EEGMatch: Learning With Incomplete Labels for Semisupervised EEG-Based Cross-Subject Emotion Recognition

Electroencephalography (EEG) is an objective tool for emotion recognition and shows promising performance. However, the label scarcity problem is a main challenge in this field, which limits the wide application of EEG-based emotion recognition. In this article, we propose a novel semisupervised tra...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 36; no. 7; pp. 12991 - 13005
Main Authors Zhou, Rushuang, Ye, Weishan, Zhang, Zhiguo, Luo, Yanyang, Zhang, Li, Li, Linling, Huang, Gan, Dong, Yining, Zhang, Yuan-Ting, Liang, Zhen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalography (EEG) is an objective tool for emotion recognition and shows promising performance. However, the label scarcity problem is a main challenge in this field, which limits the wide application of EEG-based emotion recognition. In this article, we propose a novel semisupervised transfer learning framework (EEGMatch) to leverage both labeled and unlabeled EEG data. First, an EEG-Mixup-based data augmentation method is developed to generate more valid samples for model learning. Second, a semisupervised two-step pairwise learning method is proposed to bridge prototypewise and instancewise pairwise learning, where the prototypewise pairwise learning measures the global relationship between EEG data and the prototypical representation of each emotion class and the instancewise pairwise learning captures the local intrinsic relationship among EEG data. Third, a semisupervised multidomain adaptation is introduced to align the data representation among multiple domains (labeled source domain, unlabeled source domain, and target domain), where the distribution mismatch is alleviated. Extensive experiments are conducted on three benchmark databases (SEED, SEED-IV, and SEED-V) under a cross-subject leave-one-subject-out cross-validation evaluation protocol. The results show the proposed EEGMatch performs better than the state-of-the-art methods under different incomplete label conditions (with 5.89% improvement on SEED, 0.93% improvement on SEED-IV, and 0.28% improvement on SEED-V), which demonstrates the effectiveness of the proposed EEGMatch in dealing with the label scarcity problem in emotion recognition using EEG signals. The source code is available at https://github.com/KAZABANA/EEGMatch .
AbstractList Electroencephalography (EEG) is an objective tool for emotion recognition and shows promising performance. However, the label scarcity problem is a main challenge in this field, which limits the wide application of EEG-based emotion recognition. In this article, we propose a novel semisupervised transfer learning framework (EEGMatch) to leverage both labeled and unlabeled EEG data. First, an EEG-Mixup-based data augmentation method is developed to generate more valid samples for model learning. Second, a semisupervised two-step pairwise learning method is proposed to bridge prototypewise and instancewise pairwise learning, where the prototypewise pairwise learning measures the global relationship between EEG data and the prototypical representation of each emotion class and the instancewise pairwise learning captures the local intrinsic relationship among EEG data. Third, a semisupervised multidomain adaptation is introduced to align the data representation among multiple domains (labeled source domain, unlabeled source domain, and target domain), where the distribution mismatch is alleviated. Extensive experiments are conducted on three benchmark databases (SEED, SEED-IV, and SEED-V) under a cross-subject leave-one-subject-out cross-validation evaluation protocol. The results show the proposed EEGMatch performs better than the state-of-the-art methods under different incomplete label conditions (with 5.89% improvement on SEED, 0.93% improvement on SEED-IV, and 0.28% improvement on SEED-V), which demonstrates the effectiveness of the proposed EEGMatch in dealing with the label scarcity problem in emotion recognition using EEG signals. The source code is available at https://github.com/KAZABANA/EEGMatch.
