EEGMatch: Learning With Incomplete Labels for Semisupervised EEG-Based Cross-Subject Emotion Recognition
Electroencephalography (EEG) is an objective tool for emotion recognition and shows promising performance. However, the label scarcity problem is a main challenge in this field, which limits the wide application of EEG-based emotion recognition. In this article, we propose a novel semisupervised tra...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 36; no. 7; pp. 12991 - 13005 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalography (EEG) is an objective tool for emotion recognition and shows promising performance. However, the label scarcity problem is a main challenge in this field, which limits the wide application of EEG-based emotion recognition. In this article, we propose a novel semisupervised transfer learning framework (EEGMatch) to leverage both labeled and unlabeled EEG data. First, an EEG-Mixup-based data augmentation method is developed to generate more valid samples for model learning. Second, a semisupervised two-step pairwise learning method is proposed to bridge prototypewise and instancewise pairwise learning, where the prototypewise pairwise learning measures the global relationship between EEG data and the prototypical representation of each emotion class and the instancewise pairwise learning captures the local intrinsic relationship among EEG data. Third, a semisupervised multidomain adaptation is introduced to align the data representation among multiple domains (labeled source domain, unlabeled source domain, and target domain), where the distribution mismatch is alleviated. Extensive experiments are conducted on three benchmark databases (SEED, SEED-IV, and SEED-V) under a cross-subject leave-one-subject-out cross-validation evaluation protocol. The results show the proposed EEGMatch performs better than the state-of-the-art methods under different incomplete label conditions (with 5.89% improvement on SEED, 0.93% improvement on SEED-IV, and 0.28% improvement on SEED-V), which demonstrates the effectiveness of the proposed EEGMatch in dealing with the label scarcity problem in emotion recognition using EEG signals. The source code is available at https://github.com/KAZABANA/EEGMatch . |
---|---|
AbstractList | Electroencephalography (EEG) is an objective tool for emotion recognition and shows promising performance. However, the label scarcity problem is a main challenge in this field, which limits the wide application of EEG-based emotion recognition. In this article, we propose a novel semisupervised transfer learning framework (EEGMatch) to leverage both labeled and unlabeled EEG data. First, an EEG-Mixup-based data augmentation method is developed to generate more valid samples for model learning. Second, a semisupervised two-step pairwise learning method is proposed to bridge prototypewise and instancewise pairwise learning, where the prototypewise pairwise learning measures the global relationship between EEG data and the prototypical representation of each emotion class and the instancewise pairwise learning captures the local intrinsic relationship among EEG data. Third, a semisupervised multidomain adaptation is introduced to align the data representation among multiple domains (labeled source domain, unlabeled source domain, and target domain), where the distribution mismatch is alleviated. Extensive experiments are conducted on three benchmark databases (SEED, SEED-IV, and SEED-V) under a cross-subject leave-one-subject-out cross-validation evaluation protocol. The results show the proposed EEGMatch performs better than the state-of-the-art methods under different incomplete label conditions (with 5.89% improvement on SEED, 0.93% improvement on SEED-IV, and 0.28% improvement on SEED-V), which demonstrates the effectiveness of the proposed EEGMatch in dealing with the label scarcity problem in emotion recognition using EEG signals. The source code is available at https://github.com/KAZABANA/EEGMatch. Electroencephalography (EEG) is an objective tool for emotion recognition and shows promising performance. However, the label scarcity problem is a main challenge in this field, which limits the wide application of EEG-based emotion recognition. In this article, we propose a novel semisupervised transfer learning framework (EEGMatch) to leverage both labeled and unlabeled EEG data. First, an EEG-Mixup-based data augmentation method is developed to generate more valid samples for model learning. Second, a semisupervised two-step pairwise learning method is proposed to bridge prototypewise and instancewise pairwise learning, where the prototypewise pairwise learning measures the global relationship between EEG data and the prototypical representation of each emotion class and the instancewise pairwise learning captures the local intrinsic relationship among EEG data. Third, a semisupervised multidomain adaptation is introduced to align the data representation among multiple domains (labeled source domain, unlabeled source domain, and target domain), where the distribution mismatch is alleviated. Extensive experiments are conducted on three benchmark databases (SEED, SEED-IV, and SEED-V) under a cross-subject leave-one-subject-out cross-validation evaluation protocol. The results show the proposed EEGMatch performs better than the state-of-the-art methods under different incomplete label conditions (with 5.89% improvement on SEED, 0.93% improvement on SEED-IV, and 0.28% improvement on SEED-V), which demonstrates the effectiveness of the proposed EEGMatch in dealing with the label scarcity problem in emotion recognition using EEG signals. The source code is available at https://github.com/KAZABANA/EEGMatch.Electroencephalography (EEG) is an objective tool for emotion recognition and shows promising performance. However, the label scarcity problem is a main challenge in this field, which limits the wide application of EEG-based emotion recognition. In this article, we propose a novel semisupervised transfer learning framework (EEGMatch) to leverage both labeled and unlabeled EEG data. First, an EEG-Mixup-based data augmentation method is developed to generate more valid samples for model learning. Second, a semisupervised two-step pairwise learning method is proposed to bridge prototypewise and instancewise pairwise learning, where the prototypewise pairwise learning measures the global relationship between EEG data and the prototypical representation of each emotion class and the instancewise pairwise learning captures the local intrinsic relationship among EEG data. Third, a semisupervised multidomain adaptation is introduced to align the data representation among multiple domains (labeled source domain, unlabeled source domain, and target domain), where the distribution mismatch is alleviated. Extensive experiments are conducted on three benchmark databases (SEED, SEED-IV, and SEED-V) under a cross-subject leave-one-subject-out cross-validation evaluation protocol. The results show the proposed EEGMatch performs better than the state-of-the-art methods under different incomplete label conditions (with 5.89% improvement on SEED, 0.93% improvement on SEED-IV, and 0.28% improvement on SEED-V), which demonstrates the effectiveness of the proposed EEGMatch in dealing with the label scarcity problem in emotion recognition using EEG signals. The source code is available at https://github.com/KAZABANA/EEGMatch. |
Author | Liang, Zhen Zhou, Rushuang Zhang, Zhiguo Li, Linling Ye, Weishan Luo, Yanyang Zhang, Li Dong, Yining Zhang, Yuan-Ting Huang, Gan |
Author_xml | – sequence: 1 givenname: Rushuang orcidid: 0000-0001-5426-5838 surname: Zhou fullname: Zhou, Rushuang email: rrushuang2-c@my.cityu.edu.hk organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China – sequence: 2 givenname: Weishan orcidid: 0009-0004-9971-1482 surname: Ye fullname: Ye, Weishan email: 2110246024@email.szu.edu.cn organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China – sequence: 3 givenname: Zhiguo orcidid: 0000-0001-7992-7965 surname: Zhang fullname: Zhang, Zhiguo email: zhiguozhang@hit.edu.cn organization: Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China – sequence: 4 givenname: Yanyang surname: Luo fullname: Luo, Yanyang email: 2020222077@email.szu.edu.cn organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China – sequence: 5 givenname: Li orcidid: 0000-0003-1641-7831 surname: Zhang fullname: Zhang, Li email: lzhang@szu.edu.cn organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China – sequence: 6 givenname: Linling orcidid: 0000-0001-7767-7202 surname: Li fullname: Li, Linling email: lilinling@szu.edu.cn organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China – sequence: 7 givenname: Gan orcidid: 0000-0001-9895-6163 surname: Huang fullname: Huang, Gan email: huanggan@szu.edu.cn organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China – sequence: 8 givenname: Yining orcidid: 0000-0002-4617-6947 surname: Dong fullname: Dong, Yining email: yinidong@cityu.edu.hk organization: School of Data Science, City University of Hong Kong, Hong Kong, China – sequence: 9 givenname: Yuan-Ting orcidid: 0000-0003-4150-5470 surname: Zhang fullname: Zhang, Yuan-Ting email: yt.zhang@cityu.edu.hk organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China – sequence: 10 givenname: Zhen orcidid: 0000-0002-1749-2975 surname: Liang fullname: Liang, Zhen email: janezliang@szu.edu.cn organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40030228$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkU1Pg0AQhjemxtaPP2CM2aMX6n4D3rSptQlqYjV6IwvMtjTAVhZM_PeCrY1zmffwvJOZeY_RoLIVIHROyZhSEl6_Pj1FizEjTIy5CLlg8gCNGFXMYzwIBnvtfwzRmXNr0pUiUonwCA0FIZwwFozQajqdPeomXd3gCHRd5dUSv-fNCs-r1JabAhrAkU6gcNjYGi-gzF27gford5Dhzuzd6V5Nauuct2iTNaQNnpa2yW2FXyC1yyrv9Sk6NLpwcLbrJ-jtfvo6efCi59l8cht5KfNl48lQKeEzQrnJmFYQGGpoJnSSaMnDDAJpCPBQKE1NJtPA71r3hCQQhidgDD9BV9u5m9p-tuCauNs4haLQFdjWxZz6igtCw6BDL3dom5SQxZs6L3X9Hf99pwPYFkj762owe4SSuE8h_k0h7lOIdyl0poutKQeAfwZfKhpK_gN--oLj |
CODEN | ITNNAL |
Cites_doi | 10.34133/cbsystems.0045 10.1109/TCYB.2018.2797176 10.1109/ICCV.2019.00929 10.1103/PhysRevE.69.066138 10.1109/TIM.2020.3006611 10.1109/tnnls.2023.3319315 10.1109/TCDS.2020.2999337 10.1159/000077154 10.1007/s10994-023-06324-x 10.1109/EMBC.2018.8512865 10.1109/TAFFC.2020.3013711 10.1109/TAFFC.2019.2922912 10.1016/j.neuroimage.2015.02.015 10.1023/A:1018628609742 10.1109/ICASSP43922.2022.9746528 10.5555/3294996.3295163 10.1007/978-3-030-04221-9_36 10.1109/ICCV.2013.368 10.1109/TAFFC.2022.3210441 10.1609/aaai.v35i1.16169 10.1016/j.biopsycho.2004.03.002 10.1088/1741-2552/acae06 10.1609/aaai.v30i1.10306 10.1007/s10994-009-5152-4 10.1007/978-3-030-04221-9_25 10.1109/tnnls.2022.3225855 10.1109/TNSRE.2021.3111689 10.1109/TAFFC.2023.3288118 10.1371/journal.pone.0087357 10.1109/IEMBS.2010.5627125 10.1109/TBME.2013.2253608 10.1109/TNNLS.2023.3238519 10.1109/TAFFC.2020.2994159 10.1109/NER.2013.6695876 10.1088/1741-2552/abb580 10.1007/s10479-016-2187-3 10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011 10.1109/TCYB.2019.2904052 10.1109/EMBC46164.2021.9630277 10.1093/brain/awf225 10.1214/13-aos1140 10.1007/978-3-319-49409-8_35 10.1109/TCDS.2019.2949306 10.1016/j.ins.2020.05.018 10.4310/SII.2009.v2.n3.a8 10.1016/B978-012088469-8.50019-X 10.7551/mitpress/7503.003.0022 10.3389/fnins.2021.690044 10.1109/TAFFC.2018.2817622 10.1007/978-3-030-36708-4_3 10.1109/TCDS.2021.3071170 10.1007/s12559-022-10016-4 10.1109/TAFFC.2017.2660485 10.1109/TNN.2010.2091281 10.1609/aaai.v32i1.11496 10.1109/CVPR.2012.6247911 10.5555/2946645.2946704 10.3389/fncom.2019.00053 10.1109/TAMD.2015.2431497 10.1109/TNSRE.2023.3236434 10.1109/TBME.2009.2039997 10.1109/MCI.2015.2501545 10.1109/ICOT.2017.8336126 10.1109/CVPR.2018.00835 10.1038/s44220-023-00143-8 10.1016/j.cmpb.2016.08.010 10.1016/j.biopsycho.2009.08.010 10.1016/j.compbiomed.2021.105048 10.1109/TAFFC.2022.3189222 10.3389/fnins.2021.778488 10.1016/S0003-2670(01)95359-0 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/TNNLS.2024.3493425 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 13005 |
ExternalDocumentID | 40030228 10_1109_TNNLS_2024_3493425 10756195 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Shenzhen–Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions grantid: 2023SHIBS0003 – fundername: InnoHK Projects under Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE) – fundername: Shenzhen Science and Technology Research and Development Fund for Sustainable Development Project grantid: KCXFZ20201221173613036 – fundername: Medical-Engineering Interdisciplinary Research Foundation of Shenzhen University grantid: 2024YG008 – fundername: National Natural Science Foundation of China grantid: 62276169; 62201356; 22322816; 82272114 funderid: 10.13039/501100001809 – fundername: Shenzhen University–Lingnan University Joint Research Programme – fundername: STI 2030-Major Projects grantid: 2021ZD0200500 – fundername: City University of Hong Kong Project grantid: 9610640 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c275t-5966472013fd2a6e8f1f1d4abba539de85f0e3946a1fd5c871fd202b84f3beff3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 16:33:48 EDT 2025 Sat Aug 02 01:40:50 EDT 2025 Wed Jul 16 16:38:12 EDT 2025 Wed Aug 27 02:14:20 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c275t-5966472013fd2a6e8f1f1d4abba539de85f0e3946a1fd5c871fd202b84f3beff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5426-5838 0000-0001-7767-7202 0000-0002-1749-2975 0000-0002-4617-6947 0000-0001-7992-7965 0009-0004-9971-1482 0000-0003-4150-5470 0000-0001-9895-6163 0000-0003-1641-7831 |
PMID | 40030228 |
PQID | 3176340198 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | ieee_primary_10756195 pubmed_primary_40030228 proquest_miscellaneous_3176340198 crossref_primary_10_1109_TNNLS_2024_3493425 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref12 ref56 ref15 ref59 ref58 ref53 ref52 ref55 ref10 Berthelot (ref14) 2021 ref54 Zhang (ref67) Zhang (ref11) ref17 van der Maaten (ref82) 2008; 9 ref16 Sohn (ref68); 33 ref19 Ding (ref46) 2021 ref18 Bao (ref13) ref51 ref50 Albuquerque (ref60) 2019 ref91 ref90 ref45 ref89 ref42 ref86 ref41 Berthelot (ref9) 2019 ref44 Khosla (ref48); 33 ref88 ref43 ref87 ref49 ref8 Tzeng (ref66) 2014 ref7 ref4 ref3 ref6 Kozachenko (ref85) 1987; 23 ref5 ref40 ref84 ref83 ref80 ref35 ref34 ref37 ref36 Mika (ref72); 11 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 Chen (ref78) 2023 Allen (ref79); 97 Zheng (ref29) Arjovsky (ref81) ref71 ref70 ref73 ref24 ref23 ref26 ref25 ref69 ref20 ref64 Ben-David (ref57); 9 ref63 ref22 ref21 Bao (ref47); 151 ref65 ref28 ref27 Zhao (ref61); 31 ref62 |
References_xml | – ident: ref1 doi: 10.34133/cbsystems.0045 – ident: ref38 doi: 10.1109/TCYB.2018.2797176 – volume: 31 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref61 article-title: Adversarial multiple source domain adaptation – start-page: 214 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref81 article-title: Wasserstein generative adversarial networks – ident: ref42 doi: 10.1109/ICCV.2019.00929 – ident: ref86 doi: 10.1103/PhysRevE.69.066138 – ident: ref21 doi: 10.1109/TIM.2020.3006611 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref11 article-title: Mixup: Beyond empirical risk minimization – ident: ref28 doi: 10.1109/tnnls.2023.3319315 – ident: ref50 doi: 10.1109/TCDS.2020.2999337 – ident: ref90 doi: 10.1159/000077154 – ident: ref62 doi: 10.1007/s10994-023-06324-x – ident: ref83 doi: 10.1109/EMBC.2018.8512865 – ident: ref39 doi: 10.1109/TAFFC.2020.3013711 – ident: ref3 doi: 10.1109/TAFFC.2019.2922912 – ident: ref31 doi: 10.1016/j.neuroimage.2015.02.015 – ident: ref70 doi: 10.1023/A:1018628609742 – ident: ref8 doi: 10.1109/ICASSP43922.2022.9746528 – year: 2021 ident: ref14 article-title: AdaMatch: A unified approach to semi-supervised learning and domain adaptation publication-title: arXiv:2106.04732 – ident: ref44 doi: 10.5555/3294996.3295163 – ident: ref51 doi: 10.1007/978-3-030-04221-9_36 – ident: ref71 doi: 10.1109/ICCV.2013.368 – ident: ref10 doi: 10.1109/TAFFC.2022.3210441 – ident: ref52 doi: 10.1609/aaai.v35i1.16169 – volume: 11 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref72 article-title: Kernel PCA and de-noising in feature spaces – ident: ref89 doi: 10.1016/j.biopsycho.2004.03.002 – ident: ref4 doi: 10.1088/1741-2552/acae06 – ident: ref75 doi: 10.1609/aaai.v30i1.10306 – ident: ref56 doi: 10.1007/s10994-009-5152-4 – ident: ref49 doi: 10.1007/978-3-030-04221-9_25 – ident: ref25 doi: 10.1109/tnnls.2022.3225855 – year: 2014 ident: ref66 article-title: Deep domain confusion: Maximizing for domain invariance publication-title: arXiv:1412.3474 – ident: ref22 doi: 10.1109/TNSRE.2021.3111689 – ident: ref34 doi: 10.1109/TAFFC.2023.3288118 – ident: ref87 doi: 10.1371/journal.pone.0087357 – start-page: 452 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref13 article-title: Classification from pairwise similarity and unlabeled data – ident: ref64 doi: 10.1109/IEMBS.2010.5627125 – ident: ref30 doi: 10.1109/TBME.2013.2253608 – volume: 33 start-page: 596 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref68 article-title: FixMatch: Simplifying semi-supervised learning with consistency and confidence – ident: ref26 doi: 10.1109/TNNLS.2023.3238519 – ident: ref41 doi: 10.1109/TAFFC.2020.2994159 – ident: ref15 doi: 10.1109/NER.2013.6695876 – volume: 151 start-page: 2618 volume-title: Proc. 25th Int. Conf. Artif. Intell. Statist. ident: ref47 article-title: Pairwise supervision can provably elicit a decision boundary – ident: ref84 doi: 10.1088/1741-2552/abb580 – year: 2023 ident: ref78 article-title: SoftMatch: Addressing the quantity-quality trade-off in semi-supervised learning publication-title: arXiv:2301.10921 – ident: ref12 doi: 10.1007/s10479-016-2187-3 – ident: ref73 doi: 10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011 – volume: 23 start-page: 9 issue: 2 year: 1987 ident: ref85 article-title: Sample estimate of the entropy of a random vector publication-title: Problemy Peredachi Informatsii – ident: ref40 doi: 10.1109/TCYB.2019.2904052 – ident: ref54 doi: 10.1109/EMBC46164.2021.9630277 – ident: ref91 doi: 10.1093/brain/awf225 – ident: ref80 doi: 10.1214/13-aos1140 – ident: ref65 doi: 10.1007/978-3-319-49409-8_35 – ident: ref33 doi: 10.1109/TCDS.2019.2949306 – ident: ref43 doi: 10.1016/j.ins.2020.05.018 – ident: ref74 doi: 10.4310/SII.2009.v2.n3.a8 – ident: ref58 doi: 10.1016/B978-012088469-8.50019-X – ident: ref59 doi: 10.7551/mitpress/7503.003.0022 – start-page: 18408 volume-title: Proc. NIPS ident: ref67 article-title: FlexMatch: Boosting semi-supervised learning with curriculum pseudo labeling – ident: ref37 doi: 10.3389/fnins.2021.690044 – ident: ref24 doi: 10.1109/TAFFC.2018.2817622 – ident: ref55 doi: 10.1007/978-3-030-36708-4_3 – ident: ref63 doi: 10.1109/TCDS.2021.3071170 – ident: ref5 doi: 10.1007/s12559-022-10016-4 – volume: 9 start-page: 2579 year: 2008 ident: ref82 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref18 doi: 10.1109/TAFFC.2017.2660485 – volume: 97 start-page: 232 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref79 article-title: Infinite mixture prototypes for few-shot learning – ident: ref69 doi: 10.1109/TNN.2010.2091281 – ident: ref19 doi: 10.1609/aaai.v32i1.11496 – volume: 33 start-page: 18661 volume-title: Proc. NIPS ident: ref48 article-title: Supervised contrastive learning – ident: ref76 doi: 10.1109/CVPR.2012.6247911 – ident: ref35 doi: 10.5555/2946645.2946704 – ident: ref20 doi: 10.3389/fncom.2019.00053 – ident: ref16 doi: 10.1109/TAMD.2015.2431497 – ident: ref27 doi: 10.1109/TNSRE.2023.3236434 – ident: ref7 doi: 10.1109/TBME.2009.2039997 – ident: ref2 doi: 10.1109/MCI.2015.2501545 – ident: ref32 doi: 10.1109/ICOT.2017.8336126 – ident: ref45 doi: 10.1109/CVPR.2018.00835 – ident: ref23 doi: 10.1038/s44220-023-00143-8 – ident: ref17 doi: 10.1016/j.cmpb.2016.08.010 – year: 2021 ident: ref46 article-title: Prototypical representation learning for relation extraction publication-title: arXiv:2103.11647 – volume: 9 start-page: 129 volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist. ident: ref57 article-title: Impossibility theorems for domain adaptation – ident: ref88 doi: 10.1016/j.biopsycho.2009.08.010 – ident: ref6 doi: 10.1016/j.compbiomed.2021.105048 – ident: ref36 doi: 10.1109/TAFFC.2022.3189222 – ident: ref53 doi: 10.3389/fnins.2021.778488 – year: 2019 ident: ref60 article-title: Generalizing to unseen domains via distribution matching publication-title: arXiv:1911.00804 – ident: ref77 doi: 10.1016/S0003-2670(01)95359-0 – year: 2019 ident: ref9 article-title: MixMatch: A holistic approach to semi-supervised learning publication-title: arXiv:1905.02249 – start-page: 2732 volume-title: Proc. 25th Int. Joint Conf. Artif. Intell. ident: ref29 article-title: Personalizing EEG-based affective models with transfer learning |
SSID | ssj0000605649 |
Score | 2.5025632 |
Snippet | Electroencephalography (EEG) is an objective tool for emotion recognition and shows promising performance. However, the label scarcity problem is a main... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 12991 |
SubjectTerms | Adaptation models Algorithms Brain modeling Data augmentation Data models Databases, Factual Electroencephalography Electroencephalography (EEG) Electroencephalography - methods Emotion recognition Emotions - classification Emotions - physiology Feature extraction Humans multidomain adaptation Neural Networks, Computer Pattern Recognition, Automated - methods Semisupervised learning Supervised Machine Learning Training Transfer learning |
Title | EEGMatch: Learning With Incomplete Labels for Semisupervised EEG-Based Cross-Subject Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/10756195 https://www.ncbi.nlm.nih.gov/pubmed/40030228 https://www.proquest.com/docview/3176340198 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VDhUXoC2PhbYyErfKS-JHNuZG0VJUwR4KqHuL_GQRUhZBcuHXM3YShCoh9ZaDncSe8cw39ow_gEMEvYXUQtHMOE0FyznVpbU0L1iZCWeNSVmVl7Pi_Eb8nst5X6yeamG89yn5zI_jYzrLd0vbxq0yXOETdPdKrsAKRm5dsdbrhkqGwLxIcJfhhyjjk_lQJJOpo-vZ7OIKw0Emxlwojpq6Bh9FVHEWidjf-KREsvI-3kx-52wDZsMfd-km9-O2MWP7_M9ljv89pE1Y7xEoOelU5hN88PVn2BjYHUi_2L_AYjr9dYmGenFM-ktYb8nfu2ZB0KTEPHRE2-RCG_StBIEvuYrEce1DND1P3hHsTH_q-HQax0zRQMUdHzLtaIPInyFxaVlvwc3Z9Pr0nPa8DNSyiWyoxBBJTBA58OCYLnwZ8pA7oY3RkivnSxkyz5UodB6ctBiSYbuMmVIEbnwIfBtW62Xtd4FEsqzcWh4CusmykCpIhCQlFxojOaPdCH4Mkqkeuus3qhS2ZKpKIq2iSKtepCPYijP8pmU3uSM4GKRZ4VzEIxFd-2X7VCF6KjiGmKocwU4n5tfeg3bsvfPWfVhjkQw45e5-hdXmsfXfEKE05nvSzBeap97g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VIkEvlEeBtDyMBCfksOvHZo3EAUpKSpMcaKrmtti7NkFIm4rsqoL_0r_Cb2Ps3Y0qpB4rcfPBtuTxPL6xx_4AXiLoTaQWikam0FSwmFOd5jmNE5ZGosiNCVWVk2kyOhGf53K-ARfrtzDW2lB8Zvu-Ge7yi2Ve-6MytPABhnvV1VAe2V_nmKGt3h1-xO18xdjBcLY_oi2JAM3ZQFZUIp4XAwxz3BVMJzZ1sYsLoY3RkqvCptJFliuR6NgVMsf8AftFzKTCcWOd4zjvDbiJQEOy5nnY-ggnwlQgCQCb4dIo44N59ywnUm9m0-n4GBNQJvpcKI62sQW3hDcq5qnfL0XBQOtyNcINke5gG_50MmoKXH7068r089__fB_53wrxLtxpMTZ53xjFPdiw5X3Y7vgrSOvOHsBiOPw0wVC0eEvab2a_kdPv1YKg0_SV9phPkLE2iB4IQnty7Knx6jPvXFe2IDiYftC-te9lTNEF-zMtMmyIkciXrjRrWe7AybWs9yFslsvSPgbi6cDiPOfOIRBIE6mcRNCVcqExVzW66MHrThOys-aDkSwkZpHKggplXoWyVoV6sON39FLPZjN78KLTngxl4S99dGmX9SpDfJhwTKJV2oNHjVqtR3fauHvFrM_h9mg2GWfjw-nRHmwxT30cKpWfwGb1s7ZPEY9V5lmwCgJfr1uD_gKA_j3i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEGMatch%3A+Learning+With+Incomplete+Labels+for+Semisupervised+EEG-Based+Cross-Subject+Emotion+Recognition&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhou%2C+Rushuang&rft.au=Ye%2C+Weishan&rft.au=Zhang%2C+Zhiguo&rft.au=Luo%2C+Yanyang&rft.date=2025-07-01&rft.eissn=2162-2388&rft.volume=36&rft.issue=7&rft.spage=12991&rft_id=info:doi/10.1109%2FTNNLS.2024.3493425&rft_id=info%3Apmid%2F40030228&rft.externalDocID=40030228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |