start-page: 187 year: 1997 end-page: 201 ident: bib15 article-title: Pyrite flotation in the presence of metal ions and sphalerite publication-title: Int. J. Miner. Process. – volume: 37 start-page: 476 year: 2006 end-page: 480 ident: bib20 article-title: Influence and mechanism of ferric and ferrous ions on flotation of talc publication-title: J. Cent. South Univ. Sci. Technol. – volume: 61 start-page: 994 year: 2007 end-page: 997 ident: bib2 article-title: The effect of bismuth on the structure of zinc hot-dip galvanized coatings publication-title: Mater. Lett. – volume: 25 start-page: 87 year: 1989 end-page: 100 ident: bib37 article-title: X-ray photoelectron spectroscopy (XPS) studies of potassium amyl xanthate (KAX) adsorption on precipitated PbS related to galena flotation publication-title: Int. J. Miner. Process. – volume: 125 start-page: 129 year: 2013 end-page: 136 ident: bib38 article-title: Effect of regrinding conditions on pyrite flotation in the presence of copper ions publication-title: Int. J. Miner. Process. – volume: 192 start-page: 114 year: 2007 end-page: 120 ident: bib1 article-title: The effect of solidification time in squeeze casting of aluminium and zinc alloys publication-title: J. Mater. Process. Technol. – volume: 32 start-page: 668 year: 2022 end-page: 681 ident: bib16 article-title: Selective depression mechanism of combination of lime and sodium humate on arsenopyrite in flotation separation of Zn–As bulk concentrate publication-title: Trans. Nonferrous Met. Soc. China – volume: 32 start-page: 657 year: 2022 end-page: 667 ident: bib17 article-title: Surface characteristics, collector adsorption, and flotation response of covellite in oxidizing environment publication-title: Trans. Nonferrous Met. Soc. China – volume: 169 year: 2021 ident: bib9 article-title: Effects of heating-sulfidation on the formation of zinc sulfide species on smithsonite surfaces and its response to flotation publication-title: Miner. Eng. – volume: 17 start-page: 505 year: 2004 end-page: 515 ident: bib44 article-title: The comparison between amine thioacetate and amyl xanthate collector performances for pyrite flotation and its application to tailings desulphurization publication-title: Miner. Eng. – volume: 31 start-page: 2081 year: 2021 end-page: 2101 ident: bib21 article-title: Typical roles of metal ions in mineral flotation: a review publication-title: Trans. Nonferrous Met. Soc. China – volume: 100 start-page: 223 year: 2017 end-page: 232 ident: bib35 article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate publication-title: Miner. Eng. – volume: 169 year: 2021 ident: bib32 article-title: Surface sulfidization mechanism of cuprite and its response to xanthate adsorption and flotation performance publication-title: Miner. Eng. – volume: 61 start-page: 19 year: 2018 end-page: 27 ident: bib31 article-title: Characterization of zinc sulfide species on smithsonite surfaces during sulfidation processing: effect of ammonia liquor publication-title: J. Ind. Eng. Chem. – volume: 286 start-page: 1 year: 2005 end-page: 6 ident: bib43 article-title: A. Holmgren. n-Heptyl xanthate adsorption on a ZnS layer synthesized on germanium: an in situ attenuated total reflection IR study publication-title: J. Colloid Interface Sci. – volume: 31 start-page: 1784 year: 2021 end-page: 1795 ident: bib19 article-title: Selective depression of copper-activated sphalerite by polyaspartic acid during chalcopyrite flotation publication-title: Trans. Nonferrous Met. Soc. China – volume: 160 year: 2021 ident: bib24 article-title: The activation mechanism of Fe (II) ion-modified cassiterite surface to promote salicylhydroxamic acid adsorption publication-title: Miner. Eng. – volume: 563 start-page: 324 year: 2019 ident: 10.1016/j.colsurfa.2022.129119_bib26 article-title: Elimination of the adverse effect of calcite slimes on the sulfidization flotation of malachite in the presence of water glass publication-title: Colloid Surf A-Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2018.12.022 – volume: 100 start-page: 223 year: 2017 ident: 10.1016/j.colsurfa.2022.129119_bib35 article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.11.005 – volume: 25 start-page: 87 year: 1989 ident: 10.1016/j.colsurfa.2022.129119_bib37 article-title: X-ray photoelectron spectroscopy (XPS) studies of potassium amyl xanthate (KAX) adsorption on precipitated PbS related to galena flotation publication-title: Int. J. Miner. Process. doi: 10.1016/0301-7516(89)90058-6 – volume: 134 start-page: 394 year: 2019 ident: 10.1016/j.colsurfa.2022.129119_bib46 article-title: Synthesis and utilization of a gemini surfactant as a collector for the flotation of hemimorphite from quartz publication-title: Miner. Eng. doi: 10.1016/j.mineng.2018.12.028 – volume: 498 year: 2019 ident: 10.1016/j.colsurfa.2022.129119_bib45 article-title: Lead ion modification and its enhancement for xanthate adsorption on smithsonite surface publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143801 – volume: 360 start-page: 1117 year: 2020 ident: 10.1016/j.colsurfa.2022.129119_bib41 article-title: Effect mechanism of the iso-propanol substituent on amine collectors in the flotation of quartz and magnesite publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.10.060 – volume: 31 start-page: 1085 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib8 article-title: A nanoscale qualitative study on the role of sodium hydrosulfide in oxidized carrollite flotation publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2021.10.008 – volume: 119 start-page: 93 year: 2018 ident: 10.1016/j.colsurfa.2022.129119_bib33 article-title: The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2018.01.029 – volume: 29 start-page: 446 year: 2022 ident: 10.1016/j.colsurfa.2022.129119_bib42 article-title: Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-021-2321-3 – volume: 69 start-page: 172 year: 2018 ident: 10.1016/j.colsurfa.2022.129119_bib3 article-title: Agronomic biofortification of cereals with zinc: a review publication-title: Eur. J. Soil. Sci. doi: 10.1111/ejss.12437 – volume: 170 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib12 article-title: An ion-tolerance collector AESNa for effective flotation of magnesite from dolomite publication-title: Miner. Eng. doi: 10.1016/j.mineng.2021.106991 – volume: 17 start-page: 505 year: 2004 ident: 10.1016/j.colsurfa.2022.129119_bib44 article-title: The comparison between amine thioacetate and amyl xanthate collector performances for pyrite flotation and its application to tailings desulphurization publication-title: Miner. Eng. doi: 10.1016/j.mineng.2004.01.003 – volume: 169 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib32 article-title: Surface sulfidization mechanism of cuprite and its response to xanthate adsorption and flotation performance publication-title: Miner. Eng. doi: 10.1016/j.mineng.2021.106982 – volume: 31 start-page: 1117 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib34 article-title: Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2021.11.001 – volume: 31 start-page: 3564 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib36 article-title: Enhanced sulfidization flotation of cuprite by surface modification with hydrogen peroxide publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(21)65748-5 – volume: 28 start-page: 325 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib30 article-title: Effect of pH on the photocatalytic removal of silver ions by β-MnO2 particles publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-020-2062-8 – volume: 286 start-page: 1 year: 2005 ident: 10.1016/j.colsurfa.2022.129119_bib43 article-title: A. Holmgren. n-Heptyl xanthate adsorption on a ZnS layer synthesized on germanium: an in situ attenuated total reflection IR study publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.01.022 – volume: 20 start-page: 35 year: 1987 ident: 10.1016/j.colsurfa.2022.129119_bib22 article-title: The activation mechanisms of wolframite by Ca2+ and Fe3+ ions in hydrophobic agglomeration, using sodium oleate as collector publication-title: Int. J. Miner. Process. doi: 10.1016/0301-7516(87)90015-9 – volume: 50 start-page: 1 year: 2013 ident: 10.1016/j.colsurfa.2022.129119_bib13 article-title: Metal ions released from fluid inclusions of quartz associated with sulfides publication-title: Miner. Eng. doi: 10.1016/j.mineng.2013.05.025 – volume: 206 start-page: 68 year: 2014 ident: 10.1016/j.colsurfa.2022.129119_bib10 article-title: A review of zinc oxide mineral beneficiation using flotation method publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2013.02.003 – volume: 37 start-page: 476 year: 2006 ident: 10.1016/j.colsurfa.2022.129119_bib20 article-title: Influence and mechanism of ferric and ferrous ions on flotation of talc publication-title: J. Cent. South Univ. Sci. Technol. – volume: 160 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib24 article-title: The activation mechanism of Fe (II) ion-modified cassiterite surface to promote salicylhydroxamic acid adsorption publication-title: Miner. Eng. doi: 10.1016/j.mineng.2020.106707 – volume: 192 start-page: 114 year: 2007 ident: 10.1016/j.colsurfa.2022.129119_bib1 article-title: The effect of solidification time in squeeze casting of aluminium and zinc alloys publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.04.025 – volume: 96 start-page: 53 year: 2019 ident: 10.1016/j.colsurfa.2022.129119_bib7 article-title: S. Wen. Visual MINTEQ model, ToF–SIMS, and XPS study of smithsonite surface sulfidation behavior: zinc sulfide precipitation adsorption publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2018.11.021 – volume: 35 start-page: 6878 year: 2019 ident: 10.1016/j.colsurfa.2022.129119_bib39 article-title: Adsorption of pregelatinized starch for selective flocculation and flotation of fine siderite publication-title: Langmuir doi: 10.1021/acs.langmuir.9b00669 – volume: 31 start-page: 2081 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib21 article-title: Typical roles of metal ions in mineral flotation: a review publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(21)65640-6 – volume: 125 start-page: 190 year: 2018 ident: 10.1016/j.colsurfa.2022.129119_bib47 article-title: Promoting sulfidation of smithsonite by zinc sulfide species increase with addition of ammonium chloride and its effect on flotation performance publication-title: Miner. Eng. doi: 10.1016/j.mineng.2018.03.040 – volume: 125 start-page: 129 year: 2013 ident: 10.1016/j.colsurfa.2022.129119_bib38 article-title: Effect of regrinding conditions on pyrite flotation in the presence of copper ions publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2013.08.007 – volume: 32 start-page: 657 year: 2022 ident: 10.1016/j.colsurfa.2022.129119_bib17 article-title: Surface characteristics, collector adsorption, and flotation response of covellite in oxidizing environment publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(22)65823-0 – volume: 31 start-page: 3879 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib29 article-title: Flotation separation of molybdenite and talc using tragacanth gum as depressant and potassium butyl xanthate as collector publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(21)65771-0 – volume: 50 start-page: 535 year: 2014 ident: 10.1016/j.colsurfa.2022.129119_bib23 article-title: Investigation on different behavior and mechanism of Ca (II) and Fe (III) adsorption on spodumene surface publication-title: Physicochem. Probl. Miner. Pro – volume: 267 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib40 article-title: Pyrogallic acid as depressant for flotation separation of pyrite from chalcopyrite under low-alkalinity conditions publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118670 – volume: 32 start-page: 668 year: 2022 ident: 10.1016/j.colsurfa.2022.129119_bib16 article-title: Selective depression mechanism of combination of lime and sodium humate on arsenopyrite in flotation separation of Zn–As bulk concentrate publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(22)65824-2 – volume: 91 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib27 article-title: Influencing mechanism of Fe2+ on biomethane production from coal publication-title: J. Nat. Gas. Sci. Eng. doi: 10.1016/j.jngse.2021.103959 – volume: 169 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib9 article-title: Effects of heating-sulfidation on the formation of zinc sulfide species on smithsonite surfaces and its response to flotation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2021.106956 – volume: 278 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib25 article-title: Effect of ferric ion on cuprite surface properties and sulfidization flotation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119573 – volume: 11 start-page: 3961 year: 2020 ident: 10.1016/j.colsurfa.2022.129119_bib4 article-title: Revealing the role of crystal orientation of protective layers for stable zinc anode publication-title: Nat. Commun. doi: 10.1038/s41467-020-17752-x – volume: 149 start-page: 153 year: 2014 ident: 10.1016/j.colsurfa.2022.129119_bib5 article-title: Review of the hydrometallurgical processing of non-sulfide zinc ores publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2014.08.001 – volume: 61 start-page: 994 year: 2007 ident: 10.1016/j.colsurfa.2022.129119_bib2 article-title: The effect of bismuth on the structure of zinc hot-dip galvanized coatings publication-title: Mater. Lett. doi: 10.1016/j.matlet.2006.06.029 – volume: 61 start-page: 19 year: 2018 ident: 10.1016/j.colsurfa.2022.129119_bib31 article-title: Characterization of zinc sulfide species on smithsonite surfaces during sulfidation processing: effect of ammonia liquor publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.11.042 – volume: 45 start-page: 94 year: 2013 ident: 10.1016/j.colsurfa.2022.129119_bib14 article-title: New source of unavoidable ions in galena flotation pulp: components released from fluid inclusions publication-title: Miner. Eng. doi: 10.1016/j.mineng.2013.02.001 – volume: 52 start-page: 187 year: 1997 ident: 10.1016/j.colsurfa.2022.129119_bib15 article-title: Pyrite flotation in the presence of metal ions and sphalerite publication-title: Int. J. Miner. Process. doi: 10.1016/S0301-7516(97)00064-1 – volume: 28 start-page: 1898 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib18 article-title: New insights into the flotation responses of brucite and serpentine for different conditioning times: surface dissolution behavior publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-020-2158-1 – volume: 167 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib11 article-title: Flotation separation of smithsonite from calcite by using flaxseed gum as depressant publication-title: Miner. Eng. doi: 10.1016/j.mineng.2021.106904 – volume: 23 start-page: 5960 year: 2016 ident: 10.1016/j.colsurfa.2022.129119_bib28 article-title: Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-5712-z – volume: 352 start-page: 11 year: 2019 ident: 10.1016/j.colsurfa.2022.129119_bib6 article-title: Flotation separation of smithsonite from calcite using 2-phosphonobutane-1, 2, 4-tricarboxylic acid as a depressant publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.04.036 – volume: 31 start-page: 1784 year: 2021 ident: 10.1016/j.colsurfa.2022.129119_bib19 article-title: Selective depression of copper-activated sphalerite by polyaspartic acid during chalcopyrite flotation publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(21)65616-9 |
SSID | ssj0004579 |
Score | 2.479063 |
Snippet | Metal ions commonly exist in the flotation pulp, which will affect the mineral surface properties and lead to a change in the mineral floatability. In this... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 129119 |
SubjectTerms | adsorption contact angle Fe2+ species hydrophobicity infrared spectroscopy mass spectrometry pulp Smithsonite sulfides Sulfidization flotation Surface hydrophobicity X-ray photoelectron spectroscopy zeta potential |
Title | Degradation mechanism of surface hydrophobicity by ferrous ions in the sulfidization flotation system of smithsonite |
URI | https://dx.doi.org/10.1016/j.colsurfa.2022.129119 https://www.proquest.com/docview/2718229542 |
Volume | 648 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPbQ9VIW2KuUhI_UaNvY6MT6iBbRQlUuLxM2K7bEIWpJVdvfAhd_OTB5oWyFx4BQ5GlvWjDXzJZ75hrGfCHJFkD4kxqWQKJ2b5DiTRVLkIk8Dfo7FNonm91U-vVaXN9nNBpsMtTCUVtn7_s6nt966fzPqtTmal-XoT2qk1jrTkq7wMRBSBbvSxJ9_9CjWGMN7vj2pE5JeqxK-w7Vni1UTiX9IyiMMfYIYd14OUP-56jb-nH9mn3rgyE-6vW2xDai22fvJ0K9tm31coxb8wpanxALRNUzi90D1veXinteRt1vxwG8fQlPPb2tXekTi3D3wCE1TrxacTiIvK47YEKVnsQx9sSaPs7q7uucdA3S7Hv2bWZBrgK_s-vzs72Sa9B0WEi91tkzyFII2qQElYKxAumBkwIEeO8DQ74IUKhqfOx8AoUyIRabDWEQEffjM_fgb26zqCr4zXhSuEHl0HhWuCgXHWYriwQiHYhLMDssGtVrf049TF4yZHfLM7uxgDkvmsJ05dtjoed68I-B4dYYZrGb_OUoWo8Srcw8HM1s0H12eFBWg6q3EIE6tz5X88Yb1d9kHGrVJatke21w2K9hHVLN0B-2xPWDvTi5-Ta-eAGMq-1k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT90wDI-AHWCHaWObYGMsSLuW16RJQ47obeixAZeBxC1qEkcUPdqnvvcOXPjbcfoxPSYkDpyqtk4U2Zbt1vbPhPzAIJd57nyibQqJULlOjiQvkiJneerxcyy0RTTnF_nkSvy-ltdrZDz0wsSyyt72dza9tdb9k1HPzdGsLEd_U82VUlLxmMJHR7hO3giZqajahw9sBTK8B9zjKonkK23Ct7j5dL5sQgQg4vwQfR-LkDvPe6j_bHXrgE7ek3d95EiPu8N9IGtQbZPN8TCwbZu8XcEW_EgWPyMMRDcxid5BbPAt53e0DrQ9igN6c--benZT29JhKE7tPQ3QNPVyTqMq0rKiGBwi9TSUvu_WpGFad7l72kFAt_vFnzPzaBvgE7k6-XU5niT9iIXEcSUXSZ6CVzrVIBhkArj1mnu8UZkF9P3WcyaCdrl1HjCW8aGQymcsYNSH19xln8lGVVewQ2hR2ILlwTpkuCgEHMkUyb1mFsk46F0iB7Ya1-OPxzEYUzMUmt2aQRwmisN04tglo3_rZh0Cx4sr9CA180SXDLqJF9ceDGI2KL6YPSkqQNYbjl48zj4X_Msr9v9ONieX52fm7PTiz1eyFd-0FWtyj2wsmiV8wxBnYfdbFX4EK0f87w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+mechanism+of+surface+hydrophobicity+by+ferrous+ions+in+the+sulfidization+flotation+system+of+smithsonite&rft.jtitle=Colloids+and+surfaces.+A%2C+Physicochemical+and+engineering+aspects&rft.au=Feng%2C+Qicheng&rft.au=Zhao%2C+Guanghu&rft.au=Zhang%2C+Ga&rft.au=Zhao%2C+Wenjuan&rft.date=2022-09-05&rft.issn=0927-7757&rft.volume=648+p.129119-&rft_id=info:doi/10.1016%2Fj.colsurfa.2022.129119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7757&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7757&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7757&client=summon |