Electroencephalography (EEG) is an objective tool for emotion recognition and shows promising performance. However, the label scarcity problem is a main challenge in this field, which limits the wide application of EEG-based emotion recognition. In this article, we propose a novel semisupervised transfer learning framework (EEGMatch) to leverage both labeled and unlabeled EEG data. First, an EEG-Mixup-based data augmentation method is developed to generate more valid samples for model learning. Second, a semisupervised two-step pairwise learning method is proposed to bridge prototypewise and instancewise pairwise learning, where the prototypewise pairwise learning measures the global relationship between EEG data and the prototypical representation of each emotion class and the instancewise pairwise learning captures the local intrinsic relationship among EEG data. Third, a semisupervised multidomain adaptation is introduced to align the data representation among multiple domains (labeled source domain, unlabeled source domain, and target domain), where the distribution mismatch is alleviated. Extensive experiments are conducted on three benchmark databases (SEED, SEED-IV, and SEED-V) under a cross-subject leave-one-subject-out cross-validation evaluation protocol. The results show the proposed EEGMatch performs better than the state-of-the-art methods under different incomplete label conditions (with 5.89% improvement on SEED, 0.93% improvement on SEED-IV, and 0.28% improvement on SEED-V), which demonstrates the effectiveness of the proposed EEGMatch in dealing with the label scarcity problem in emotion recognition using EEG signals. The source code is available at https://github.com/KAZABANA/EEGMatch.Electroencephalography (EEG) is an objective tool for emotion recognition and shows promising performance. However, the label scarcity problem is a main challenge in this field, which limits the wide application of EEG-based emotion recognition. In this article, we propose a novel semisupervised transfer learning framework (EEGMatch) to leverage both labeled and unlabeled EEG data. First, an EEG-Mixup-based data augmentation method is developed to generate more valid samples for model learning. Second, a semisupervised two-step pairwise learning method is proposed to bridge prototypewise and instancewise pairwise learning, where the prototypewise pairwise learning measures the global relationship between EEG data and the prototypical representation of each emotion class and the instancewise pairwise learning captures the local intrinsic relationship among EEG data. Third, a semisupervised multidomain adaptation is introduced to align the data representation among multiple domains (labeled source domain, unlabeled source domain, and target domain), where the distribution mismatch is alleviated. Extensive experiments are conducted on three benchmark databases (SEED, SEED-IV, and SEED-V) under a cross-subject leave-one-subject-out cross-validation evaluation protocol. The results show the proposed EEGMatch performs better than the state-of-the-art methods under different incomplete label conditions (with 5.89% improvement on SEED, 0.93% improvement on SEED-IV, and 0.28% improvement on SEED-V), which demonstrates the effectiveness of the proposed EEGMatch in dealing with the label scarcity problem in emotion recognition using EEG signals. The source code is available at https://github.com/KAZABANA/EEGMatch.
Author Liang, Zhen
Zhou, Rushuang
Zhang, Zhiguo
Li, Linling
Ye, Weishan
Luo, Yanyang
Zhang, Li
Dong, Yining
Zhang, Yuan-Ting
Huang, Gan
Author_xml – sequence: 1
  givenname: Rushuang
  orcidid: 0000-0001-5426-5838
  surname: Zhou
  fullname: Zhou, Rushuang
  email: rrushuang2-c@my.cityu.edu.hk
  organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Weishan
  orcidid: 0009-0004-9971-1482
  surname: Ye
  fullname: Ye, Weishan
  email: 2110246024@email.szu.edu.cn
  organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
– sequence: 3
  givenname: Zhiguo
  orcidid: 0000-0001-7992-7965
  surname: Zhang
  fullname: Zhang, Zhiguo
  email: zhiguozhang@hit.edu.cn
  organization: Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China
– sequence: 4
  givenname: Yanyang
  surname: Luo
  fullname: Luo, Yanyang
  email: 2020222077@email.szu.edu.cn
  organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
– sequence: 5
  givenname: Li
  orcidid: 0000-0003-1641-7831
  surname: Zhang
  fullname: Zhang, Li
  email: lzhang@szu.edu.cn
  organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
– sequence: 6
  givenname: Linling
  orcidid: 0000-0001-7767-7202
  surname: Li
  fullname: Li, Linling
  email: lilinling@szu.edu.cn
  organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
– sequence: 7
  givenname: Gan
  orcidid: 0000-0001-9895-6163
  surname: Huang
  fullname: Huang, Gan
  email: huanggan@szu.edu.cn
  organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
– sequence: 8
  givenname: Yining
  orcidid: 0000-0002-4617-6947
  surname: Dong
  fullname: Dong, Yining
  email: yinidong@cityu.edu.hk
  organization: School of Data Science, City University of Hong Kong, Hong Kong, China
– sequence: 9
  givenname: Yuan-Ting
  orcidid: 0000-0003-4150-5470
  surname: Zhang
  fullname: Zhang, Yuan-Ting
  email: yt.zhang@cityu.edu.hk
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
– sequence: 10
  givenname: Zhen
  orcidid: 0000-0002-1749-2975
  surname: Liang
  fullname: Liang, Zhen
  email: janezliang@szu.edu.cn
  organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40030228$$D View this record in MEDLINE/PubMed
BookMark eNpNkU1Pg0AQhjemxtaPP2CM2aMX6n4D3rSptQlqYjV6IwvMtjTAVhZM_PeCrY1zmffwvJOZeY_RoLIVIHROyZhSEl6_Pj1FizEjTIy5CLlg8gCNGFXMYzwIBnvtfwzRmXNr0pUiUonwCA0FIZwwFozQajqdPeomXd3gCHRd5dUSv-fNCs-r1JabAhrAkU6gcNjYGi-gzF27gford5Dhzuzd6V5Nauuct2iTNaQNnpa2yW2FXyC1yyrv9Sk6NLpwcLbrJ-jtfvo6efCi59l8cht5KfNl48lQKeEzQrnJmFYQGGpoJnSSaMnDDAJpCPBQKE1NJtPA71r3hCQQhidgDD9BV9u5m9p-tuCauNs4haLQFdjWxZz6igtCw6BDL3dom5SQxZs6L3X9Hf99pwPYFkj762owe4SSuE8h_k0h7lOIdyl0poutKQeAfwZfKhpK_gN--oLj
CODEN ITNNAL
Cites_doi 10.34133/cbsystems.0045
10.1109/TCYB.2018.2797176
10.1109/ICCV.2019.00929
10.1103/PhysRevE.69.066138
10.1109/TIM.2020.3006611
10.1109/tnnls.2023.3319315
10.1109/TCDS.2020.2999337
10.1159/000077154
10.1007/s10994-023-06324-x
10.1109/EMBC.2018.8512865
10.1109/TAFFC.2020.3013711
10.1109/TAFFC.2019.2922912
10.1016/j.neuroimage.2015.02.015
10.1023/A:1018628609742
10.1109/ICASSP43922.2022.9746528
10.5555/3294996.3295163
10.1007/978-3-030-04221-9_36
10.1109/ICCV.2013.368
10.1109/TAFFC.2022.3210441
10.1609/aaai.v35i1.16169
10.1016/j.biopsycho.2004.03.002
10.1088/1741-2552/acae06
10.1609/aaai.v30i1.10306
10.1007/s10994-009-5152-4
10.1007/978-3-030-04221-9_25
10.1109/tnnls.2022.3225855
10.1109/TNSRE.2021.3111689
10.1109/TAFFC.2023.3288118
10.1371/journal.pone.0087357
10.1109/IEMBS.2010.5627125
10.1109/TBME.2013.2253608
10.1109/TNNLS.2023.3238519
10.1109/TAFFC.2020.2994159
10.1109/NER.2013.6695876
10.1088/1741-2552/abb580
10.1007/s10479-016-2187-3
10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011
10.1109/TCYB.2019.2904052
10.1109/EMBC46164.2021.9630277
10.1093/brain/awf225
10.1214/13-aos1140
10.1007/978-3-319-49409-8_35
10.1109/TCDS.2019.2949306
10.1016/j.ins.2020.05.018
10.4310/SII.2009.v2.n3.a8
10.1016/B978-012088469-8.50019-X
10.7551/mitpress/7503.003.0022
10.3389/fnins.2021.690044
10.1109/TAFFC.2018.2817622
10.1007/978-3-030-36708-4_3
10.1109/TCDS.2021.3071170
10.1007/s12559-022-10016-4
10.1109/TAFFC.2017.2660485
10.1109/TNN.2010.2091281
10.1609/aaai.v32i1.11496
10.1109/CVPR.2012.6247911
10.5555/2946645.2946704
10.3389/fncom.2019.00053
10.1109/TAMD.2015.2431497
10.1109/TNSRE.2023.3236434
10.1109/TBME.2009.2039997
10.1109/MCI.2015.2501545
10.1109/ICOT.2017.8336126
10.1109/CVPR.2018.00835
10.1038/s44220-023-00143-8
10.1016/j.cmpb.2016.08.010
10.1016/j.biopsycho.2009.08.010
10.1016/j.compbiomed.2021.105048
10.1109/TAFFC.2022.3189222
10.3389/fnins.2021.778488
10.1016/S0003-2670(01)95359-0
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TNNLS.2024.3493425
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 13005
ExternalDocumentID 40030228
10_1109_TNNLS_2024_3493425
10756195
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Shenzhen–Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions
  grantid: 2023SHIBS0003
– fundername: InnoHK Projects under Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE)
– fundername: Shenzhen Science and Technology Research and Development Fund for Sustainable Development Project
  grantid: KCXFZ20201221173613036
– fundername: Medical-Engineering Interdisciplinary Research Foundation of Shenzhen University
  grantid: 2024YG008
– fundername: National Natural Science Foundation of China
  grantid: 62276169; 62201356; 22322816; 82272114
  funderid: 10.13039/501100001809
– fundername: Shenzhen University–Lingnan University Joint Research Programme
– fundername: STI 2030-Major Projects
  grantid: 2021ZD0200500
– fundername: City University of Hong Kong Project
  grantid: 9610640
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c275t-5966472013fd2a6e8f1f1d4abba539de85f0e3946a1fd5c871fd202b84f3beff3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 16:33:48 EDT 2025
Sat Aug 02 01:40:50 EDT 2025
Wed Jul 16 16:38:12 EDT 2025
Wed Aug 27 02:14:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-5966472013fd2a6e8f1f1d4abba539de85f0e3946a1fd5c871fd202b84f3beff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5426-5838
0000-0001-7767-7202
0000-0002-1749-2975
0000-0002-4617-6947
0000-0001-7992-7965
0009-0004-9971-1482
0000-0003-4150-5470
0000-0001-9895-6163
0000-0003-1641-7831
PMID 40030228
PQID 3176340198
PQPubID 23479
PageCount 15
ParticipantIDs ieee_primary_10756195
pubmed_primary_40030228
proquest_miscellaneous_3176340198
crossref_primary_10_1109_TNNLS_2024_3493425
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref12
ref56
ref15
ref59
ref58
ref53
ref52
ref55
ref10
Berthelot (ref14) 2021
ref54
Zhang (ref67)
Zhang (ref11)
ref17
van der Maaten (ref82) 2008; 9
ref16
Sohn (ref68); 33
ref19
Ding (ref46) 2021
ref18
Bao (ref13)
ref51
ref50
Albuquerque (ref60) 2019
ref91
ref90
ref45
ref89
ref42
ref86
ref41
Berthelot (ref9) 2019
ref44
Khosla (ref48); 33
ref88
ref43
ref87
ref49
ref8
Tzeng (ref66) 2014
ref7
ref4
ref3
ref6
Kozachenko (ref85) 1987; 23
ref5
ref40
ref84
ref83
ref80
ref35
ref34
ref37
ref36
Mika (ref72); 11
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
Chen (ref78) 2023
Allen (ref79); 97
Zheng (ref29)
Arjovsky (ref81)
ref71
ref70
ref73
ref24
ref23
ref26
ref25
ref69
ref20
ref64
Ben-David (ref57); 9
ref63
ref22
ref21
Bao (ref47); 151
ref65
ref28
ref27
Zhao (ref61); 31
ref62
References_xml – ident: ref1
  doi: 10.34133/cbsystems.0045
– ident: ref38
  doi: 10.1109/TCYB.2018.2797176
– volume: 31
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref61
  article-title: Adversarial multiple source domain adaptation
– start-page: 214
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref81
  article-title: Wasserstein generative adversarial networks
– ident: ref42
  doi: 10.1109/ICCV.2019.00929
– ident: ref86
  doi: 10.1103/PhysRevE.69.066138
– ident: ref21
  doi: 10.1109/TIM.2020.3006611
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref11
  article-title: Mixup: Beyond empirical risk minimization
– ident: ref28
  doi: 10.1109/tnnls.2023.3319315
– ident: ref50
  doi: 10.1109/TCDS.2020.2999337
– ident: ref90
  doi: 10.1159/000077154
– ident: ref62
  doi: 10.1007/s10994-023-06324-x
– ident: ref83
  doi: 10.1109/EMBC.2018.8512865
– ident: ref39
  doi: 10.1109/TAFFC.2020.3013711
– ident: ref3
  doi: 10.1109/TAFFC.2019.2922912
– ident: ref31
  doi: 10.1016/j.neuroimage.2015.02.015
– ident: ref70
  doi: 10.1023/A:1018628609742
– ident: ref8
  doi: 10.1109/ICASSP43922.2022.9746528
– year: 2021
  ident: ref14
  article-title: AdaMatch: A unified approach to semi-supervised learning and domain adaptation
  publication-title: arXiv:2106.04732
– ident: ref44
  doi: 10.5555/3294996.3295163
– ident: ref51
  doi: 10.1007/978-3-030-04221-9_36
– ident: ref71
  doi: 10.1109/ICCV.2013.368
– ident: ref10
  doi: 10.1109/TAFFC.2022.3210441
– ident: ref52
  doi: 10.1609/aaai.v35i1.16169
– volume: 11
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref72
  article-title: Kernel PCA and de-noising in feature spaces
– ident: ref89
  doi: 10.1016/j.biopsycho.2004.03.002
– ident: ref4
  doi: 10.1088/1741-2552/acae06
– ident: ref75
  doi: 10.1609/aaai.v30i1.10306
– ident: ref56
  doi: 10.1007/s10994-009-5152-4
– ident: ref49
  doi: 10.1007/978-3-030-04221-9_25
– ident: ref25
  doi: 10.1109/tnnls.2022.3225855
– year: 2014
  ident: ref66
  article-title: Deep domain confusion: Maximizing for domain invariance
  publication-title: arXiv:1412.3474
– ident: ref22
  doi: 10.1109/TNSRE.2021.3111689
– ident: ref34
  doi: 10.1109/TAFFC.2023.3288118
– ident: ref87
  doi: 10.1371/journal.pone.0087357
– start-page: 452
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref13
  article-title: Classification from pairwise similarity and unlabeled data
– ident: ref64
  doi: 10.1109/IEMBS.2010.5627125
– ident: ref30
  doi: 10.1109/TBME.2013.2253608
– volume: 33
  start-page: 596
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref68
  article-title: FixMatch: Simplifying semi-supervised learning with consistency and confidence
– ident: ref26
  doi: 10.1109/TNNLS.2023.3238519
– ident: ref41
  doi: 10.1109/TAFFC.2020.2994159
– ident: ref15
  doi: 10.1109/NER.2013.6695876
– volume: 151
  start-page: 2618
  volume-title: Proc. 25th Int. Conf. Artif. Intell. Statist.
  ident: ref47
  article-title: Pairwise supervision can provably elicit a decision boundary
– ident: ref84
  doi: 10.1088/1741-2552/abb580
– year: 2023
  ident: ref78
  article-title: SoftMatch: Addressing the quantity-quality trade-off in semi-supervised learning
  publication-title: arXiv:2301.10921
– ident: ref12
  doi: 10.1007/s10479-016-2187-3
– ident: ref73
  doi: 10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011
– volume: 23
  start-page: 9
  issue: 2
  year: 1987
  ident: ref85
  article-title: Sample estimate of the entropy of a random vector
  publication-title: Problemy Peredachi Informatsii
– ident: ref40
  doi: 10.1109/TCYB.2019.2904052
– ident: ref54
  doi: 10.1109/EMBC46164.2021.9630277
– ident: ref91
  doi: 10.1093/brain/awf225
– ident: ref80
  doi: 10.1214/13-aos1140
– ident: ref65
  doi: 10.1007/978-3-319-49409-8_35
– ident: ref33
  doi: 10.1109/TCDS.2019.2949306
– ident: ref43
  doi: 10.1016/j.ins.2020.05.018
– ident: ref74
  doi: 10.4310/SII.2009.v2.n3.a8
– ident: ref58
  doi: 10.1016/B978-012088469-8.50019-X
– ident: ref59
  doi: 10.7551/mitpress/7503.003.0022
– start-page: 18408
  volume-title: Proc. NIPS
  ident: ref67
  article-title: FlexMatch: Boosting semi-supervised learning with curriculum pseudo labeling
– ident: ref37
  doi: 10.3389/fnins.2021.690044
– ident: ref24
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref55
  doi: 10.1007/978-3-030-36708-4_3
– ident: ref63
  doi: 10.1109/TCDS.2021.3071170
– ident: ref5
  doi: 10.1007/s12559-022-10016-4
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref82
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref18
  doi: 10.1109/TAFFC.2017.2660485
– volume: 97
  start-page: 232
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref79
  article-title: Infinite mixture prototypes for few-shot learning
– ident: ref69
  doi: 10.1109/TNN.2010.2091281
– ident: ref19
  doi: 10.1609/aaai.v32i1.11496
– volume: 33
  start-page: 18661
  volume-title: Proc. NIPS
  ident: ref48
  article-title: Supervised contrastive learning
– ident: ref76
  doi: 10.1109/CVPR.2012.6247911
– ident: ref35
  doi: 10.5555/2946645.2946704
– ident: ref20
  doi: 10.3389/fncom.2019.00053
– ident: ref16
  doi: 10.1109/TAMD.2015.2431497
– ident: ref27
  doi: 10.1109/TNSRE.2023.3236434
– ident: ref7
  doi: 10.1109/TBME.2009.2039997
– ident: ref2
  doi: 10.1109/MCI.2015.2501545
– ident: ref32
  doi: 10.1109/ICOT.2017.8336126
– ident: ref45
  doi: 10.1109/CVPR.2018.00835
– ident: ref23
  doi: 10.1038/s44220-023-00143-8
– ident: ref17
  doi: 10.1016/j.cmpb.2016.08.010
– year: 2021
  ident: ref46
  article-title: Prototypical representation learning for relation extraction
  publication-title: arXiv:2103.11647
– volume: 9
  start-page: 129
  volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist.
  ident: ref57
  article-title: Impossibility theorems for domain adaptation
– ident: ref88
  doi: 10.1016/j.biopsycho.2009.08.010
– ident: ref6
  doi: 10.1016/j.compbiomed.2021.105048
– ident: ref36
  doi: 10.1109/TAFFC.2022.3189222
– ident: ref53
  doi: 10.3389/fnins.2021.778488
– year: 2019
  ident: ref60
  article-title: Generalizing to unseen domains via distribution matching
  publication-title: arXiv:1911.00804
– ident: ref77
  doi: 10.1016/S0003-2670(01)95359-0
– year: 2019
  ident: ref9
  article-title: MixMatch: A holistic approach to semi-supervised learning
  publication-title: arXiv:1905.02249
– start-page: 2732
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intell.
  ident: ref29
  article-title: Personalizing EEG-based affective models with transfer learning
SSID ssj0000605649
Score 2.5025632
Snippet Electroencephalography (EEG) is an objective tool for emotion recognition and shows promising performance. However, the label scarcity problem is a main...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 12991
SubjectTerms Adaptation models
Algorithms
Brain modeling
Data augmentation
Data models
Databases, Factual
Electroencephalography
Electroencephalography (EEG)
Electroencephalography - methods
Emotion recognition
Emotions - classification
Emotions - physiology
Feature extraction
Humans
multidomain adaptation
Neural Networks, Computer
Pattern Recognition, Automated - methods
Semisupervised learning
Supervised Machine Learning
Training
Transfer learning
Title EEGMatch: Learning With Incomplete Labels for Semisupervised EEG-Based Cross-Subject Emotion Recognition
URI https://ieeexplore.ieee.org/document/10756195
https://www.ncbi.nlm.nih.gov/pubmed/40030228
https://www.proquest.com/docview/3176340198
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VDhUXoC2PhbYyErfKS-JHNuZG0VJUwR4KqHuL_GQRUhZBcuHXM3YShCoh9ZaDncSe8cw39ow_gEMEvYXUQtHMOE0FyznVpbU0L1iZCWeNSVmVl7Pi_Eb8nst5X6yeamG89yn5zI_jYzrLd0vbxq0yXOETdPdKrsAKRm5dsdbrhkqGwLxIcJfhhyjjk_lQJJOpo-vZ7OIKw0Emxlwojpq6Bh9FVHEWidjf-KREsvI-3kx-52wDZsMfd-km9-O2MWP7_M9ljv89pE1Y7xEoOelU5hN88PVn2BjYHUi_2L_AYjr9dYmGenFM-ktYb8nfu2ZB0KTEPHRE2-RCG_StBIEvuYrEce1DND1P3hHsTH_q-HQax0zRQMUdHzLtaIPInyFxaVlvwc3Z9Pr0nPa8DNSyiWyoxBBJTBA58OCYLnwZ8pA7oY3RkivnSxkyz5UodB6ctBiSYbuMmVIEbnwIfBtW62Xtd4FEsqzcWh4CusmykCpIhCQlFxojOaPdCH4Mkqkeuus3qhS2ZKpKIq2iSKtepCPYijP8pmU3uSM4GKRZ4VzEIxFd-2X7VCF6KjiGmKocwU4n5tfeg3bsvfPWfVhjkQw45e5-hdXmsfXfEKE05nvSzBeap97g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VIkEvlEeBtDyMBCfksOvHZo3EAUpKSpMcaKrmtti7NkFIm4rsqoL_0r_Cb2Ps3Y0qpB4rcfPBtuTxPL6xx_4AXiLoTaQWikam0FSwmFOd5jmNE5ZGosiNCVWVk2kyOhGf53K-ARfrtzDW2lB8Zvu-Ge7yi2Ve-6MytPABhnvV1VAe2V_nmKGt3h1-xO18xdjBcLY_oi2JAM3ZQFZUIp4XAwxz3BVMJzZ1sYsLoY3RkqvCptJFliuR6NgVMsf8AftFzKTCcWOd4zjvDbiJQEOy5nnY-ggnwlQgCQCb4dIo44N59ywnUm9m0-n4GBNQJvpcKI62sQW3hDcq5qnfL0XBQOtyNcINke5gG_50MmoKXH7068r089__fB_53wrxLtxpMTZ53xjFPdiw5X3Y7vgrSOvOHsBiOPw0wVC0eEvab2a_kdPv1YKg0_SV9phPkLE2iB4IQnty7Knx6jPvXFe2IDiYftC-te9lTNEF-zMtMmyIkciXrjRrWe7AybWs9yFslsvSPgbi6cDiPOfOIRBIE6mcRNCVcqExVzW66MHrThOys-aDkSwkZpHKggplXoWyVoV6sON39FLPZjN78KLTngxl4S99dGmX9SpDfJhwTKJV2oNHjVqtR3fauHvFrM_h9mg2GWfjw-nRHmwxT30cKpWfwGb1s7ZPEY9V5lmwCgJfr1uD_gKA_j3i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEGMatch%3A+Learning+With+Incomplete+Labels+for+Semisupervised+EEG-Based+Cross-Subject+Emotion+Recognition&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhou%2C+Rushuang&rft.au=Ye%2C+Weishan&rft.au=Zhang%2C+Zhiguo&rft.au=Luo%2C+Yanyang&rft.date=2025-07-01&rft.eissn=2162-2388&rft.volume=36&rft.issue=7&rft.spage=12991&rft_id=info:doi/10.1109%2FTNNLS.2024.3493425&rft_id=info%3Apmid%2F40030228&rft.externalDocID=40030228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon